Mechanisms Involved in the Therapeutic Effect of Cannabinoid Compounds on Gliomas: A Review with Experimental Approach
- Авторы: Pires H.1, da Silva P.1, Dias A.1, de Sousa Gomes C.2, de Sousa N.3, dos Santos A.1, Souza L.1, de Figueiredo Lima J.1, Oliveira M.1, Felipe C.1, de Almeida R.1, de Castro R.1, da Silva Stiebbe Salvadori M.1, Scotti M.3, Scotti L.3
-
Учреждения:
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Departament of Molecular Biology, Federal University of Paraíba
- Postgraduate Program in Natural Synthetic and Bioactive Products, Health Sciences Center, Federal University of Paraíba
- Выпуск: Том 25, № 1 (2024)
- Страницы: 27-43
- Раздел: Life Sciences
- URL: https://rjsvd.com/1389-2037/article/view/645474
- DOI: https://doi.org/10.2174/1389203724666230830125423
- ID: 645474
Цитировать
Полный текст
Аннотация
Introduction:Brain tumors have high morbidity and mortality rates, accounting for 1.4% of all cancers. Gliomas are the most common primary brain tumors in adults. Currently, several therapeutic approaches are used; however, they are associated with side effects that affect patientsquality of life. Therefore, further studies are needed to develop novel therapeutic protocols with a more favorable side effect profile. In this context, cannabinoid compounds may serve as potential alternatives.
Objective:This study aimed to review the key enzymatic targets involved in glioma pathophysiology and evaluate the potential interaction of these targets with four cannabinoid derivatives through molecular docking simulations.
Methods:Molecular docking simulations were performed using four cannabinoid compounds and six molecular targets associated with glioma pathophysiology.
Results:Encouraging interactions between the selected enzymes and glioma-related targets were observed, suggesting their potential activity through these pathways. In particular, cannabigerol showed promising interactions with epidermal growth factor receptors and phosphatidylinositol 3- kinase, while Δ-9-tetrahydrocannabinol showed remarkable interactions with telomerase reverse transcriptase.
Conclusion:The evaluated compounds exhibited favorable interactions with the analyzed enzymatic targets, thus representing potential candidates for further in vitro and in vivo studies.
Ключевые слова
Об авторах
Hugo Pires
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Pablo da Silva
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Arthur Dias
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Cleyton de Sousa Gomes
Laboratory for Risk Assessment of Novel Technologies (LabRisk), Departament of Molecular Biology, Federal University of Paraíba
Email: info@benthamscience.net
Natália de Sousa
Postgraduate Program in Natural Synthetic and Bioactive Products, Health Sciences Center, Federal University of Paraíba
Email: info@benthamscience.net
Aline dos Santos
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Lívia Souza
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Jaislânia de Figueiredo Lima
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Mayara Oliveira
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Cícero Felipe
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Reinaldo de Almeida
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Ricardo de Castro
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Mirian da Silva Stiebbe Salvadori
Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba
Email: info@benthamscience.net
Marcus Scotti
Postgraduate Program in Natural Synthetic and Bioactive Products, Health Sciences Center, Federal University of Paraíba
Email: info@benthamscience.net
Luciana Scotti
Postgraduate Program in Natural Synthetic and Bioactive Products, Health Sciences Center, Federal University of Paraíba
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- McBain, C.; Lawrie, T. A.; Rogozińska, E.; Kernohan, A.; Robinson, T.; Jefferies, S. Treatment options for progression or recurrence of glioblastoma: A network meta-analysis. Cochrane Database Syst Rev, 2021, 5(1), CD013579. doi: 10.1002/14651858.CD013579.pub2
- Pangal, D.J.; Baertsch, H.; Kellman, E.M.; Cardinal, T.; Brunswick, A.; Rutkowski, M.; Strickland, B.; Chow, F.; Attenello, F.; Zada, G. Complementary and alternative medicine for the treatment of gliomas: Scoping review of clinical studies, patient outcomes, and toxicity profiles. World Neurosurg., 2021, 151, e682-e692. doi: 10.1016/j.wneu.2021.04.096 PMID: 33940275
- Choi, J.H.; Ro, J.Y. The 2020 WHO classification of tumors of soft tissue: Selected changes and new entities. Adv. Anat. Pathol., 2020, 28(1), 44-58.
- Louis, D. N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W. K.; Ohgaki, H.; Wiestler, O. D.; Kleihues, P.; Ellison, D. W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820. doi: 10.1007/s00401-016-1545-1
- Geneen, L.J.; Moore, R.A.; Clarke, C.; Martin, D.; Colvin, L.A.; Smith, B.H. Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst Rev, 2017, 4(4), CD011279. doi: 10.1002/14651858.CD011279.pub3
- Yang, K.; Wu, Z.; Zhang, H.; Zhang, N.; Wu, W.; Wang, Z.; Dai, Z.; Zhang, X.; Zhang, L.; Peng, Y. Glioma targeted therapy: Insight into future of molecular approaches. Mol. Cancer, 2022, 21(1), 39. doi: 10.1186/s12943-022-01513-z
- Torres, S.; Lorente, M.; Rodríguez-Fornés, F.; Hernández-Tiedra, S.; Salazar, M.; García-Taboada, E.; Barcia, J.; Guzmán, M.; Velasco, G. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther., 2011, 10(1), 90-103. doi: 10.1158/1535-7163.MCT-10-0688 PMID: 21220494
- Rohle, D.; Popovici-Muller, J.; Palaskas, N.; Turcan, S.; Grommes, C.; Campos, C.; Tsoi, J.; Clark, O.; Oldrini, B.; Komisopoulou, E. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science, 2013, 340(6132), 626-630b. doi: 10.1126/science.1236062
- Erices, J.I.; Torres, Á.; Niechi, I.; Bernales, I.; Quezada, C. Current natural therapies in the treatment against glioblastoma. Phytother Res., 2018, 32(11), 2191-2201. doi: 10.1002/ptr.6170
- Rodriguez-Almaraz, J.E.; Butowski, N. Therapeutic and supportive effects of cannabinoids in patients with brain tumors (CBD Oil and Cannabis). Curr. Treat. Options Oncol., 2023, 24(1), 30-44. doi: 10.1007/s11864-022-01047-y PMID: 36633803
- Peeri, H.; Koltai, H. Cannabis biomolecule effects on cancer cells and cancer stem cells: Cytotoxic, anti-proliferative, and anti-migratory activities. Biomolecules., 2022, 12(4), 491. doi: 10.3390/biom12040491
- Belgers, V.; Röttgering, J.G.; Douw, L.; Klein, M.; Ket, J.C.F.; van de Ven, P.M.; Würdinger, T.; van Linde, M.E.; Niers, J.M.; Weber, M. Cannabinoids to improve health-related quality of life in patients with neurological or oncological disease: A meta-analysis. Cannabis Cannabinoid Res., 2022, 8(1), 41-55. doi: 10.1089/can.2021.0187 PMID: 35861789
- Scotti, L.; da Silva, P.R.; de Andrade, J.C.; de Sousa, N.F.; Ribeiro, P.A.C.; Pires, O.H.F.; Remígio, B.M.C.R.; Alves, D.N.; de Andrade, H.H.N.; Dias, A.L.; da Silva, S.S.M.G.; de Oliveira, G.A.M.F.; de Castro, R.D.; Scotti, M.T.; Bezerra, F.C.F.; de Almeida, R.N. Computational studies applied to linalool and citronellal derivatives against Alzheimers and Parkinsons Disorders: A review with experimental approach. Curr. Neuropharmacol., 2023, 21(4), 842-866. doi: 10.2174/1570159X21666230221123059 PMID: 36809939
- Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; Friedman, H.; Friedman, A.; Reardon, D.; Herndon, J.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B.; Bigner, D.D. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med., 2009, 360(8), 765-773. doi: 10.1056/NEJMoa0808710 PMID: 19228619
- Grochans, S.; Cybulska, A. M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of glioblastoma multiforme-literature review. Cancers., 2022, 14(10), 2412. doi: 10.3390/cancers14102412
- Kyriakou, I.; Yarandi, N.; Polycarpou, E. Efficacy of cannabinoids against glioblastoma multiforme: A systematic review. Phytomedicine., 2021, 88, 153533. doi: 10.1016/j.phymed.2021.153533
- Luís, .; Marcelino, H.; Rosa, C.; Domingues, F.; Pereira, L.; Cascalheira, J. F. The effects of cannabinoids on glioblastoma growth: A systematic review with meta-analysis of animal model studies. Eur. J. Pharmacol., 2020, 876, 173055. doi: 10.1016/j.ejphar.2020.173055
- Cope, E.C.; Gould, E. Adult neurogenesis, glia, and the extracellular matrix. Cell. Stem. Cell, 2019, 24(5), 690-705. doi: 10.1016/j.stem.2019.03.023
- Hanani, M.; Verkhratsky, A. Satellite glial cells and astrocytes, a comparative review. Neurochem. Res., 2021, 46(10), 2525-2537. doi: 10.1007/s11064-021-03255-8 PMID: 33523395
- Costas-Insua, C.; Guzmán, M. Endocannabinoid signaling in glioma. Glia, 2023, 71(1), 127-138. doi: 10.1002/glia.24173 PMID: 35322459
- Salles, D.; Laviola, G. Pilocytic astrocytoma: A review of general, clinical, and molecular characteristics. J. Child. Neurol., 2020, 35(12), 852-858. doi: 10.1177/0883073820937225
- Hirtz, A.; Rech, F. Astrocytoma: A hormone-sensitive tumor? Int. J. Mol. Sci., 2020, 21(23), 9114. doi: 10.3390/ijms21239114
- Doherty, G.J.; de Paula, B.H.R. Cannabinoids in glioblastoma multiforme-hype or hope? Br. J. Cancer, 2021, 124(8), 1341-1343. doi: 10.1038/s41416-021-01265-5
- Gritsch, S.; Batchelor, T.T.; Gonzalez, C.L.N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer, 2022, 128(1), 47-58. doi: 10.1002/cncr.33918
- Kano, H.; Lunsford, L.D. Leksell radiosurgery for ependymomas and oligodendrogliomas. Prog. Neurol. Surg., 2019, 34, 200-206. doi: 10.1159/000493065 PMID: 31096227
- Rudà, R.; Touat, M.; Soffietti, R. Is chemotherapy alone an option as initial treatment for low-grade oligodendrogliomas? Curr. Opin. Neurol., 2020, 33(6), 707-715. doi: 10.1097/WCO.0000000000000866
- Baliga, S.; Gandola, L.; Timmermann, B.; Gail, H.; Padovani, L.; Janssens, G.O.; Yock, T.I. Brain tumors: Medulloblastoma, ATRT, ependymoma. Pediatr. Blood Cancer, 2021, 68(S2), e28395. doi: 10.1002/pbc.28395 PMID: 32386126
- Jünger, S.T.; Timmermann, B.; Pietsch, T. Pediatric ependymoma: An overview of a complex disease. Childs Nerv. Syst., 2021, 37(8), 2451-2463.
- Stuckert, A.; Bertrand, K.C.; Wang, P.; Smith, A.; Mack, S.C. Weighing ependymoma as an epigenetic disease. J. Neurooncol., 2020, 150(1), 57-61. doi: 10.1007/s11060-020-03562-0
- Bernstock, J.D.; Hoffman, S.E.; Kappel, A.D.; Valdes, P.A.; Essayed, W.I.; Klinger, N.V.; Kang, K.D.; Totsch, S.K.; Olsen, H.E.; Schlappi, C.W. Immunotherapy Approaches for the Treatment of Diffuse Midline Gliomas. OncoImmunology; Taylor and Francis Ltd., 2022. doi: 10.1080/2162402X.2022.2124058
- Janjua, M.B.; Ban, V.S.; El Ahmadieh, T.Y.; Hwang, S.W.; Samdani, A.F.; Price, A.V.; Weprin, B.E.; Batjer, H. Diffuse intrinsic pontine gliomas: Diagnostic approach and treatment strategies. J. Clin. Neurosci., 2020, 72, 15-19. doi: 10.1016/j.jocn.2019.12.001
- Srikanthan, D.; Taccone, M.S.; Van Ommeren, R.; Ishida, J.; Krumholtz, S.L.; Rutka, J.T. Diffuse intrinsic pontine glioma: Current insights and future directions. Chin. Neurosurg. J., 2021, 7(1), 6. doi: 10.1186/s41016-020-00218-w
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20. doi: 10.1002/1878-0261.12155
- Gell, A.L.; Groysbeck, N.; Becker, C.F.W.; Conibear, A.C. A comparative study of synthetic and semisynthetic approaches for ligating the epidermal growth factor to a bivalent scaffold. J. Pept. Sci., 2017, 23(12), 871-879. doi: 10.1002/psc.3051 PMID: 29105901
- Purba, E.R.; Saita, E.I.; Maruyama, I.N. Activation of the EGF receptor by ligand binding and oncogenic mutations: The "Rotation Model". Cells, 2017, 6(2), 13. doi: 10.3390/cells6020013
- Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem., 2020, 20(10), 815-834. doi: 10.2174/1568026620666200303123102 PMID: 32124699
- Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017, 9(5), 52. doi: 10.3390/cancers9050052
- Kasenda, B.; König, D.; Manni, M.; Ritschard, R.; Duthaler, U.; Bartoszek, E.; Bärenwaldt, A.; Deuster, S.; Hutter, G.; Cordier, D.; Mariani, L.; Hench, J.; Frank, S.; Krähenbühl, S.; Zippelius, A.; Rochlitz, C.; Mamot, C.; Wicki, A.; Läubli, H. Targeting immunoliposomes to EGFR-positive glioblastoma. ESMO Open., 2022, 7(1), 100365. doi: 10.1016/j.esmoop.2021.100365 PMID: 34998092
- Maire, C.L.; Ligon, K.L. Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro. Oncol., 2014, 16(S8), viii1-viii6. doi: 10.1093/neuonc/nou294
- Saadeh, F.S.; Mahfouz, R.; Assi, H.I. EGFR as a clinical marker in glioblastomas and other gliomas. Int. J. Biol. Markers, 2018, 33(1), 22-32. doi: 10.5301/ijbm.5000301
- Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta. Pharm. Sin. B, 2015, 5(5), 390-401. doi: 10.1016/j.apsb.2015.07.001
- Morgillo, F.; Corte, C.M.D.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open., 2016, 1(3), e000060. doi: 10.1136/esmoopen-2016-000060
- Padfield, E.; Ellis, H.P.; Kurian, K.M. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front. Oncol., 2015, 5, 5. doi: 10.3389/fonc.2015.00005 PMID: 25688333
- Elbaz, M.; Nasser, M.W.; Ravi, J.; Wani, N.A.; Ahirwar, D.K.; Zhao, H.; Oghumu, S.; Satoskar, A.R.; Shilo, K.; Carson, W.E., III; Ganju, R.K. Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: Novel anti-tumor mechanisms of Cannabidiol in breast cancer. Mol. Oncol., 2015, 9(4), 906-919. doi: 10.1016/j.molonc.2014.12.010 PMID: 25660577
- Lamtha, T.; Tabtimmai, L.; Songtawee, N.; Tansakul, N.; Choowongkomon, K. Structural analysis of cannabinoids against EGFR-TK leads a novel target against EGFR-driven cell lines. Curr. Res. Pharmacol. Drug Discov., 2022, 3, 100132. doi: 10.1016/j.crphar.2022.100132 PMID: 36568260
- Janku, F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat. Rev., 2017, 59, 93-101. doi: 10.1016/j.ctrv.2017.07.005
- Cui, W.; Cai, Y.; Zhou, X. Advances in subunits of PI3K class I in cancer. Pathology, 2014, 46(3), 169-176. doi: 10.1097/PAT.0000000000000066 PMID: 24614719
- Gulluni, F.; De Santis, M.C.; Margaria, J.P.; Martini, M.; Hirsch, E. Class II PI3K functions in cell biology and disease. Trends. Cell. Biol., 2019, 29(4), 339-359. doi: 10.1016/j.tcb.2019.01.001
- Nascimbeni, A.C.; Codogno, P.; Morel, E. Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. FEBS. J., 2017, 284, 1267-1278. doi: 10.1111/febs.13987
- Liu, X.; Xu, Y.; Zhou, Q.; Chen, M.; Zhang, Y.; Liang, H.; Zhao, J.; Zhong, W.; Wang, M. PI3K in cancer: Its structure, activation modes and role in shaping tumor microenvironment. Future Oncol., 2018, 14(7), 665-674. doi: 10.2217/fon-2017-0588
- Dehkordi, R.Z.; Baharanchi, H.F.S.; Bekhradi, R. Effect of lavender inhalation on the symptoms of primary dysmenorrhea and the amount of menstrual bleeding: A randomized clinical trial. Complement. Ther. Med., 2014, 22(2), 212-219. doi: 10.1016/j.ctim.2013.12.011 PMID: 24731891
- Behrooz, A.B.; Talaie, Z.; Jusheghani, F.; Łos, M. J.; Klonisch, T.; Ghavami, S. Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. Int. J. Mol. Sci., 2022, 23(3), 1353. doi: 10.3390/ijms23031353
- Burris, H.A., III Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother. Pharmacol., 2013, 71(4), 829-842. doi: 10.1007/s00280-012-2043-3 PMID: 23377372
- Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/MTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget., 2016, 7(22), 33440-33450.
- Becher, O.J.; Millard, N.E.; Modak, S.; Kushner, B.H.; Haque, S.; Spasojevic, I.; Trippett, T.M.; Gilheeney, S.W.; Khakoo, Y.; Lyden, D.C.; De Braganca, K.C.; Kolesar, J.M.; Huse, J.T.; Kramer, K.; Cheung, N.K.V.; Dunkel, I.J. A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS One, 2017, 12(6), e0178593. doi: 10.1371/journal.pone.0178593 PMID: 28582410
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci., 2020, 10, 31. doi: 10.1186/s13578-020-00396-1
- Masui, K.; Cavenee, W.K.; Mischel, P.S. MTORC2 in the center of cancer metabolic reprogramming. In: Trends in Endocrinology and Metabolism; Elsevier Inc., 2014; pp. 364-373. doi: 10.1016/j.tem.2014.04.002
- Jhanwar-Uniyal, M.; Gillick, J. L.; Neil, J.; Tobias, M.; Thwing, Z. E.; Murali, R. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: A tale of two complexes. Adv. Biol. Regul., 2015, 57, 64-74. doi: 10.1016/j.jbior.2014.09.004
- Mittal, R.; Chaudhry, N.; Mukherjee, T.K. Targeting breast cancer cell signaling molecules PI3K and Akt by phytochemicals Cannabidiol, Nimbin and Acetogenin: An in silico approach. J. Biomed., 2018, 3, 60-63. doi: 10.7150/jbm.25815
- Song, G.; Lu, H.; Chen, F.; Wang, Y.; Fan, W.; Shao, W.; Lu, H.; Lin, B. Tetrahydrocurcumin-induced autophagy via suppression of PI3K/Akt/mTOR in non-small cell lung carcinoma cells. Mol. Med. Rep., 2018, 17(4), 5964-5969. doi: 10.3892/mmr.2018.8600 PMID: 29436654
- Dai, S.; Zhou, Z.; Chen, Z.; Xu, G.; Chen, Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and small molecule inhibitors. Cells, 2019, 8(6), 614. doi: 10.3390/cells8060614 PMID: 31216761
- Mossahebi-Mohammadi, M.; Quan, M.; Zhang, J. S.; Li, X. FGF signaling pathway: A key regulator of stem cell pluripotency. Front Cell. Dev. Biol., 2020, 8, 79. doi: 10.3389/fcell.2020.00079
- Jimenez-Pascual, A.; Siebzehnrubl, F. A. Fibroblast growth factor receptor functions in glioblastoma. Cells., 2019, 8(7), 715. doi: 10.3390/cells8070715
- Babina, I.S.; Turner, N.C. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer, 2017, 17(5), 318-332. doi: 10.1038/nrc.2017.8
- Hierro, C.; Rodon, J.; Tabernero, J. Fibroblast Growth Factor (FGF) receptor/FGF inhibitors: Novel targets and strategies for optimization of response of solid tumors. In: Seminars in Oncology; W.B. Saunders, 2015; pp. 801-819. doi: 10.1053/j.seminoncol.2015.09.027
- Katoh, M.; Nakagama, H. FGF receptors: Cancer biology and therapeutics. Med. Res. Rev., 2014, 34(2), 280-300. doi: 10.1002/med.21288 PMID: 23696246
- Roskoski, R. The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder. Pharmacol. Res., 2020, 151, 104567. doi: 10.1016/j.phrs.2019.104567
- Sootome, H.; Fujita, H.; Ito, K.; Ochiiwa, H.; Fujioka, Y.; Ito, K.; Miura, A.; Sagara, T.; Ito, S.; Ohsawa, H.; Otsuki, S.; Funabashi, K.; Yashiro, M.; Matsuo, K.; Yonekura, K.; Hirai, H. Futibatinib is a novel irreversible FGFR 14 inhibitor that shows selective antitumor activity against FGFR-deregulated tumors. Cancer Res., 2020, 80(22), 4986-4997. doi: 10.1158/0008-5472.CAN-19-2568 PMID: 32973082
- Gavine, P.R.; Mooney, L.; Kilgour, E.; Thomas, A.P.; Al-Kadhimi, K.; Beck, S.; Rooney, C.; Coleman, T.; Baker, D.; Mellor, M.J.; Brooks, A.N.; Klinowska, T. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res., 2012, 72(8), 2045-2056. doi: 10.1158/0008-5472.CAN-11-3034 PMID: 22369928
- Singh, D.; Chan, J. M.; Zoppoli, P.; Niola, F.; Sullivan, R.; Castano, A.; Liu, E. M.; Reichel, J.; Porrati, P.; Pellegatta, S. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science, 2012, 337(6099), 1231. doi: 10.1126/science.1220834
- Schramm, K.; Iskar, M.; Statz, B.; Jäger, N.; Haag, D.; Słabicki, M.; Pfister, S.M.; Zapatka, M.; Gronych, J.; Jones, D.T.W.; Lichter, P. DECIPHER pooled shRNA library screen identifies PP2A and FGFR signaling as potential therapeutic targets for diffuse intrinsic pontine gliomas. Neuro-oncol., 2019, 21(7), 867-877. doi: 10.1093/neuonc/noz057 PMID: 30943283
- Crispo, F.; Notarangelo, T.; Pietrafesa, M.; Lettini, G.; Storto, G.; Sgambato, A.; Maddalena, F.; Landriscina, M. BRAF inhibitors in thyroid cancer: Clinical impact, mechanisms of resistance and future perspectives. Cancers, 2019, 11(9), 1388. doi: 10.3390/cancers11091388
- Molina-Cerrillo, J.; San Román, M.; Pozas, J.; Alonso-Gordoa, T.; Pozas, M.; Conde, E.; Rosas, M.; Grande, E.; García-Bermejo, M. L.; Carrato, A. BRAF mutated colorectal cancer: New treatment approaches. Cancers., 2020, 12(6), 1571. doi: 10.3390/cancers12061571
- Zaman, A.; Wu, W.; Bivona, T. G. Targeting oncogenic BRAF: Past, present, and future. Cancers., 2019, 11(8), 1197. doi: 10.3390/cancers11081197
- Andrews, L.J.; Thornton, Z.A.; Saincher, S.S.; Yao, I.Y.; Dawson, S.; McGuinness, L.A.; Jones, H.E.; Jefferies, S.; Short, S.C.; Cheng, H.Y. Prevalence of BRAFV600 in glioma and use of BRAF Inhibitors in patients with BRAFV600 mutation-positive glioma: Systematic review. Neuro Oncol., 2022, 24(4), 528-540. doi: 10.1093/neuonc/noab247
- Schreck, K..; Grossman, S.A.; Pratilas, C.A. BRAF mutations and the utility of RAF and MEK inhibitors in primary brain tumors. Cancers., 2019, 11(9), 1262. doi: 10.3390/cancers11091262
- Marzęda, P.; Drozd, M.; Wróblewska-Łuczka, P.; Łuszczki, J. J. Cannabinoids and their derivatives in struggle against melanoma. Pharmacol. Rep., 2021, 73(6), 1485-1496. doi: 10.1007/s43440-021-00308-1
- Panebianco, F.; Nikitski, A.V.; Nikiforova, M.N.; Nikiforov, Y.E. Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer. Cancer Med., 2019, 8(13), 5831-5839. doi: 10.1002/cam4.2467 PMID: 31408918
- Dratwa, M.; Wysoczańska, B.; Łacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT-regulation and roles in cancer formation. Front. Immunol., 2020, 11, 589929. doi: 10.3389/fimmu.2020.589929
- Ohba, S.; Kuwahara, K.; Yamada, S.; Abe, M.; Hirose, Y. Correlation between IDH, ATRX, and TERT promoter mutations in glioma. Brain. Tumor. Pathol., 2020, 37(2), 33-40. doi: 10.1007/s10014-020-00360-4
- Yang, L.; Li, N.; Wang, M.; Zhang, Y.H.; Yan, L.; Da; Zhou, W.; Yu, Z.Q.; Peng, X.C.; Cai, J. Tumorigenic effect of TERT and its potential therapeutic target in NSCLC (Review). Oncol Rep., 2021, 46(2), 182. doi: 10.3892/or.2021.8133
- Hussein, N.A.E.M.; El-Toukhy, M.A.E.F.; Kazem, A.H.; Ali, M.E.S.; Ahmad, M.A.E.R.; Ghazy, H.M.R.; El-Din, A.M.G. Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice. Alex. J. Med., 2014, 50(3), 241-251. doi: 10.1016/j.ajme.2014.02.003
- Hanihara, M.; Kawataki, T.; Oh-Oka, K.; Mitsuka, K.; Nakao, A.; Kinouchi, H. Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model. J. Neurosurg., 2016, 124(6), 1594-1601. doi: 10.3171/2015.5.JNS141901 PMID: 26636389
- Godin-Ethier, J.; Hanafi, L.A.; Piccirillo, C.A.; Lapointe, R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin. Cancer Res., 2011, 17(22), 6985-6991. doi: 10.1158/1078-0432.CCR-11-1331 PMID: 22068654
- Batista, C.E.A.; Juhász, C.; Muzik, O.; Kupsky, W.J.; Barger, G.; Chugani, H.T.; Mittal, S.; Sood, S.; Chakraborty, P.K.; Chugani, D.C. Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors. Mol. Imaging Biol., 2009, 11(6), 460-466. doi: 10.1007/s11307-009-0225-0 PMID: 19434461
- Guastella, A.R.; Michelhaugh, S.K.; Klinger, N.V.; Kupsky, W.J.; Polin, L.A.; Muzik, O.; Juhász, C.; Mittal, S. Tryptophan PET imaging of the kynurenine pathway in patient-derived xenograft models of glioblastoma. Mol. Imaging, 2016, 15 1536012116644881. doi: 10.1177/1536012116644881 PMID: 27151136
- Hosseinalizadeh, H.; Mahmoodpour, M.; Samadani, A. A.; Roudkenar, M. H. The immunosuppressive role of indoleamine 2, 3-dioxygenase in glioblastoma: Mechanism of action and immunotherapeutic strategies. Med Oncol., 2022, 39(9), 130. doi: 10.1007/s12032-022-01724-w
- Ladomersky, E.; Zhai, L.; Lenzen, A.; Lauing, K.L.; Qian, J.; Scholtens, D.M.; Gritsina, G.; Sun, X.; Liu, Y.; Yu, F.; Gong, W.; Liu, Y.; Jiang, B.; Tang, T.; Patel, R.; Platanias, L.C.; James, C.D.; Stupp, R.; Lukas, R.V.; Binder, D.C.; Wainwright, D.A. IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. Clin. Cancer Res., 2018, 24(11), 2559-2573. doi: 10.1158/1078-0432.CCR-17-3573 PMID: 29500275
- Tang, K.; Wu, Y.H.; Song, Y.; Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol., 2021, 14(1), 68. doi: 10.1186/s13045-021-01080-8
- Wainwright, D.A.; Chang, A.L.; Dey, M.; Balyasnikova, I.V.; Kim, C.K.; Tobias, A.; Cheng, Y.; Kim, J.W.; Qiao, J.; Zhang, L.; Han, Y.; Lesniak, M.S. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin. Cancer Res., 2014, 20(20), 5290-5301. doi: 10.1158/1078-0432.CCR-14-0514 PMID: 24691018
- Kesarwani, P.; Prabhu, A.; Kant, S.; Kumar, P.; Graham, S.F.; Buelow, K.L.; Wilson, G.D.; Miller, C.R.; Chinnaiyan, P. Tryptophan metabolism contributes to radiation-induced immune checkpoint reactivation in glioblastoma. Clin. Cancer Res., 2018, 24(15), 3632-3643. doi: 10.1158/1078-0432.CCR-18-0041 PMID: 29691296
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol., 2018, 227, 300-315. doi: 10.1016/j.jep.2018.09.004
- Jastrząb, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E. The origin and biomedical relevance of cannabigerol. Int. J. Mol. Sci., 2022, 23(14), 7929. doi: 10.3390/ijms23147929
- Anderson, L.L.; Heblinski, M.; Absalom, N.L.; Hawkins, N.A.; Bowen, M.T.; Benson, M.J.; Zhang, F.; Bahceci, D.; Doohan, P.T.; Chebib, M.; McGregor, I.S.; Kearney, J.A.; Arnold, J.C. Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy. Br. J. Pharmacol., 2021, 178(24), 4826-4841. doi: 10.1111/bph.15661 PMID: 34384142
- Walsh, K.B.; McKinney, A.E.; Holmes, A.E. Minor cannabinoids: Biosynthesis, molecular pharmacology and potential therapeutic uses. Front. Pharmacol., 2021, 12, 777804. doi: 10.3389/fphar.2021.777804
- Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and biosynthesis. Trends Plant Sci, 2020, 25(10), 985-1004. doi: 10.1016/j.tplants.2020.05.005
- Kovalchuk, O.; Kovalchuk, I. Cannabinoids as anticancer therapeutic agents. Cell Cycle, 2020, 19(9), 961-989. doi: 10.1080/15384101.2020.1742952
- Likar, R.; Nahler, G. The use of cannabis in supportive care and treatment of brain tumor. Neurooncol. Pract., 2017, 4(3), 151-160. doi: 10.1093/nop/npw027 PMID: 31385997
- Dumitru, C.A.; Sandalcioglu, I.E.; Karsak, M. Cannabinoids in glioblastoma therapy: New applications for old drugs. Front. Mol. Neurosci., 2018, 11, 159. doi: 10.3389/fnmol.2018.00159
- Peeri, H.; Shalev, N.; Vinayaka, A.C.; Nizar, R.; Kazimirsky, G.; Namdar, D.; Anil, S.M.; Belausov, E.; Brodie, C.; Koltai, H. Specific compositions of cannabis sativa compounds have cytotoxic activity and inhibit motility and colony formation of human glioblastoma cells in vitro. Cancers., 2021, 13(7), 1720. doi: 10.3390/cancers13071720 PMID: 33916466
- Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.; Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev., 2002, 54(2), 161-202.
- Lah, T.T.; Novak, M.; Almidon, M.A.P.; Marinelli, O.; Bakovič, B.Z.; Majc, B.; Mlinar, M.; Bonjak, R.; Breznik, B.; Zomer, R.; Nabissi, M. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells., 2021, 10(2), 340. doi: 10.3390/cells10020340 PMID: 33562819
- Lah, T.T.; Majc, B.; Novak, M.; Sunik, A.; Breznik, B.; Porčnik, A.; Bonjak, R.; Sadikov, A.; Malavolta, M.; Halilčević, S.; Mlakar, J.; Zomer, R. The cytotoxic effects of cannabidiol and cannabigerol on glioblastoma stem cells may mostly involve GPR55 and TRPV1 signalling. Cancers, 2022, 14(23), 5918. doi: 10.3390/cancers14235918 PMID: 36497400
- Gross, C.; Ramirez, D.A.; McGrath, S.; Gustafson, D.L. Cannabidiol induces apoptosis and perturbs mitochondrial function in human and canine glioma cells. Front. Pharmacol., 2021, 12, 725136. doi: 10.3389/fphar.2021.725136 PMID: 34456736
- Ligresti, A.; De Petrocellis, L.; Di Marzo, V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: Pleiotropic physiological and pathological roles through complex pharmacology. Physiol. Rev., 2016, 96(4), 1593-1659. doi: 10.1152/physrev.00002.2016 PMID: 27630175
- Guzmán, M.; Duarte, M.J.; Blázquez, C.; Ravina, J.; Rosa, M.C.; Galve-Roperh, I.; Sánchez, C.; Velasco, G.; González-Feria, L. A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br. J. Cancer, 2006, 95(2), 197-203. doi: 10.1038/sj.bjc.6603236 PMID: 16804518
- Salazar, M.; Carracedo, A.; Salanueva, Í.J.; Hernández-Tiedra, S.; Lorente, M.; Egia, A.; Vázquez, P.; Blázquez, C.; Torres, S.; García, S.; Nowak, J.; Fimia, G.M.; Piacentini, M.; Cecconi, F.; Pandolfi, P.P.; González-Feria, L.; Iovanna, J.L.; Guzmán, M.; Boya, P.; Velasco, G. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest., 2009, 119(5), 1359-1372. doi: 10.1172/JCI37948 PMID: 19425170
- Hernán Pérez de la Ossa, D.; Lorente, M.; Gil-Alegre, M.E.; Torres, S.; García-Taboada, E.; Aberturas, M.R.; Molpeceres, J.; Velasco, G.; Torres-Suárez, A.I. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme. PLoS One, 2013, 8(1), e54795. doi: 10.1371/journal.pone.0054795 PMID: 23349970
- Hernández-Tiedra, S.; Fabriàs, G.; Dávila, D.; Salanueva, Í.J.; Casas, J.; Montes, L.R.; Antón, Z.; García-Taboada, E.; Salazar-Roa, M.; Lorente, M.; Nylandsted, J.; Armstrong, J.; López-Valero, I.; McKee, C.S.; Serrano-Puebla, A.; García-López, R.; González-Martínez, J.; Abad, J.L.; Hanada, K.; Boya, P.; Goñi, F.; Guzmán, M.; Lovat, P.; Jäättelä, M.; Alonso, A.; Velasco, G. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy, 2016, 12(11), 2213-2229. doi: 10.1080/15548627.2016.1213927 PMID: 27635674
- Kolbe, M.R.; Hohmann, T.; Hohmann, U.; Ghadban, C.; Mackie, K.; Zöller, C.; Prell, J.; Illert, J.; Strauss, C.; Dehghani, F. THC reduces Ki67-immunoreactive cells derived from human primary glioblastoma in a GPR55-dependent manner. Cancers, 2021, 13(5), 1064. doi: 10.3390/cancers13051064
- Maioli, C.; Mattoteia, D.; Amin, H.I.M.; Minassi, A.; Caprioglio, D. Cannabinol: History, syntheses, and biological profile of the greatest "minor" cannabinoid. Plants, 2022, 11(21), 2896. doi: 10.3390/plants11212896
- Marcu, J.P.; Christian, R.T.; Lau, D.; Zielinski, A.J.; Horowitz, M.P.; Lee, J.; Pakdel, A.; Allison, J.; Limbad, C.; Moore, D.H.; Yount, G.L.; Desprez, P.Y.; McAllister, S.D. Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol. Cancer Ther., 2010, 9(1), 180-189. doi: 10.1158/1535-7163.MCT-09-0407 PMID: 20053780
- Scott, K.A.; Dalgleish, A.G.; Liu, W.M. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol. Cancer Ther., 2014, 13(12), 2955-2967. doi: 10.1158/1535-7163.MCT-14-0402 PMID: 25398831
- López-Valero, I.; Torres, S.; Salazar-Roa, M.; García-Taboada, E.; Hernández-Tiedra, S.; Guzmán, M.; Sepúlveda, J.M.; Velasco, G.; Lorente, M. Optimization of a preclinical therapy of cannabinoids in combination with temozolomide against glioma. Biochem. Pharmacol., 2018, 157, 275-284. doi: 10.1016/j.bcp.2018.08.023 PMID: 30125556
- Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural Determinants of Phosphoinositide 3-Kinase Inhibition by Wortmannin, LY294002, Quercetin, Myricetin, and Staurosporine for Proteins Such as Protein Kinase B (PKB) and Phos-Pholipid-Dependent Kinase 1 (PDK1); These Are Im-Portant Components of the Molecular Mechanisms of Diseases Such as Diabetes, Cancer, and Chronic Inflam-Mation. The Class I Isozymes Are Subdivided into Classes, 2000, Vol. 6, .
- Tucker, J.A.; Klein, T.; Breed, J.; Breeze, A.L.; Overman, R.; Phillips, C.; Norman, R.A. Structural insights into FGFR kinase isoform selectivity: diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure., 2014, 22(12), 1764-1774. doi: 10.1016/j.str.2014.09.019 PMID: 25465127
- Haling, J.R.; Sudhamsu, J.; Yen, I.; Sideris, S.; Sandoval, W.; Phung, W.; Bravo, B.J.; Giannetti, A.M.; Peck, A.; Masselot, A.; Morales, T.; Smith, D.; Brandhuber, B.J.; Hymowitz, S.G.; Malek, S. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Cancer Cell., 2014, 26(3), 402-413. doi: 10.1016/j.ccr.2014.07.007 PMID: 25155755
- Peng, Y.H.; Ueng, S.H.; Tseng, C.T.; Hung, M.S.; Song, J.S.; Wu, J.S.; Liao, F.Y.; Fan, Y.S.; Wu, M.H.; Hsiao, W.C.; Hsueh, C.C.; Lin, S.Y.; Cheng, C.Y.; Tu, C.H.; Lee, L.C.; Cheng, M.F.; Shia, K.S.; Shih, C.; Wu, S.Y. Important hydrogen bond networks in indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor design revealed by crystal structures of imidazoleisoindole derivatives with IDO1. J. Med. Chem., 2016, 59(1), 282-293. doi: 10.1021/acs.jmedchem.5b01390 PMID: 26642377
- Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The protein data bank: A computer-based archival file for macromolecular structures. J. Mol. Biol., 1977, 112(3), 535-542. doi: 10.1016/S0022-2836(77)80200-3 PMID: 875032
- Mollegro Virtual Docker 6.0; CLC Bio Company, 2014.
- De Azevedo, W., Jr; Walter, F. MolDock applied to structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 327-334. doi: 10.2174/138945010790711941 PMID: 20210757
- Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321. doi: 10.1021/jm051197e PMID: 16722650
- Yusuf, D.; Davis, A.M.; Kleywegt, G.J.; Schmitt, S. An alternative method for the evaluation of docking performance: RSR vs RMSD. J. Chem. Inf. Model., 2008, 48(7), 1411-1422. doi: 10.1021/ci800084x PMID: 18598022
- Hung, L.H.; Guerquin, M.; Samudrala, R. GPU-Q-J, a fast method for calculating root mean square deviation (RMSD) after optimal superposition. BMC Res. Notes, 2011, 4(1), 97. doi: 10.1186/1756-0500-4-97 PMID: 21453553
- To, C.; Beyett, T.S.; Jang, J.; Feng, W.W.; Bahcall, M.; Haikala, H.M.; Shin, B.H.; Heppner, D.E.; Rana, J.K.; Leeper, B.A.; Soroko, K.M.; Poitras, M.J.; Gokhale, P.C.; Kobayashi, Y.; Wahid, K.; Kurppa, K.J.; Gero, T.W.; Cameron, M.D.; Ogino, A.; Mushajiang, M.; Xu, C.; Zhang, Y.; Scott, D.A.; Eck, M.J.; Gray, N.S.; Jänne, P.A. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat. Can., 2022, 3(4), 402-417. doi: 10.1038/s43018-022-00351-8 PMID: 35422503
- Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 2000, 6(4), 909-919. doi: 10.1016/S1097-2765(05)00089-4 PMID: 11090628
- Choi, W.S.; Weng, P.J.; Yang, W. Flexibility of telomerase in binding the RNA template and DNA telomeric repeat. Proc. Natl. Acad. Sci., 2022, 119(1), e2116159118. doi: 10.1073/pnas.2116159118 PMID: 34969861
Дополнительные файлы
