Mechanisms Involved in the Therapeutic Effect of Cannabinoid Compounds on Gliomas: A Review with Experimental Approach


Цитировать

Полный текст

Аннотация

Introduction:Brain tumors have high morbidity and mortality rates, accounting for 1.4% of all cancers. Gliomas are the most common primary brain tumors in adults. Currently, several therapeutic approaches are used; however, they are associated with side effects that affect patients’quality of life. Therefore, further studies are needed to develop novel therapeutic protocols with a more favorable side effect profile. In this context, cannabinoid compounds may serve as potential alternatives.

Objective:This study aimed to review the key enzymatic targets involved in glioma pathophysiology and evaluate the potential interaction of these targets with four cannabinoid derivatives through molecular docking simulations.

Methods:Molecular docking simulations were performed using four cannabinoid compounds and six molecular targets associated with glioma pathophysiology.

Results:Encouraging interactions between the selected enzymes and glioma-related targets were observed, suggesting their potential activity through these pathways. In particular, cannabigerol showed promising interactions with epidermal growth factor receptors and phosphatidylinositol 3- kinase, while Δ-9-tetrahydrocannabinol showed remarkable interactions with telomerase reverse transcriptase.

Conclusion:The evaluated compounds exhibited favorable interactions with the analyzed enzymatic targets, thus representing potential candidates for further in vitro and in vivo studies.

Об авторах

Hugo Pires

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Pablo da Silva

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Arthur Dias

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Cleyton de Sousa Gomes

Laboratory for Risk Assessment of Novel Technologies (LabRisk), Departament of Molecular Biology, Federal University of Paraíba

Email: info@benthamscience.net

Natália de Sousa

Postgraduate Program in Natural Synthetic and Bioactive Products, Health Sciences Center, Federal University of Paraíba

Email: info@benthamscience.net

Aline dos Santos

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Lívia Souza

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Jaislânia de Figueiredo Lima

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Mayara Oliveira

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Cícero Felipe

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Reinaldo de Almeida

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Ricardo de Castro

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Mirian da Silva Stiebbe Salvadori

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Marcus Scotti

Postgraduate Program in Natural Synthetic and Bioactive Products, Health Sciences Center, Federal University of Paraíba

Email: info@benthamscience.net

Luciana Scotti

Postgraduate Program in Natural Synthetic and Bioactive Products, Health Sciences Center, Federal University of Paraíba

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. McBain, C.; Lawrie, T. A.; Rogozińska, E.; Kernohan, A.; Robinson, T.; Jefferies, S. Treatment options for progression or recurrence of glioblastoma: A network meta-analysis. Cochrane Database Syst Rev, 2021, 5(1), CD013579. doi: 10.1002/14651858.CD013579.pub2
  2. Pangal, D.J.; Baertsch, H.; Kellman, E.M.; Cardinal, T.; Brunswick, A.; Rutkowski, M.; Strickland, B.; Chow, F.; Attenello, F.; Zada, G. Complementary and alternative medicine for the treatment of gliomas: Scoping review of clinical studies, patient outcomes, and toxicity profiles. World Neurosurg., 2021, 151, e682-e692. doi: 10.1016/j.wneu.2021.04.096 PMID: 33940275
  3. Choi, J.H.; Ro, J.Y. The 2020 WHO classification of tumors of soft tissue: Selected changes and new entities. Adv. Anat. Pathol., 2020, 28(1), 44-58.
  4. Louis, D. N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W. K.; Ohgaki, H.; Wiestler, O. D.; Kleihues, P.; Ellison, D. W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820. doi: 10.1007/s00401-016-1545-1
  5. Geneen, L.J.; Moore, R.A.; Clarke, C.; Martin, D.; Colvin, L.A.; Smith, B.H. Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst Rev, 2017, 4(4), CD011279. doi: 10.1002/14651858.CD011279.pub3
  6. Yang, K.; Wu, Z.; Zhang, H.; Zhang, N.; Wu, W.; Wang, Z.; Dai, Z.; Zhang, X.; Zhang, L.; Peng, Y. Glioma targeted therapy: Insight into future of molecular approaches. Mol. Cancer, 2022, 21(1), 39. doi: 10.1186/s12943-022-01513-z
  7. Torres, S.; Lorente, M.; Rodríguez-Fornés, F.; Hernández-Tiedra, S.; Salazar, M.; García-Taboada, E.; Barcia, J.; Guzmán, M.; Velasco, G. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther., 2011, 10(1), 90-103. doi: 10.1158/1535-7163.MCT-10-0688 PMID: 21220494
  8. Rohle, D.; Popovici-Muller, J.; Palaskas, N.; Turcan, S.; Grommes, C.; Campos, C.; Tsoi, J.; Clark, O.; Oldrini, B.; Komisopoulou, E. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science, 2013, 340(6132), 626-630b. doi: 10.1126/science.1236062
  9. Erices, J.I.; Torres, Á.; Niechi, I.; Bernales, I.; Quezada, C. Current natural therapies in the treatment against glioblastoma. Phytother Res., 2018, 32(11), 2191-2201. doi: 10.1002/ptr.6170
  10. Rodriguez-Almaraz, J.E.; Butowski, N. Therapeutic and supportive effects of cannabinoids in patients with brain tumors (CBD Oil and Cannabis). Curr. Treat. Options Oncol., 2023, 24(1), 30-44. doi: 10.1007/s11864-022-01047-y PMID: 36633803
  11. Peeri, H.; Koltai, H. Cannabis biomolecule effects on cancer cells and cancer stem cells: Cytotoxic, anti-proliferative, and anti-migratory activities. Biomolecules., 2022, 12(4), 491. doi: 10.3390/biom12040491
  12. Belgers, V.; Röttgering, J.G.; Douw, L.; Klein, M.; Ket, J.C.F.; van de Ven, P.M.; Würdinger, T.; van Linde, M.E.; Niers, J.M.; Weber, M. Cannabinoids to improve health-related quality of life in patients with neurological or oncological disease: A meta-analysis. Cannabis Cannabinoid Res., 2022, 8(1), 41-55. doi: 10.1089/can.2021.0187 PMID: 35861789
  13. Scotti, L.; da Silva, P.R.; de Andrade, J.C.; de Sousa, N.F.; Ribeiro, P.A.C.; Pires, O.H.F.; Remígio, B.M.C.R.; Alves, D.N.; de Andrade, H.H.N.; Dias, A.L.; da Silva, S.S.M.G.; de Oliveira, G.A.M.F.; de Castro, R.D.; Scotti, M.T.; Bezerra, F.C.F.; de Almeida, R.N. Computational studies applied to linalool and citronellal derivatives against Alzheimer’s and Parkinson’s Disorders: A review with experimental approach. Curr. Neuropharmacol., 2023, 21(4), 842-866. doi: 10.2174/1570159X21666230221123059 PMID: 36809939
  14. Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; Friedman, H.; Friedman, A.; Reardon, D.; Herndon, J.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B.; Bigner, D.D. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med., 2009, 360(8), 765-773. doi: 10.1056/NEJMoa0808710 PMID: 19228619
  15. Grochans, S.; Cybulska, A. M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of glioblastoma multiforme-literature review. Cancers., 2022, 14(10), 2412. doi: 10.3390/cancers14102412
  16. Kyriakou, I.; Yarandi, N.; Polycarpou, E. Efficacy of cannabinoids against glioblastoma multiforme: A systematic review. Phytomedicine., 2021, 88, 153533. doi: 10.1016/j.phymed.2021.153533
  17. Luís, .; Marcelino, H.; Rosa, C.; Domingues, F.; Pereira, L.; Cascalheira, J. F. The effects of cannabinoids on glioblastoma growth: A systematic review with meta-analysis of animal model studies. Eur. J. Pharmacol., 2020, 876, 173055. doi: 10.1016/j.ejphar.2020.173055
  18. Cope, E.C.; Gould, E. Adult neurogenesis, glia, and the extracellular matrix. Cell. Stem. Cell, 2019, 24(5), 690-705. doi: 10.1016/j.stem.2019.03.023
  19. Hanani, M.; Verkhratsky, A. Satellite glial cells and astrocytes, a comparative review. Neurochem. Res., 2021, 46(10), 2525-2537. doi: 10.1007/s11064-021-03255-8 PMID: 33523395
  20. Costas-Insua, C.; Guzmán, M. Endocannabinoid signaling in glioma. Glia, 2023, 71(1), 127-138. doi: 10.1002/glia.24173 PMID: 35322459
  21. Salles, D.; Laviola, G. Pilocytic astrocytoma: A review of general, clinical, and molecular characteristics. J. Child. Neurol., 2020, 35(12), 852-858. doi: 10.1177/0883073820937225
  22. Hirtz, A.; Rech, F. Astrocytoma: A hormone-sensitive tumor? Int. J. Mol. Sci., 2020, 21(23), 9114. doi: 10.3390/ijms21239114
  23. Doherty, G.J.; de Paula, B.H.R. Cannabinoids in glioblastoma multiforme-hype or hope? Br. J. Cancer, 2021, 124(8), 1341-1343. doi: 10.1038/s41416-021-01265-5
  24. Gritsch, S.; Batchelor, T.T.; Gonzalez, C.L.N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer, 2022, 128(1), 47-58. doi: 10.1002/cncr.33918
  25. Kano, H.; Lunsford, L.D. Leksell radiosurgery for ependymomas and oligodendrogliomas. Prog. Neurol. Surg., 2019, 34, 200-206. doi: 10.1159/000493065 PMID: 31096227
  26. Rudà, R.; Touat, M.; Soffietti, R. Is chemotherapy alone an option as initial treatment for low-grade oligodendrogliomas? Curr. Opin. Neurol., 2020, 33(6), 707-715. doi: 10.1097/WCO.0000000000000866
  27. Baliga, S.; Gandola, L.; Timmermann, B.; Gail, H.; Padovani, L.; Janssens, G.O.; Yock, T.I. Brain tumors: Medulloblastoma, ATRT, ependymoma. Pediatr. Blood Cancer, 2021, 68(S2), e28395. doi: 10.1002/pbc.28395 PMID: 32386126
  28. Jünger, S.T.; Timmermann, B.; Pietsch, T. Pediatric ependymoma: An overview of a complex disease. Childs Nerv. Syst., 2021, 37(8), 2451-2463.
  29. Stuckert, A.; Bertrand, K.C.; Wang, P.; Smith, A.; Mack, S.C. Weighing ependymoma as an epigenetic disease. J. Neurooncol., 2020, 150(1), 57-61. doi: 10.1007/s11060-020-03562-0
  30. Bernstock, J.D.; Hoffman, S.E.; Kappel, A.D.; Valdes, P.A.; Essayed, W.I.; Klinger, N.V.; Kang, K.D.; Totsch, S.K.; Olsen, H.E.; Schlappi, C.W. Immunotherapy Approaches for the Treatment of Diffuse Midline Gliomas. OncoImmunology; Taylor and Francis Ltd., 2022. doi: 10.1080/2162402X.2022.2124058
  31. Janjua, M.B.; Ban, V.S.; El Ahmadieh, T.Y.; Hwang, S.W.; Samdani, A.F.; Price, A.V.; Weprin, B.E.; Batjer, H. Diffuse intrinsic pontine gliomas: Diagnostic approach and treatment strategies. J. Clin. Neurosci., 2020, 72, 15-19. doi: 10.1016/j.jocn.2019.12.001
  32. Srikanthan, D.; Taccone, M.S.; Van Ommeren, R.; Ishida, J.; Krumholtz, S.L.; Rutka, J.T. Diffuse intrinsic pontine glioma: Current insights and future directions. Chin. Neurosurg. J., 2021, 7(1), 6. doi: 10.1186/s41016-020-00218-w
  33. Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20. doi: 10.1002/1878-0261.12155
  34. Gell, A.L.; Groysbeck, N.; Becker, C.F.W.; Conibear, A.C. A comparative study of synthetic and semisynthetic approaches for ligating the epidermal growth factor to a bivalent scaffold. J. Pept. Sci., 2017, 23(12), 871-879. doi: 10.1002/psc.3051 PMID: 29105901
  35. Purba, E.R.; Saita, E.I.; Maruyama, I.N. Activation of the EGF receptor by ligand binding and oncogenic mutations: The "Rotation Model". Cells, 2017, 6(2), 13. doi: 10.3390/cells6020013
  36. Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem., 2020, 20(10), 815-834. doi: 10.2174/1568026620666200303123102 PMID: 32124699
  37. Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017, 9(5), 52. doi: 10.3390/cancers9050052
  38. Kasenda, B.; König, D.; Manni, M.; Ritschard, R.; Duthaler, U.; Bartoszek, E.; Bärenwaldt, A.; Deuster, S.; Hutter, G.; Cordier, D.; Mariani, L.; Hench, J.; Frank, S.; Krähenbühl, S.; Zippelius, A.; Rochlitz, C.; Mamot, C.; Wicki, A.; Läubli, H. Targeting immunoliposomes to EGFR-positive glioblastoma. ESMO Open., 2022, 7(1), 100365. doi: 10.1016/j.esmoop.2021.100365 PMID: 34998092
  39. Maire, C.L.; Ligon, K.L. Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro. Oncol., 2014, 16(S8), viii1-viii6. doi: 10.1093/neuonc/nou294
  40. Saadeh, F.S.; Mahfouz, R.; Assi, H.I. EGFR as a clinical marker in glioblastomas and other gliomas. Int. J. Biol. Markers, 2018, 33(1), 22-32. doi: 10.5301/ijbm.5000301
  41. Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta. Pharm. Sin. B, 2015, 5(5), 390-401. doi: 10.1016/j.apsb.2015.07.001
  42. Morgillo, F.; Corte, C.M.D.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open., 2016, 1(3), e000060. doi: 10.1136/esmoopen-2016-000060
  43. Padfield, E.; Ellis, H.P.; Kurian, K.M. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front. Oncol., 2015, 5, 5. doi: 10.3389/fonc.2015.00005 PMID: 25688333
  44. Elbaz, M.; Nasser, M.W.; Ravi, J.; Wani, N.A.; Ahirwar, D.K.; Zhao, H.; Oghumu, S.; Satoskar, A.R.; Shilo, K.; Carson, W.E., III; Ganju, R.K. Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: Novel anti-tumor mechanisms of Cannabidiol in breast cancer. Mol. Oncol., 2015, 9(4), 906-919. doi: 10.1016/j.molonc.2014.12.010 PMID: 25660577
  45. Lamtha, T.; Tabtimmai, L.; Songtawee, N.; Tansakul, N.; Choowongkomon, K. Structural analysis of cannabinoids against EGFR-TK leads a novel target against EGFR-driven cell lines. Curr. Res. Pharmacol. Drug Discov., 2022, 3, 100132. doi: 10.1016/j.crphar.2022.100132 PMID: 36568260
  46. Janku, F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat. Rev., 2017, 59, 93-101. doi: 10.1016/j.ctrv.2017.07.005
  47. Cui, W.; Cai, Y.; Zhou, X. Advances in subunits of PI3K class I in cancer. Pathology, 2014, 46(3), 169-176. doi: 10.1097/PAT.0000000000000066 PMID: 24614719
  48. Gulluni, F.; De Santis, M.C.; Margaria, J.P.; Martini, M.; Hirsch, E. Class II PI3K functions in cell biology and disease. Trends. Cell. Biol., 2019, 29(4), 339-359. doi: 10.1016/j.tcb.2019.01.001
  49. Nascimbeni, A.C.; Codogno, P.; Morel, E. Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. FEBS. J., 2017, 284, 1267-1278. doi: 10.1111/febs.13987
  50. Liu, X.; Xu, Y.; Zhou, Q.; Chen, M.; Zhang, Y.; Liang, H.; Zhao, J.; Zhong, W.; Wang, M. PI3K in cancer: Its structure, activation modes and role in shaping tumor microenvironment. Future Oncol., 2018, 14(7), 665-674. doi: 10.2217/fon-2017-0588
  51. Dehkordi, R.Z.; Baharanchi, H.F.S.; Bekhradi, R. Effect of lavender inhalation on the symptoms of primary dysmenorrhea and the amount of menstrual bleeding: A randomized clinical trial. Complement. Ther. Med., 2014, 22(2), 212-219. doi: 10.1016/j.ctim.2013.12.011 PMID: 24731891
  52. Behrooz, A.B.; Talaie, Z.; Jusheghani, F.; Łos, M. J.; Klonisch, T.; Ghavami, S. Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. Int. J. Mol. Sci., 2022, 23(3), 1353. doi: 10.3390/ijms23031353
  53. Burris, H.A., III Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother. Pharmacol., 2013, 71(4), 829-842. doi: 10.1007/s00280-012-2043-3 PMID: 23377372
  54. Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/MTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget., 2016, 7(22), 33440-33450.
  55. Becher, O.J.; Millard, N.E.; Modak, S.; Kushner, B.H.; Haque, S.; Spasojevic, I.; Trippett, T.M.; Gilheeney, S.W.; Khakoo, Y.; Lyden, D.C.; De Braganca, K.C.; Kolesar, J.M.; Huse, J.T.; Kramer, K.; Cheung, N.K.V.; Dunkel, I.J. A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS One, 2017, 12(6), e0178593. doi: 10.1371/journal.pone.0178593 PMID: 28582410
  56. Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci., 2020, 10, 31. doi: 10.1186/s13578-020-00396-1
  57. Masui, K.; Cavenee, W.K.; Mischel, P.S. MTORC2 in the center of cancer metabolic reprogramming. In: Trends in Endocrinology and Metabolism; Elsevier Inc., 2014; pp. 364-373. doi: 10.1016/j.tem.2014.04.002
  58. Jhanwar-Uniyal, M.; Gillick, J. L.; Neil, J.; Tobias, M.; Thwing, Z. E.; Murali, R. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: A tale of two complexes. Adv. Biol. Regul., 2015, 57, 64-74. doi: 10.1016/j.jbior.2014.09.004
  59. Mittal, R.; Chaudhry, N.; Mukherjee, T.K. Targeting breast cancer cell signaling molecules PI3K and Akt by phytochemicals Cannabidiol, Nimbin and Acetogenin: An in silico approach. J. Biomed., 2018, 3, 60-63. doi: 10.7150/jbm.25815
  60. Song, G.; Lu, H.; Chen, F.; Wang, Y.; Fan, W.; Shao, W.; Lu, H.; Lin, B. Tetrahydrocurcumin-induced autophagy via suppression of PI3K/Akt/mTOR in non-small cell lung carcinoma cells. Mol. Med. Rep., 2018, 17(4), 5964-5969. doi: 10.3892/mmr.2018.8600 PMID: 29436654
  61. Dai, S.; Zhou, Z.; Chen, Z.; Xu, G.; Chen, Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and small molecule inhibitors. Cells, 2019, 8(6), 614. doi: 10.3390/cells8060614 PMID: 31216761
  62. Mossahebi-Mohammadi, M.; Quan, M.; Zhang, J. S.; Li, X. FGF signaling pathway: A key regulator of stem cell pluripotency. Front Cell. Dev. Biol., 2020, 8, 79. doi: 10.3389/fcell.2020.00079
  63. Jimenez-Pascual, A.; Siebzehnrubl, F. A. Fibroblast growth factor receptor functions in glioblastoma. Cells., 2019, 8(7), 715. doi: 10.3390/cells8070715
  64. Babina, I.S.; Turner, N.C. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer, 2017, 17(5), 318-332. doi: 10.1038/nrc.2017.8
  65. Hierro, C.; Rodon, J.; Tabernero, J. Fibroblast Growth Factor (FGF) receptor/FGF inhibitors: Novel targets and strategies for optimization of response of solid tumors. In: Seminars in Oncology; W.B. Saunders, 2015; pp. 801-819. doi: 10.1053/j.seminoncol.2015.09.027
  66. Katoh, M.; Nakagama, H. FGF receptors: Cancer biology and therapeutics. Med. Res. Rev., 2014, 34(2), 280-300. doi: 10.1002/med.21288 PMID: 23696246
  67. Roskoski, R. The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder. Pharmacol. Res., 2020, 151, 104567. doi: 10.1016/j.phrs.2019.104567
  68. Sootome, H.; Fujita, H.; Ito, K.; Ochiiwa, H.; Fujioka, Y.; Ito, K.; Miura, A.; Sagara, T.; Ito, S.; Ohsawa, H.; Otsuki, S.; Funabashi, K.; Yashiro, M.; Matsuo, K.; Yonekura, K.; Hirai, H. Futibatinib is a novel irreversible FGFR 1–4 inhibitor that shows selective antitumor activity against FGFR-deregulated tumors. Cancer Res., 2020, 80(22), 4986-4997. doi: 10.1158/0008-5472.CAN-19-2568 PMID: 32973082
  69. Gavine, P.R.; Mooney, L.; Kilgour, E.; Thomas, A.P.; Al-Kadhimi, K.; Beck, S.; Rooney, C.; Coleman, T.; Baker, D.; Mellor, M.J.; Brooks, A.N.; Klinowska, T. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res., 2012, 72(8), 2045-2056. doi: 10.1158/0008-5472.CAN-11-3034 PMID: 22369928
  70. Singh, D.; Chan, J. M.; Zoppoli, P.; Niola, F.; Sullivan, R.; Castano, A.; Liu, E. M.; Reichel, J.; Porrati, P.; Pellegatta, S. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science, 2012, 337(6099), 1231. doi: 10.1126/science.1220834
  71. Schramm, K.; Iskar, M.; Statz, B.; Jäger, N.; Haag, D.; Słabicki, M.; Pfister, S.M.; Zapatka, M.; Gronych, J.; Jones, D.T.W.; Lichter, P. DECIPHER pooled shRNA library screen identifies PP2A and FGFR signaling as potential therapeutic targets for diffuse intrinsic pontine gliomas. Neuro-oncol., 2019, 21(7), 867-877. doi: 10.1093/neuonc/noz057 PMID: 30943283
  72. Crispo, F.; Notarangelo, T.; Pietrafesa, M.; Lettini, G.; Storto, G.; Sgambato, A.; Maddalena, F.; Landriscina, M. BRAF inhibitors in thyroid cancer: Clinical impact, mechanisms of resistance and future perspectives. Cancers, 2019, 11(9), 1388. doi: 10.3390/cancers11091388
  73. Molina-Cerrillo, J.; San Román, M.; Pozas, J.; Alonso-Gordoa, T.; Pozas, M.; Conde, E.; Rosas, M.; Grande, E.; García-Bermejo, M. L.; Carrato, A. BRAF mutated colorectal cancer: New treatment approaches. Cancers., 2020, 12(6), 1571. doi: 10.3390/cancers12061571
  74. Zaman, A.; Wu, W.; Bivona, T. G. Targeting oncogenic BRAF: Past, present, and future. Cancers., 2019, 11(8), 1197. doi: 10.3390/cancers11081197
  75. Andrews, L.J.; Thornton, Z.A.; Saincher, S.S.; Yao, I.Y.; Dawson, S.; McGuinness, L.A.; Jones, H.E.; Jefferies, S.; Short, S.C.; Cheng, H.Y. Prevalence of BRAFV600 in glioma and use of BRAF Inhibitors in patients with BRAFV600 mutation-positive glioma: Systematic review. Neuro Oncol., 2022, 24(4), 528-540. doi: 10.1093/neuonc/noab247
  76. Schreck, K..; Grossman, S.A.; Pratilas, C.A. BRAF mutations and the utility of RAF and MEK inhibitors in primary brain tumors. Cancers., 2019, 11(9), 1262. doi: 10.3390/cancers11091262
  77. Marzęda, P.; Drozd, M.; Wróblewska-Łuczka, P.; Łuszczki, J. J. Cannabinoids and their derivatives in struggle against melanoma. Pharmacol. Rep., 2021, 73(6), 1485-1496. doi: 10.1007/s43440-021-00308-1
  78. Panebianco, F.; Nikitski, A.V.; Nikiforova, M.N.; Nikiforov, Y.E. Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer. Cancer Med., 2019, 8(13), 5831-5839. doi: 10.1002/cam4.2467 PMID: 31408918
  79. Dratwa, M.; Wysoczańska, B.; Łacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT-regulation and roles in cancer formation. Front. Immunol., 2020, 11, 589929. doi: 10.3389/fimmu.2020.589929
  80. Ohba, S.; Kuwahara, K.; Yamada, S.; Abe, M.; Hirose, Y. Correlation between IDH, ATRX, and TERT promoter mutations in glioma. Brain. Tumor. Pathol., 2020, 37(2), 33-40. doi: 10.1007/s10014-020-00360-4
  81. Yang, L.; Li, N.; Wang, M.; Zhang, Y.H.; Yan, L.; Da; Zhou, W.; Yu, Z.Q.; Peng, X.C.; Cai, J. Tumorigenic effect of TERT and its potential therapeutic target in NSCLC (Review). Oncol Rep., 2021, 46(2), 182. doi: 10.3892/or.2021.8133
  82. Hussein, N.A.E.M.; El-Toukhy, M.A.E.F.; Kazem, A.H.; Ali, M.E.S.; Ahmad, M.A.E.R.; Ghazy, H.M.R.; El-Din, A.M.G. Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice. Alex. J. Med., 2014, 50(3), 241-251. doi: 10.1016/j.ajme.2014.02.003
  83. Hanihara, M.; Kawataki, T.; Oh-Oka, K.; Mitsuka, K.; Nakao, A.; Kinouchi, H. Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model. J. Neurosurg., 2016, 124(6), 1594-1601. doi: 10.3171/2015.5.JNS141901 PMID: 26636389
  84. Godin-Ethier, J.; Hanafi, L.A.; Piccirillo, C.A.; Lapointe, R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin. Cancer Res., 2011, 17(22), 6985-6991. doi: 10.1158/1078-0432.CCR-11-1331 PMID: 22068654
  85. Batista, C.E.A.; Juhász, C.; Muzik, O.; Kupsky, W.J.; Barger, G.; Chugani, H.T.; Mittal, S.; Sood, S.; Chakraborty, P.K.; Chugani, D.C. Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors. Mol. Imaging Biol., 2009, 11(6), 460-466. doi: 10.1007/s11307-009-0225-0 PMID: 19434461
  86. Guastella, A.R.; Michelhaugh, S.K.; Klinger, N.V.; Kupsky, W.J.; Polin, L.A.; Muzik, O.; Juhász, C.; Mittal, S. Tryptophan PET imaging of the kynurenine pathway in patient-derived xenograft models of glioblastoma. Mol. Imaging, 2016, 15 1536012116644881. doi: 10.1177/1536012116644881 PMID: 27151136
  87. Hosseinalizadeh, H.; Mahmoodpour, M.; Samadani, A. A.; Roudkenar, M. H. The immunosuppressive role of indoleamine 2, 3-dioxygenase in glioblastoma: Mechanism of action and immunotherapeutic strategies. Med Oncol., 2022, 39(9), 130. doi: 10.1007/s12032-022-01724-w
  88. Ladomersky, E.; Zhai, L.; Lenzen, A.; Lauing, K.L.; Qian, J.; Scholtens, D.M.; Gritsina, G.; Sun, X.; Liu, Y.; Yu, F.; Gong, W.; Liu, Y.; Jiang, B.; Tang, T.; Patel, R.; Platanias, L.C.; James, C.D.; Stupp, R.; Lukas, R.V.; Binder, D.C.; Wainwright, D.A. IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. Clin. Cancer Res., 2018, 24(11), 2559-2573. doi: 10.1158/1078-0432.CCR-17-3573 PMID: 29500275
  89. Tang, K.; Wu, Y.H.; Song, Y.; Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol., 2021, 14(1), 68. doi: 10.1186/s13045-021-01080-8
  90. Wainwright, D.A.; Chang, A.L.; Dey, M.; Balyasnikova, I.V.; Kim, C.K.; Tobias, A.; Cheng, Y.; Kim, J.W.; Qiao, J.; Zhang, L.; Han, Y.; Lesniak, M.S. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin. Cancer Res., 2014, 20(20), 5290-5301. doi: 10.1158/1078-0432.CCR-14-0514 PMID: 24691018
  91. Kesarwani, P.; Prabhu, A.; Kant, S.; Kumar, P.; Graham, S.F.; Buelow, K.L.; Wilson, G.D.; Miller, C.R.; Chinnaiyan, P. Tryptophan metabolism contributes to radiation-induced immune checkpoint reactivation in glioblastoma. Clin. Cancer Res., 2018, 24(15), 3632-3643. doi: 10.1158/1078-0432.CCR-18-0041 PMID: 29691296
  92. Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol., 2018, 227, 300-315. doi: 10.1016/j.jep.2018.09.004
  93. Jastrząb, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E. The origin and biomedical relevance of cannabigerol. Int. J. Mol. Sci., 2022, 23(14), 7929. doi: 10.3390/ijms23147929
  94. Anderson, L.L.; Heblinski, M.; Absalom, N.L.; Hawkins, N.A.; Bowen, M.T.; Benson, M.J.; Zhang, F.; Bahceci, D.; Doohan, P.T.; Chebib, M.; McGregor, I.S.; Kearney, J.A.; Arnold, J.C. Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy. Br. J. Pharmacol., 2021, 178(24), 4826-4841. doi: 10.1111/bph.15661 PMID: 34384142
  95. Walsh, K.B.; McKinney, A.E.; Holmes, A.E. Minor cannabinoids: Biosynthesis, molecular pharmacology and potential therapeutic uses. Front. Pharmacol., 2021, 12, 777804. doi: 10.3389/fphar.2021.777804
  96. Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and biosynthesis. Trends Plant Sci, 2020, 25(10), 985-1004. doi: 10.1016/j.tplants.2020.05.005
  97. Kovalchuk, O.; Kovalchuk, I. Cannabinoids as anticancer therapeutic agents. Cell Cycle, 2020, 19(9), 961-989. doi: 10.1080/15384101.2020.1742952
  98. Likar, R.; Nahler, G. The use of cannabis in supportive care and treatment of brain tumor. Neurooncol. Pract., 2017, 4(3), 151-160. doi: 10.1093/nop/npw027 PMID: 31385997
  99. Dumitru, C.A.; Sandalcioglu, I.E.; Karsak, M. Cannabinoids in glioblastoma therapy: New applications for old drugs. Front. Mol. Neurosci., 2018, 11, 159. doi: 10.3389/fnmol.2018.00159
  100. Peeri, H.; Shalev, N.; Vinayaka, A.C.; Nizar, R.; Kazimirsky, G.; Namdar, D.; Anil, S.M.; Belausov, E.; Brodie, C.; Koltai, H. Specific compositions of cannabis sativa compounds have cytotoxic activity and inhibit motility and colony formation of human glioblastoma cells in vitro. Cancers., 2021, 13(7), 1720. doi: 10.3390/cancers13071720 PMID: 33916466
  101. Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.; Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev., 2002, 54(2), 161-202.
  102. Lah, T.T.; Novak, M.; Almidon, M.A.P.; Marinelli, O.; Baškovič, B.Z.; Majc, B.; Mlinar, M.; Bošnjak, R.; Breznik, B.; Zomer, R.; Nabissi, M. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells., 2021, 10(2), 340. doi: 10.3390/cells10020340 PMID: 33562819
  103. Lah, T.T.; Majc, B.; Novak, M.; Sušnik, A.; Breznik, B.; Porčnik, A.; Bošnjak, R.; Sadikov, A.; Malavolta, M.; Halilčević, S.; Mlakar, J.; Zomer, R. The cytotoxic effects of cannabidiol and cannabigerol on glioblastoma stem cells may mostly involve GPR55 and TRPV1 signalling. Cancers, 2022, 14(23), 5918. doi: 10.3390/cancers14235918 PMID: 36497400
  104. Gross, C.; Ramirez, D.A.; McGrath, S.; Gustafson, D.L. Cannabidiol induces apoptosis and perturbs mitochondrial function in human and canine glioma cells. Front. Pharmacol., 2021, 12, 725136. doi: 10.3389/fphar.2021.725136 PMID: 34456736
  105. Ligresti, A.; De Petrocellis, L.; Di Marzo, V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: Pleiotropic physiological and pathological roles through complex pharmacology. Physiol. Rev., 2016, 96(4), 1593-1659. doi: 10.1152/physrev.00002.2016 PMID: 27630175
  106. Guzmán, M.; Duarte, M.J.; Blázquez, C.; Ravina, J.; Rosa, M.C.; Galve-Roperh, I.; Sánchez, C.; Velasco, G.; González-Feria, L. A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br. J. Cancer, 2006, 95(2), 197-203. doi: 10.1038/sj.bjc.6603236 PMID: 16804518
  107. Salazar, M.; Carracedo, A.; Salanueva, Í.J.; Hernández-Tiedra, S.; Lorente, M.; Egia, A.; Vázquez, P.; Blázquez, C.; Torres, S.; García, S.; Nowak, J.; Fimia, G.M.; Piacentini, M.; Cecconi, F.; Pandolfi, P.P.; González-Feria, L.; Iovanna, J.L.; Guzmán, M.; Boya, P.; Velasco, G. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest., 2009, 119(5), 1359-1372. doi: 10.1172/JCI37948 PMID: 19425170
  108. Hernán Pérez de la Ossa, D.; Lorente, M.; Gil-Alegre, M.E.; Torres, S.; García-Taboada, E.; Aberturas, M.R.; Molpeceres, J.; Velasco, G.; Torres-Suárez, A.I. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme. PLoS One, 2013, 8(1), e54795. doi: 10.1371/journal.pone.0054795 PMID: 23349970
  109. Hernández-Tiedra, S.; Fabriàs, G.; Dávila, D.; Salanueva, Í.J.; Casas, J.; Montes, L.R.; Antón, Z.; García-Taboada, E.; Salazar-Roa, M.; Lorente, M.; Nylandsted, J.; Armstrong, J.; López-Valero, I.; McKee, C.S.; Serrano-Puebla, A.; García-López, R.; González-Martínez, J.; Abad, J.L.; Hanada, K.; Boya, P.; Goñi, F.; Guzmán, M.; Lovat, P.; Jäättelä, M.; Alonso, A.; Velasco, G. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy, 2016, 12(11), 2213-2229. doi: 10.1080/15548627.2016.1213927 PMID: 27635674
  110. Kolbe, M.R.; Hohmann, T.; Hohmann, U.; Ghadban, C.; Mackie, K.; Zöller, C.; Prell, J.; Illert, J.; Strauss, C.; Dehghani, F. THC reduces Ki67-immunoreactive cells derived from human primary glioblastoma in a GPR55-dependent manner. Cancers, 2021, 13(5), 1064. doi: 10.3390/cancers13051064
  111. Maioli, C.; Mattoteia, D.; Amin, H.I.M.; Minassi, A.; Caprioglio, D. Cannabinol: History, syntheses, and biological profile of the greatest "minor" cannabinoid. Plants, 2022, 11(21), 2896. doi: 10.3390/plants11212896
  112. Marcu, J.P.; Christian, R.T.; Lau, D.; Zielinski, A.J.; Horowitz, M.P.; Lee, J.; Pakdel, A.; Allison, J.; Limbad, C.; Moore, D.H.; Yount, G.L.; Desprez, P.Y.; McAllister, S.D. Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol. Cancer Ther., 2010, 9(1), 180-189. doi: 10.1158/1535-7163.MCT-09-0407 PMID: 20053780
  113. Scott, K.A.; Dalgleish, A.G.; Liu, W.M. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol. Cancer Ther., 2014, 13(12), 2955-2967. doi: 10.1158/1535-7163.MCT-14-0402 PMID: 25398831
  114. López-Valero, I.; Torres, S.; Salazar-Roa, M.; García-Taboada, E.; Hernández-Tiedra, S.; Guzmán, M.; Sepúlveda, J.M.; Velasco, G.; Lorente, M. Optimization of a preclinical therapy of cannabinoids in combination with temozolomide against glioma. Biochem. Pharmacol., 2018, 157, 275-284. doi: 10.1016/j.bcp.2018.08.023 PMID: 30125556
  115. Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural Determinants of Phosphoinositide 3-Kinase Inhibition by Wortmannin, LY294002, Quercetin, Myricetin, and Staurosporine for Proteins Such as Protein Kinase B (PKB) and Phos-Pholipid-Dependent Kinase 1 (PDK1); These Are Im-Portant Components of the Molecular Mechanisms of Diseases Such as Diabetes, Cancer, and Chronic Inflam-Mation. The Class I Isozymes Are Subdivided into Classes, 2000, Vol. 6, .
  116. Tucker, J.A.; Klein, T.; Breed, J.; Breeze, A.L.; Overman, R.; Phillips, C.; Norman, R.A. Structural insights into FGFR kinase isoform selectivity: diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure., 2014, 22(12), 1764-1774. doi: 10.1016/j.str.2014.09.019 PMID: 25465127
  117. Haling, J.R.; Sudhamsu, J.; Yen, I.; Sideris, S.; Sandoval, W.; Phung, W.; Bravo, B.J.; Giannetti, A.M.; Peck, A.; Masselot, A.; Morales, T.; Smith, D.; Brandhuber, B.J.; Hymowitz, S.G.; Malek, S. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Cancer Cell., 2014, 26(3), 402-413. doi: 10.1016/j.ccr.2014.07.007 PMID: 25155755
  118. Peng, Y.H.; Ueng, S.H.; Tseng, C.T.; Hung, M.S.; Song, J.S.; Wu, J.S.; Liao, F.Y.; Fan, Y.S.; Wu, M.H.; Hsiao, W.C.; Hsueh, C.C.; Lin, S.Y.; Cheng, C.Y.; Tu, C.H.; Lee, L.C.; Cheng, M.F.; Shia, K.S.; Shih, C.; Wu, S.Y. Important hydrogen bond networks in indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor design revealed by crystal structures of imidazoleisoindole derivatives with IDO1. J. Med. Chem., 2016, 59(1), 282-293. doi: 10.1021/acs.jmedchem.5b01390 PMID: 26642377
  119. Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The protein data bank: A computer-based archival file for macromolecular structures. J. Mol. Biol., 1977, 112(3), 535-542. doi: 10.1016/S0022-2836(77)80200-3 PMID: 875032
  120. Mollegro Virtual Docker 6.0; CLC Bio Company, 2014.
  121. De Azevedo, W., Jr; Walter, F. MolDock applied to structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 327-334. doi: 10.2174/138945010790711941 PMID: 20210757
  122. Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321. doi: 10.1021/jm051197e PMID: 16722650
  123. Yusuf, D.; Davis, A.M.; Kleywegt, G.J.; Schmitt, S. An alternative method for the evaluation of docking performance: RSR vs RMSD. J. Chem. Inf. Model., 2008, 48(7), 1411-1422. doi: 10.1021/ci800084x PMID: 18598022
  124. Hung, L.H.; Guerquin, M.; Samudrala, R. GPU-Q-J, a fast method for calculating root mean square deviation (RMSD) after optimal superposition. BMC Res. Notes, 2011, 4(1), 97. doi: 10.1186/1756-0500-4-97 PMID: 21453553
  125. To, C.; Beyett, T.S.; Jang, J.; Feng, W.W.; Bahcall, M.; Haikala, H.M.; Shin, B.H.; Heppner, D.E.; Rana, J.K.; Leeper, B.A.; Soroko, K.M.; Poitras, M.J.; Gokhale, P.C.; Kobayashi, Y.; Wahid, K.; Kurppa, K.J.; Gero, T.W.; Cameron, M.D.; Ogino, A.; Mushajiang, M.; Xu, C.; Zhang, Y.; Scott, D.A.; Eck, M.J.; Gray, N.S.; Jänne, P.A. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat. Can., 2022, 3(4), 402-417. doi: 10.1038/s43018-022-00351-8 PMID: 35422503
  126. Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 2000, 6(4), 909-919. doi: 10.1016/S1097-2765(05)00089-4 PMID: 11090628
  127. Choi, W.S.; Weng, P.J.; Yang, W. Flexibility of telomerase in binding the RNA template and DNA telomeric repeat. Proc. Natl. Acad. Sci., 2022, 119(1), e2116159118. doi: 10.1073/pnas.2116159118 PMID: 34969861

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024