Intercellular Interactions Mediated by HGF And TGF-Β Promote the 3D Spherical and Xenograft Growth of Liver Cancer Cells


如何引用文章

全文:

详细

Background:Recently, the importance of the interactions between liver cancer cells and fibroblasts has been increasingly recognized; however, many details remain to be explored

Methods:In this work, we first studied their intercellular interactions using conditioned medium from mouse embryonic fibroblasts (MEFs), then through a previously established coculture model.

Results:Culturing in a conditioned medium from MEFs could significantly increase the growth, migration, and invasion of liver cancer cells. The coculture model further demonstrated that a positive feedback loop was formed between transforming growth factor-β (TGF-β) from HepG2 cells and mHGF (mouse hepatocyte growth factor) from MEFs during coculture. In this feedback loop, c-Met expression in HepG2 cells was significantly increased, and its downstream signaling pathways, such as Src/FAK, PI3K/AKT, and RAF/MEK/ERK, were activated. Moreover, the proportion of activated MEFs was also increased. More importantly, the growth-promoting effects caused by the interaction of these two cell types were validated in vitro by a 3D spheroid growth assay and in vivo by a xenograft mouse model.

Conclusion:Collectively, these findings provide valuable insights into the interactions between fibroblasts and liver cancer cells, which may have therapeutic implications for the treatment of liver cancer

作者简介

Haibo Tong

Faculty of Health Sciences, University of Macau

Email: info@benthamscience.net

Dongwei Guo

Department of Pulmonary and Critical Care Medicine, Liuzhou Traditional Chinese Medical Hospital

Email: info@benthamscience.net

Yi Luo

Department of Neurosurgery, Liuzhou Traditional Chinese Medical Hospital

编辑信件的主要联系方式.
Email: info@benthamscience.net

Shigao Huang

Department of Radiation Oncology, The First Affiliated Hospital, Air Force Medical University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Zheng Peng

Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital

Email: info@benthamscience.net

Xiaolan Lv

Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital

Email: info@benthamscience.net

Pengfei Zhang

Department of Pulmonary and Critical Care Medicine, Liuzhou Traditional Chinese Medical Hospital

Email: info@benthamscience.net

Qiao Chen

Department of gastroenterology, Liuzhou Traditional Chinese Medical Hospital

Email: info@benthamscience.net

Hongyu Zhang

Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital

Email: info@benthamscience.net

Jianlin Chen

Shengli Clinical Medical College, Fujian Medical University

Email: info@benthamscience.net

Xingxuan Ma

Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital

Email: info@benthamscience.net

Bohui Ouyang

Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital

Email: info@benthamscience.net

Meng Hao

Faculty of Health Sciences, University of Macau

Email: info@benthamscience.net

参考

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Xie, D.Y.; Ren, Z.G.; Zhou, J.; Fan, J.; Gao, Q. 2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: Updates and insights. Hepatobiliary Surg. Nutr., 2020, 9(4), 452-463. doi: 10.21037/hbsn-20-480 PMID: 32832496
  3. Zhou, J.; Sun, H.; Wang, Z.; Cong, W.; Wang, J.; Zeng, M.; Zhou, W.; Bie, P.; Liu, L.; Wen, T.; Han, G.; Wang, M.; Liu, R.; Lu, L.; Ren, Z.; Chen, M.; Zeng, Z.; Liang, P.; Liang, C.; Chen, M.; Yan, F.; Wang, W.; Ji, Y.; Yun, J.; Cai, D.; Chen, Y.; Cheng, W.; Cheng, S.; Dai, C.; Guo, W.; Hua, B.; Huang, X.; Jia, W.; Li, Y.; Li, Y.; Liang, J.; Liu, T.; Lv, G.; Mao, Y.; Peng, T.; Ren, W.; Shi, H.; Shi, G.; Tao, K.; Wang, W.; Wang, X.; Wang, Z.; Xiang, B.; Xing, B.; Xu, J.; Yang, J.; Yang, J.; Yang, Y.; Yang, Y.; Ye, S.; Yin, Z.; Zhang, B.; Zhang, B.; Zhang, L.; Zhang, S.; Zhang, T.; Zhao, Y.; Zheng, H.; Zhu, J.; Zhu, K.; Liu, R.; Shi, Y.; Xiao, Y.; Dai, Z.; Teng, G.; Cai, J.; Wang, W.; Cai, X.; Li, Q.; Shen, F.; Qin, S.; Dong, J.; Fan, J. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 Edition). Liver Cancer, 2020, 9(6), 682-720. doi: 10.1159/000509424 PMID: 33442540
  4. Calderaro, J.; Ziol, M.; Paradis, V.; Zucman-Rossi, J. Molecular and histological correlations in liver cancer. J. Hepatol., 2019, 71(3), 616-630. doi: 10.1016/j.jhep.2019.06.001 PMID: 31195064
  5. Affo, S.; Yu, L.X.; Schwabe, R.F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol., 2017, 12(1), 153-186. doi: 10.1146/annurev-pathol-052016-100322 PMID: 27959632
  6. Nault, J.C.; Cheng, A.L.; Sangro, B.; Llovet, J.M. Milestones in the pathogenesis and management of primary liver cancer. J. Hepatol., 2020, 72(2), 209-214. doi: 10.1016/j.jhep.2019.11.006 PMID: 31954486
  7. Liu, J.; Li, P.; Wang, L.; Li, M.; Ge, Z.; Noordam, L.; Lieshout, R.; Verstegen, M.M.A.; Ma, B.; Su, J.; Yang, Q.; Zhang, R.; Zhou, G.; Carrascosa, L.C.; Sprengers, D.; IJzermans, J.N.M.; Smits, R.; Kwekkeboom, J.; van der Laan, L.J.W.; Peppelenbosch, M.P.; Pan, Q.; Cao, W. Cancer-Associated fibroblasts provide a stromal niche for liver cancer organoids that confers trophic effects and therapy resistance. Cell. Mol. Gastroenterol. Hepatol., 2021, 11(2), 407-431. doi: 10.1016/j.jcmgh.2020.09.003 PMID: 32932015
  8. Huang, S.; Peng, Z.; Lv, X. Recent progress on the role of fibronectin in tumor stromal immunity and immunotherapy. Curr. Top. Med. Chem., 2022, 22(30), 2494-2505. doi: 10.2174/1568026622666220615152647 PMID: 35708087
  9. Novikova, M.V.; Khromova, N.V.; Kopnin, P.B. Components of the hepatocellular carcinoma microenvironment and their role in tumor progression. Biochemistry., 2017, 82(8), 861-873. doi: 10.1134/S0006297917080016 PMID: 28941454
  10. Baglieri, J.; Brenner, D.; Kisseleva, T. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int. J. Mol. Sci., 2019, 20(7), 1723. doi: 10.3390/ijms20071723 PMID: 30959975
  11. Peng, Z.; Hao, M.; Tong, H.; Yang, H.; Huang, B.; Zhang, Z.; Luo, K.Q. The interactions between integrin α 5 β 1 of liver cancer cells and fibronectin of fibroblasts promote tumor growth and angiogenesis. Int. J. Biol. Sci., 2022, 18(13), 5019-5037. doi: 10.7150/ijbs.72367 PMID: 35982891
  12. Matsumoto, K.; Umitsu, M.; De Silva, D.M.; Roy, A.; Bottaro, D.P. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci., 2017, 108(3), 296-307. doi: 10.1111/cas.13156 PMID: 28064454
  13. Fu, J.; Su, X.; Li, Z.; Deng, L.; Liu, X.; Feng, X.; Peng, J. HGF/c-MET pathway in cancer: From molecular characterization to clinical evidence. Oncogene., 2021, 40(28), 4625-4651. doi: 10.1038/s41388-021-01863-w PMID: 34145400
  14. Moosavi, F.; Giovannetti, E.; Saso, L.; Firuzi, O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit. Rev. Clin. Lab. Sci., 2019, 56(8), 533-566. doi: 10.1080/10408363.2019.1653821 PMID: 31512514
  15. Imamura, R.; Matsumoto, K. Hepatocyte growth factor in physiology and infectious diseases. Cytokine, 2017, 98, 97-106. doi: 10.1016/j.cyto.2016.12.025 PMID: 28094206
  16. Huang, X.; Li, E.; Shen, H.; Wang, X.; Tang, T.; Zhang, X.; Xu, J.; Tang, Z.; Guo, C.; Bai, X.; Liang, T. Targeting the HGF/MET Axis in cancer therapy: Challenges in resistance and opportunities for improvement. Front. Cell Dev. Biol., 2020, 8, 152. doi: 10.3389/fcell.2020.00152 PMID: 32435640
  17. Uchikawa, E.; Chen, Z.; Xiao, G.Y.; Zhang, X.; Bai, X. Structural basis of the activation of c-MET receptor. Nat. Commun., 2021, 12(1), 4074. doi: 10.1038/s41467-021-24367-3 PMID: 34210960
  18. Zambelli, A.; Biamonti, G.; Amato, A. HGF/c-Met signalling in the tumor microenvironment. Adv. Exp. Med. Biol., 2021, 1270, 31-44. doi: 10.1007/978-3-030-47189-7_2 PMID: 33123991
  19. Lee, H.K.; Lim, H.M.; Park, S.H.; Nam, M.J. Knockout of hepatocyte growth factor by CRISPR/Cas9 system induces apoptosis in hepatocellular carcinoma cells. J. Pers. Med., 2021, 11(10), 983. doi: 10.3390/jpm11100983 PMID: 34683124
  20. Nakamura, T.; Mizuno, S. The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2010, 86(6), 588-610. doi: 10.2183/pjab.86.588 PMID: 20551596
  21. Owusu, B.; Galemmo, R.; Janetka, J.; Klampfer, L. Hepatocyte growth factor, a key tumor-promoting factor in the tumor microenvironment. Cancers., 2017, 9(12), 35. doi: 10.3390/cancers9040035 PMID: 28420162
  22. Jung, Y.Y.; Um, J.Y.; Sethi, G.; Ahn, K.S. Fangchinoline abrogates growth and survival of hepatocellular carcinoma by negative regulation of c‐met/HGF and its associated downstream signaling pathways. Phytother. Res., 2022, 36(12), 4542-4557. doi: 10.1002/ptr.7573 PMID: 35867025
  23. Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1_suppl)(Suppl.), S7-S19. doi: 10.1177/1758834011422556 PMID: 22128289
  24. Wang, H.; Rao, B.; Lou, J.; Li, J.; Liu, Z.; Li, A.; Cui, G.; Ren, Z.; Yu, Z. The function of the HGF/c-Met Axis in hepatocellular carcinoma. Front. Cell Dev. Biol., 2020, 8, 55. doi: 10.3389/fcell.2020.00055 PMID: 32117981
  25. Bouattour, M.; Raymond, E.; Qin, S.; Cheng, A.L.; Stammberger, U.; Locatelli, G.; Faivre, S. Recent developments of c‐Met as a therapeutic target in hepatocellular carcinoma. Hepatology., 2018, 67(3), 1132-1149. doi: 10.1002/hep.29496 PMID: 28862760
  26. Asaoka, Y.; Tateishi, R.; Hayashi, A.; Ushiku, T.; Shibahara, J.; Kinoshita, J.; Ouchi, Y.; Koike, M.; Fukayama, M.; Shiina, S.; Koike, K. Expression of c-Met in primary and recurrent hepatocellular carcinoma. Oncology, 2020, 98(3), 186-194. doi: 10.1159/000504806 PMID: 31846974
  27. Karin, D.; Koyama, Y.; Brenner, D.; Kisseleva, T. The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis. Differentiation., 2016, 92(3), 84-92. doi: 10.1016/j.diff.2016.07.001 PMID: 27591095
  28. Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(3), 151-166. doi: 10.1038/s41575-020-00372-7 PMID: 33128017
  29. O’Leary, E.M.; Tian, Y.; Nigdelioglu, R.; Witt, L.J.; Cetin-Atalay, R.; Meliton, A.Y.; Woods, P.S.; Kimmig, L.M.; Sun, K.A.; Gökalp, G.A.; Mutlu, G.M.; Hamanaka, R.B. TGF-β promotes metabolic reprogramming in lung fibroblasts via mTORC1-dependent ATF4 activation. Am. J. Respir. Cell Mol. Biol., 2020, 63(5), 601-612. doi: 10.1165/rcmb.2020-0143OC PMID: 32668192
  30. Akhmetshina, A.; Palumbo, K.; Dees, C.; Bergmann, C.; Venalis, P.; Zerr, P.; Horn, A.; Kireva, T.; Beyer, C.; Zwerina, J.; Schneider, H.; Sadowski, A.; Riener, M.O.; MacDougald, O.A.; Distler, O.; Schett, G.; Distler, J.H.W. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat. Commun., 2012, 3(1), 735. doi: 10.1038/ncomms1734 PMID: 22415826
  31. Meng, X.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol., 2016, 12(6), 325-338. doi: 10.1038/nrneph.2016.48 PMID: 27108839
  32. Tzavlaki, K.; Moustakas, A. TGF-β signaling. Biomolecules., 2020, 10(3), 487. doi: 10.3390/biom10030487 PMID: 32210029
  33. Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767. doi: 10.3390/ijms20112767 PMID: 31195692
  34. Chen, J.; Gingold, J.A.; Su, X. Immunomodulatory TGF-β signaling in hepatocellular carcinoma. Trends Mol. Med., 2019, 25(11), 1010-1023. doi: 10.1016/j.molmed.2019.06.007 PMID: 31353124
  35. Biernacka, A.; Dobaczewski, M.; Frangogiannis, N.G. TGF-β signaling in fibrosis. Growth Factors, 2011, 29(5), 196-202. doi: 10.3109/08977194.2011.595714 PMID: 21740331
  36. Chen, Y.; McAndrews, K.M.; Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol., 2021, 18(12), 792-804. doi: 10.1038/s41571-021-00546-5 PMID: 34489603
  37. Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; Hynes, R.O.; Jain, R.K.; Janowitz, T.; Jorgensen, C.; Kimmelman, A.C.; Kolonin, M.G.; Maki, R.G.; Powers, R.S.; Puré, E.; Ramirez, D.C.; Scherz-Shouval, R.; Sherman, M.H.; Stewart, S.; Tlsty, T.D.; Tuveson, D.A.; Watt, F.M.; Weaver, V.; Weeraratna, A.T.; Werb, Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer, 2020, 20(3), 174-186. doi: 10.1038/s41568-019-0238-1 PMID: 31980749
  38. Pelaz, S.G.; Tabernero, A. Src: Coordinating metabolism in cancer. Oncogene, 2022, 41(45), 4917-4928. doi: 10.1038/s41388-022-02487-4 PMID: 36217026
  39. Huang, X.; Gan, G.; Wang, X.; Xu, T.; Xie, W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy, 2019, 15(7), 1258-1279. doi: 10.1080/15548627.2019.1580105 PMID: 30786811
  40. Biffi, G.; Tuveson, D.A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev., 2021, 101(1), 147-176. doi: 10.1152/physrev.00048.2019 PMID: 32466724
  41. Menyhárt, O.; Nagy, Á.; Győrffy, B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R. Soc. Open Sci., 2018, 5(12), 181006. doi: 10.1098/rsos.181006 PMID: 30662724
  42. Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102. doi: 10.1093/nar/gkx247 PMID: 28407145
  43. Dhar, D.; Baglieri, J.; Kisseleva, T.; Brenner, D.A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med., 2020, 245(2), 96-108. doi: 10.1177/1535370219898141 PMID: 31924111
  44. Pulz, L.H.; Cordeiro, Y.G.; Huete, G.C.; Cadrobbi, K.G.; Rochetti, A.L.; Xavier, P.L.P.; Nishiya, A.T.; de Freitas, S.H.; Fukumasu, H.; Strefezzi, R.F. Intercellular interactions between mast cells and stromal fibroblasts obtained from canine cutaneous mast cell tumours. Sci. Rep., 2021, 11(1), 23881. doi: 10.1038/s41598-021-03390-w PMID: 34903806
  45. Granito, A.; Guidetti, E.; Gramantieri, L. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma. J. Hepatocell Carcinoma., 2015, 2, 29-38. PMID: 27508192

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024