Effects and Mechanisms of Fisetin against Ischemia-reperfusion Injuries: A Systematic Review


Cite item

Full Text

Abstract

Background:Ischemia-reperfusion injury (IRI) is a well-known ailment that can disturb organ function.

Objectives:This systematic review study investigated fisetin's effects and possible mechanisms in attenuating myocardial, cerebral, renal, and hepatic IRIs.

Methods:This systematic review included studies earlier than Sep 2023 by following the PRISMA statement 2020. After determining inclusion and exclusion criteria and related keywords, bibliographic databases, such as Cochrane Library, PubMed, Web of Science, Embase, and Scopus databases, were used to search the relevant studies. Studies were imported in End- Note X8, and the primary information was recorded in Excel.

Results:Fisetin reduced reactive oxygen species (ROS) generation and upregulated antioxidant enzymes, such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and glutathione peroxidase (GPx), in ischemic tissues. Moreover, fisetin can attenuate oxidative stress by activating phosphoinositide-3-kinase–protein kinase B/Akt (PI3K/Akt) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Fisetin has been indicated to prevent the activation of several pro-inflammatory signaling pathways, including NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) and MAPKs (Mitogen-activated protein kinases). It also inhibits the production of pro-inflammatory cytokines and enzymes like tumor necrosis factor-a (TNF-α), inducible-NO synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), IL-1, and IL-6. Fisetin attenuates IRI by improving mitochondrial function, anti-apoptotic effects, promoting autophagy, and preserving tissues from histological changes induced by IRIs.

Conclusion:Fisetin, by antioxidant, anti-inflammatory, mitochondrial protection, promoting autophagy, and anti-apoptotic properties, can reduce cell injury due to myocardial, cerebral renal, and hepatic IRIs without any significant side effects.

About the authors

Omid-Ali Adeli

Department of Pathology, Lorestan University of Medical Sciences

Email: info@benthamscience.net

Saeid Heidari-Soureshjani

, Shahrekord University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Sahar Rostamian

Department of Medicine, Harvard Medical School

Email: info@benthamscience.net

Zahra Azadegan-Dehkordi

, Shahrekord University of Medical Sciences

Email: info@benthamscience.net

Armin Khaghani

, Isfahan University of Medical Sciences

Email: info@benthamscience.net

References

  1. Soares, R.O.S.; Losada, D.M.; Jordani, M.C.; Évora, P.; Castro-e-Silva, O. Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int. J. Mol. Sci., 2019, 20(20), 5034. doi: 10.3390/ijms20205034 PMID: 31614478
  2. Sánchez-Hernández, C.D.; Torres-Alarcón, L.A.; González-Cortés, A.; Peón, A.N. Ischemia/reperfusion injury: Pathophysiology, current clinical management, and potential preventive approaches. Mediators Inflamm., 2020, 2020, 1-13. doi: 10.1155/2020/8405370 PMID: 32410868
  3. Sánchez, E.C. Pathophysiology of ischemia-reperfusion injury and its management with hyperbaric oxygen (HBO): A review. J. Emerg. Crit. Care Med., 2019, 3, 22. doi: 10.21037/jeccm.2019.04.03
  4. Li, Y.; Palmer, A.; Lupu, L.; Huber-Lang, M. Inflammatory response to the ischaemia–reperfusion insult in the liver after major tissue trauma. Eur. J. Trauma Emerg. Surg., 2022, 48(6), 4431-4444. doi: 10.1007/s00068-022-02026-6 PMID: 35831749
  5. Erturk, E. Ischemia-reperfusion injury and volatile anesthetics. BioMed Res. Int., 2014, 2014, 1-7. doi: 10.1155/2014/526301 PMID: 24524079
  6. He, J.; Bellenger, N.G.; Ludman, A.J.; Shore, A.C.; Strain, W.D. Treatment of myocardial ischaemia-reperfusion injury in patients with ST-segment elevation myocardial infarction: Promise, disappointment, and hope. Rev. Cardiovasc. Med., 2022, 23(1), 1. doi: 10.31083/j.rcm2301023 PMID: 35092215
  7. Pantazi, E.; Bejaoui, M.; Folch-Puy, E.; Adam, R.; Roselló-Catafau, J. Advances in treatment strategies for ischemia reperfusion injury. Expert Opin. Pharmacother., 2016, 17(2), 169-179. doi: 10.1517/14656566.2016.1115015 PMID: 26745388
  8. Altememy, D.; Bahmani, M.; Hussam, F.; Karim, Y.S.; Kadhim, M.M.; Khawaja, W.K.; Hameed, N.M.; Alwan, N.H.; Darvishi, M. Determination of total antioxidant content of methanolic extracts of cynara scolymus, echinacea purpurea and portulaca oleracea. Adv. Life Sci., 2023, 9(4), 395-400.
  9. Raeisi, E.; Aazami, M.H.; Aghamiri, S.M.R.; Satari, A.; Hosseinzadeh, S.; Lemoigne, Y.; Heidarian, E. Bromelain-based chemo-herbal combination effect on human cancer cells: In-vitro study on AGS and MCF7 proliferation and apoptosis. Curr. Issues Pharm. Med. Sci., 2020, 33(3), 155-161. doi: 10.2478/cipms-2020-0028
  10. Bethesda (MD): National library of medicine (US), National center for biotechnology information. PubChem Compound Summary for CID 5281614, Fisetin., 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Fisetincited 2023 Dec. 13.
  11. Shukla, R.; Pandey, V.; Vadnere, G.P.; Lodhi, S. Chapter 18 - Role of flavonoids in management of inflammatory disorders. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases; Second Edition; Watson, R. R.; Preedy, V. R., Eds. Academic Press, 2019; pp. 293-322.
  12. Khan, N.; Syed, D.N.; Ahmad, N.; Mukhtar, H. Fisetin: A dietary antioxidant for health promotion. Antioxid. Redox Signal., 2013, 19(2), 151-162. doi: 10.1089/ars.2012.4901 PMID: 23121441
  13. Nabizadeh, Z.; Nasrollahzadeh, M.; Shabani, A.A.; Mirmohammadkhani, M.; Nasrabadi, D. Evaluation of the anti-inflammatory activity of fisetin-loaded nanoparticles in an in vitro model of osteoarthritis. Sci. Rep., 2023, 13(1), 15494. doi: 10.1038/s41598-023-42844-1 PMID: 37726323
  14. Jiang, K.; Yang, J.; Xue, G.; Dai, A.; Wu, H. Fisetin ameliorates the inflammation and oxidative stress in lipopolysaccharide-induced endometritis. J. Inflamm. Res., 2021, 14, 2963-2978. doi: 10.2147/JIR.S314130 PMID: 34262322
  15. Dalle Carbonare, L.; Bertacco, J.; Gaglio, S.C.; Minoia, A.; Cominacini, M.; Cheri, S.; Deiana, M.; Marchetto, G.; Bisognin, A.; Gandini, A.; Antoniazzi, F.; Perduca, M.; Mottes, M.; Valenti, M.T. Fisetin: An integrated approach to identify a strategy promoting osteogenesis. Front. Pharmacol., 2022, 13, 890693. doi: 10.3389/fphar.2022.890693 PMID: 35652047
  16. Mao, X.; Cai, Y.; Chen, Y.; Wang, Y.; Jiang, X.; Ye, L.; Li, S. Novel targets and therapeutic strategies to protect against hepatic ischemia reperfusion injury. Front. Med., 2022, 8, 757336. doi: 10.3389/fmed.2021.757336 PMID: 35059411
  17. Jiang, Y.; Tang, X.; Deng, P.; Jiang, C.; He, Y.; Hao, D.; Yang, H. The neuroprotective role of fisetin in different neurological diseases: A systematic review. Mol. Neurobiol., 2023, 60(11), 6383-6394. doi: 10.1007/s12035-023-03469-7 PMID: 37453993
  18. Pu, J.; Wan, L.; Zheng, D.; Wei, X.; Wu, Z.; Tang, C. Fisetin alleviates hypoxia/reoxygenation injury in rat hepatocytes via modulation of TLR4/NF-κB signaling pathway. Xibao Yu Fenzi Mianyixue Zazhi, 2017, 33(7), 936-941. PMID: 28712401
  19. 주하영. Protective effect of fisetin on acute and chronic kidney disease in mice. 부경대학교, 2023.
  20. ZHU, J.; WU, Y.; YE, X.; YE, H.; WANG, G.; FEI, F. Effect of fisetin on learning and memory impairment induced by cerebral ischemia reperfusion and HPA axis. Chinese J. Clin. Pharmacol. Ther., 2017, 22(9), 1002.
  21. Garg, S. ARYA, D.; Bhattia, J. Fisetin, a PPAR gamma agonist improves myocardial injury in rats through Inhibition of MAPK Signalling Pathway mediated oxidative stress and inflammation in Experimental Model of Myocardial Ischemia Reperfusion Injury, Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (The 18th World Congress of Basic and Clinical Pharmacology), Japanese Pharmacological Society; , 2018, pp. PO1-2-76.
  22. Ahlenstiel, T.; Burkhardt, G.; Köhler, H.; Kuhlmann, M.K. Bioflavonoids attenuate renal proximal tubular cell injury during cold preservation in euro-collins and university of wisconsin solutions. Kidney Int., 2003, 63(2), 554-563. doi: 10.1046/j.1523-1755.2003.00774.x PMID: 12631120
  23. Ahlenstiel, T.; Burkhardt, G.; Köhler, H.; Kuhlmann, M.K. Improved cold preservation of kidney tubular cells by means of adding bioflavonoids to organ preservation solutions. Transplantation, 2006, 81(2), 231-239. doi: 10.1097/01.tp.0000191945.09524.a1 PMID: 16436967
  24. Maher, P.; Salgado, K.F.; Zivin, J.A.; Lapchak, P.A. A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Res., 2007, 1173, 117-125. doi: 10.1016/j.brainres.2007.07.061 PMID: 17765210
  25. Gelderblom, M.; Leypoldt, F.; Lewerenz, J.; Birkenmayer, G.; Orozco, D.; Ludewig, P.; Thundyil, J.; Arumugam, T.V.; Gerloff, C.; Tolosa, E.; Maher, P.; Magnus, T. The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice. J. Cereb. Blood Flow Metab., 2012, 32(5), 835-843. doi: 10.1038/jcbfm.2011.189 PMID: 22234339
  26. Shanmugam, K.; Ravindran, S.; Kurian, G.A.; Rajesh, M. Fisetin confers cardioprotection against myocardial ischemia reperfusion injury by suppressing mitochondrial oxidative stress and mitochondrial dysfunction and inhibiting glycogen synthase kinase 3 β activity. Oxid. Med. Cell. Longev., 2018, 2018, 1-16. doi: 10.1155/2018/9173436 PMID: 29636855
  27. Althunibat, O.Y.; Al Hroob, A.M.; Abukhalil, M.H.; Germoush, M.O.; Bin-Jumah, M.; Mahmoud, A.M. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci., 2019, 221, 83-92. doi: 10.1016/j.lfs.2019.02.017 PMID: 30742869
  28. Liu, L.; Gan, S.; Li, B.; Ge, X.; Yu, H.; Zhou, H. Fisetin alleviates atrial inflammation, remodeling, and vulnerability to atrial fibrillation after myocardial infarction. Int. Heart J., 2019, 60(6), 1398-1406. doi: 10.1536/ihj.19-131 PMID: 31666455
  29. Wang, L.; Cao, D.; Wu, H.; Jia, H.; Yang, C.; Zhang, L. Fisetin prolongs therapy window of brain ischemic stroke using tissue plasminogen activator: A double-blind randomized placebo-controlled clinical trial. Clin. Appl. Thromb. Hemost., 2019, 25. doi: 10.1177/1076029619871359 PMID: 31434498
  30. Garg, S.; Khan, S.I.; Malhotra, R.K.; Sharma, M.K.; Kumar, M.; Kaur, P.; Nag, T.C. RumaRay; Bhatia, J.; Arya, D.S. The molecular mechanism involved in cardioprotection by the dietary flavonoid fisetin as an agonist of PPAR-γ in a murine model of myocardial infarction. Arch. Biochem. Biophys., 2020, 694, 108572. doi: 10.1016/j.abb.2020.108572 PMID: 32926843
  31. Long, L.; Han, X.; Ma, X.; Li, K.; Liu, L.; Dong, J.; Qin, B.; Zhang, K.; Yang, K.; Yan, H. Protective effects of fisetin against myocardial ischemia/reperfusion injury. Exp. Ther. Med., 2020, 19(5), 3177-3188. doi: 10.3892/etm.2020.8576 PMID: 32266013
  32. Rodius, S.; de Klein, N.; Jeanty, C.; Sánchez-Iranzo, H.; Crespo, I.; Ibberson, M.; Xenarios, I.; Dittmar, G.; Mercader, N.; Niclou, S.P.; Azuaje, F. Fisetin protects against cardiac cell death through reduction of ROS production and caspases activity. Sci. Rep., 2020, 10(1), 2896. doi: 10.1038/s41598-020-59894-4 PMID: 32076073
  33. Li, Z.; Wang, Y.; Zhang, Y.; Wang, X.; Gao, B.; Li, Y.; Li, R.; Wang, J. Protective effects of fisetin on hepatic ischemia-reperfusion injury through alleviation of apoptosis and oxidative stress. Arch. Med. Res., 2021, 52(2), 163-173. doi: 10.1016/j.arcmed.2020.10.009 PMID: 33645502
  34. Pu, J.L.; Huang, Z.T.; Luo, Y.H.; Mou, T.; Li, T.T.; Li, Z.T.; Wei, X.F.; Wu, Z.J. Fisetin mitigates hepatic ischemia-reperfusion injury by regulating GSK3β/AMPK/NLRP3 inflammasome pathway. Hepatobiliary Pancreat. Dis. Int., 2021, 20(4), 352-360. doi: 10.1016/j.hbpd.2021.04.013 PMID: 34024736
  35. Shanmugam, K.; Boovarahan, S.R.; Prem, P.; Sivakumar, B.; Kurian, G.A. Fisetin attenuates myocardial ischemia-reperfusion injury by activating the reperfusion injury salvage kinase (RISK) signaling pathway. Front. Pharmacol., 2021, 12, 566470. doi: 10.3389/fphar.2021.566470 PMID: 33762932
  36. Sivakumar, B.; Boovarahan, S.R.; Prem, P.N.; Kurian, G.A. Fisetin ameliorates ischemia re-oxygenation injury in H9c2 cardiomyocytes via targeting the PI3K signalling pathway. Phytomedicine Plus, 2021, 1(3), 100094. doi: 10.1016/j.phyplu.2021.100094
  37. Zhang, P.; Cui, J. Neuroprotective effect of fisetin against the cerebral ischemia-reperfusion damage via suppression of oxidative stress and inflammatory parameters. Inflammation, 2021, 44(4), 1490-1506. doi: 10.1007/s10753-021-01434-x PMID: 33616827
  38. Cordaro, M.; D’Amico, R.; Fusco, R.; Peritore, A.F.; Genovese, T.; Interdonato, L.; Franco, G.; Arangia, A.; Gugliandolo, E.; Crupi, R.; Siracusa, R.; Di Paola, R.; Cuzzocrea, S.; Impellizzeri, D. Discovering the effects of fisetin on NF-κB/NLRP-3/NRF-2 molecular pathways in a mouse model of vascular dementia induced by repeated bilateral carotid occlusion. Biomedicines, 2022, 10(6), 1448. doi: 10.3390/biomedicines10061448 PMID: 35740470
  39. Prem, P.N.; Kurian, G.A. Fisetin attenuates renal ischemia/reperfusion injury by improving mitochondrial quality, reducing apoptosis and oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 395(5), 547-561. doi: 10.1007/s00210-022-02204-8 PMID: 35133446
  40. Prem, P.N.; Sivakumar, B.; Boovarahan, S.R.; Kurian, G.A. Long-term administration of fisetin was not as effective as short term in ameliorating IR injury in isolated rat heart. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 395(7), 859-863. doi: 10.1007/s00210-022-02239-x PMID: 35460340
  41. Shanmugam, K.; Prem, P.N.; Boovarahan, S.R.; Sivakumar, B.; Kurian, G.A. FIsetin preserves interfibrillar mitochondria to protect against myocardial ischemia-reperfusion injury. Cell Biochem. Biophys., 2022, 80(1), 123-137. doi: 10.1007/s12013-021-01026-4 PMID: 34392494
  42. Sivakumar, B.; Kurian, G.A. PM 2.5 from diesel exhaust attenuated fisetin mediated cytoprotection in H9c2 cardiomyocytes subjected to ischemia reoxygenation by inducing mitotoxicity. Drug Chem. Toxicol., 2023, 46(1), 15-23. doi: 10.1080/01480545.2021.2003698 PMID: 34806509
  43. Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol., 2015, 6, 524-551. doi: 10.1016/j.redox.2015.08.020 PMID: 26484802
  44. Ikhlas, M.; Atherton, N.S. Vascular reperfusion injury. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
  45. He, J.; Liu, D.; Zhao, L.; Zhou, D.; Rong, J.; Zhang, L.; Xia, Z. Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp. Ther. Med., 2022, 23(6), 430. doi: 10.3892/etm.2022.11357 PMID: 35607376
  46. Buja, L.M. Pathobiology of myocardial ischemia and reperfusion injury: Models, modes, molecular mechanisms, modulation, and clinical applications. Cardiol. Rev., 2023, 31(5), 252-264. doi: 10.1097/CRD.0000000000000440 PMID: 35175958
  47. Heusch, G.; Gersh, B.J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: A continual challenge. Eur. Heart J., 2017, 38(11), 774-784. PMID: 27354052
  48. Xiong, Y.; Wakhloo, A.K.; Fisher, M. Advances in acute ischemic stroke therapy. Circ. Res., 2022, 130(8), 1230-1251. doi: 10.1161/CIRCRESAHA.121.319948 PMID: 35420919
  49. Vongsfak, J.; Pratchayasakul, W.; Apaijai, N.; Vaniyapong, T.; Chattipakorn, N.; Chattipakorn, S.C. The alterations in mitochondrial dynamics following cerebral ischemia/reperfusion injury. Antioxidants, 2021, 10(9), 1384. doi: 10.3390/antiox10091384 PMID: 34573016
  50. Lerink, L.J.S.; de Kok, M.J.C.; Mulvey, J.F.; Le Dévédec, S.E.; Markovski, A.A.; Wüst, R.C.I.; Alwayn, I.P.J.; Ploeg, R.J.; Schaapherder, A.F.M.; Bakker, J.A.; Lindeman, J.H.N. Preclinical models versus clinical renal ischemia reperfusion injury: A systematic review based on metabolic signatures. Am. J. Transplant., 2022, 22(2), 344-370. doi: 10.1111/ajt.16868 PMID: 34657378
  51. Guan, Y.; Yao, W.; Yi, K.; Zheng, C.; Lv, S.; Tao, Y.; Hei, Z.; Li, M. Nanotheranostics for the management of hepatic ischemia‐reperfusion injury. Small, 2021, 17(23), 2007727. doi: 10.1002/smll.202007727 PMID: 33852769
  52. Mouratidou, C.; Pavlidis, E.T.; Katsanos, G.; Kotoulas, S.C.; Mouloudi, E.; Tsoulfas, G.; Galanis, I.N.; Pavlidis, T.E. Hepatic ischemia-reperfusion syndrome and its effect on the cardiovascular system: The role of treprostinil, a synthetic prostacyclin analog. World J. Gastrointest. Surg., 2023, 15(9), 1858-1870. doi: 10.4240/wjgs.v15.i9.1858 PMID: 37901735
  53. Xin, W.; Qin, Y.; Lei, P.; Zhang, J.; Yang, X.; Wang, Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: Exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. Mol. Ther. Nucleic Acids, 2022, 29, 900-922. doi: 10.1016/j.omtn.2022.08.032 PMID: 36159596
  54. Jassem, W.; Heaton, N.D. The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int., 2004, 66(2), 514-517. doi: 10.1111/j.1523-1755.2004.761_9.x PMID: 15253700
  55. Yapca, O.E.; Borekci, B.; Suleyman, H. Ischemia-reperfusion damage. Eurasian J. Med., 2013, 45(2), 126-127. doi: 10.5152/eajm.2013.24 PMID: 25610264
  56. Geng, X.; Ding, Y.; Shen, J.; Rastogi, R. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke. Neural Regen. Res., 2019, 14(6), 948-953. doi: 10.4103/1673-5374.250568 PMID: 30761998
  57. Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol., 2012, 298, 229-317. doi: 10.1016/B978-0-12-394309-5.00006-7 PMID: 22878108
  58. Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Ischemia/reperfusion. Compr. Physiol., 2016, 7(1), 113-170. doi: 10.1002/cphy.c160006 PMID: 28135002
  59. Kicinska, A.; Jarmuszkiewicz, W. Flavonoids and mitochondria: Activation of cytoprotective pathways? Molecules, 2020, 25(13), 3060. doi: 10.3390/molecules25133060 PMID: 32635481
  60. Koklesova, L.; Liskova, A.; Samec, M.; Zhai, K. AL-Ishaq, R.K.; Bugos, O.; Šudomová, M.; Biringer, K.; Pec, M.; Adamkov, M.; Hassan, S.T.S.; Saso, L.; Giordano, F.A.; Büsselberg, D.; Kubatka, P.; Golubnitschaja, O. Protective effects of flavonoids against mitochondriopathies and associated pathologies: Focus on the predictive approach and personalized prevention. Int. J. Mol. Sci., 2021, 22(16), 8649. doi: 10.3390/ijms22168649 PMID: 34445360
  61. Afroze, N.; Pramodh, S.; Shafarin, J.; Bajbouj, K.; Hamad, M.; Sundaram, M.K.; Haque, S.; Hussain, A. Fisetin deters cell proliferation, induces apoptosis, alleviates oxidative stress and inflammation in human cancer cells, hela. Int. J. Mol. Sci., 2022, 23(3), 1707. doi: 10.3390/ijms23031707 PMID: 35163629
  62. Guo, X.; Cao, W.; Yao, J.; Yuan, Y.; Hong, Y.; Wang, X.; Xing, J. Cardioprotective effects of tilianin in rat myocardial ischemia-reperfusion injury. Mol. Med. Rep., 2015, 11(3), 2227-2233. doi: 10.3892/mmr.2014.2954 PMID: 25405380
  63. Yang, L.; Xian, D.; Xiong, X.; Lai, R.; Song, J.; Zhong, J. Proanthocyanidins against oxidative stress: From molecular mechanisms to clinical applications. BioMed Res. Int., 2018, 2018, 1-11. doi: 10.1155/2018/8584136 PMID: 29750172
  64. Hassan, S.S.; Samanta, S.; Dash, R.; Karpiński, T.M.; Habibi, E.; Sadiq, A.; Ahmadi, A.; Bungau, S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front. Pharmacol., 2022, 13, 1015835. doi: 10.3389/fphar.2022.1015835 PMID: 36299900
  65. Ishige, K.; Schubert, D.; Sagara, Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med., 2001, 30(4), 433-446. doi: 10.1016/S0891-5849(00)00498-6 PMID: 11182299
  66. Maher, P. A comparison of the neurotrophic activities of the flavonoid fisetin and some of its derivatives. Free Radic. Res., 2006, 40(10), 1105-1111. doi: 10.1080/10715760600672509 PMID: 17015255
  67. Galati, G.; Sabzevari, O.; Wilson, J.X.; O’Brien, P.J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology, 2002, 177(1), 91-104. doi: 10.1016/S0300-483X(02)00198-1 PMID: 12126798
  68. Wang, Y.; Hong, F.; Yang, S. Roles of nitric oxide in brain ischemia and reperfusion. Int. J. Mol. Sci., 2022, 23(8), 4243. doi: 10.3390/ijms23084243 PMID: 35457061
  69. Maurya, B.K.; Trigun, S.K. Fisetin modulates antioxidant enzymes and inflammatory factors to inhibit aflatoxin-B1 induced hepatocellular carcinoma in rats. Oxid. Med. Cell. Longev., 2016, 2016, 1-9. doi: 10.1155/2016/1972793 PMID: 26682000
  70. Varesi, A.; Chirumbolo, S.; Campagnoli, L.I.M.; Pierella, E.; Piccini, G.B.; Carrara, A.; Ricevuti, G.; Scassellati, C.; Bonvicini, C.; Pascale, A. The role of antioxidants in the interplay between oxidative stress and senescence. Antioxidants, 2022, 11(7), 1224. doi: 10.3390/antiox11071224 PMID: 35883714
  71. Ehren, J.L.; Maher, P. Concurrent regulation of the transcription factors Nrf2 and ATF4 mediates the enhancement of glutathione levels by the flavonoid fisetin. Biochem. Pharmacol., 2013, 85(12), 1816-1826. doi: 10.1016/j.bcp.2013.04.010 PMID: 23618921
  72. Maher, P. How fisetin reduces the impact of age and disease on CNS function. Front. Biosci., 2015, 7(1), 58-82. doi: 10.2741/s425 PMID: 25961687
  73. Ravingerová, T.; Kindernay, L.; Barteková, M.; Ferko, M.; Adameová, A.; Zohdi, V.; Bernátová, I.; Ferenczyová, K.; Lazou, A. The molecular mechanisms of iron metabolism and its role in cardiac dysfunction and cardioprotection. Int. J. Mol. Sci., 2020, 21(21), 7889. doi: 10.3390/ijms21217889 PMID: 33114290
  74. Zhao, Z. Iron and oxidizing species in oxidative stress and Alzheimer’s disease. Aging Med., 2019, 2(2), 82-87. doi: 10.1002/agm2.12074 PMID: 31942516
  75. Zhao, Y.; Xin, Z.; Li, N.; Chang, S.; Chen, Y.; Geng, L.; Chang, H.; Shi, H.; Chang, Y.Z. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic. Biol. Med., 2018, 124, 1-11. doi: 10.1016/j.freeradbiomed.2018.05.082 PMID: 29807160
  76. Kejík, Z.; Kaplánek, R.; Masařík, M.; Babula, P.; Matkowski, A.; Filipenský, P.; Veselá, K.; Gburek, J.; Sýkora, D.; Martásek, P.; Jakubek, M. Iron complexes of flavonoids-antioxidant capacity and beyond. Int. J. Mol. Sci., 2021, 22(2), 646. doi: 10.3390/ijms22020646 PMID: 33440733
  77. Sharfuddin, A.A.; Molitoris, B.A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol., 2011, 7(4), 189-200. doi: 10.1038/nrneph.2011.16 PMID: 21364518
  78. Eltzschig, H.K.; Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med., 2011, 17(11), 1391-1401. doi: 10.1038/nm.2507 PMID: 22064429
  79. Jurcau, A.; Simion, A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies. Int. J. Mol. Sci., 2021, 23(1), 14. doi: 10.3390/ijms23010014 PMID: 35008440
  80. Zuidema, M.Y.; Zhang, C. Ischemia/reperfusion injury: The role of immune cells. World J. Cardiol., 2010, 2(10), 325-332. doi: 10.4330/wjc.v2.i10.325 PMID: 21160610
  81. Francisco, J.; Del Re, D.P. Inflammation in myocardial ischemia/reperfusion injury: Underlying mechanisms and therapeutic potential. Antioxidants, 2023, 12(11), 1944. doi: 10.3390/antiox12111944 PMID: 38001797
  82. Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol., 2020, 108(3), 787-799. doi: 10.1002/JLB.2MR0220-549R PMID: 32182390
  83. Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167. doi: 10.1089/ars.2012.5149 PMID: 23991888
  84. Chazelas, P.; Steichen, C.; Favreau, F.; Trouillas, P.; Hannaert, P.; Thuillier, R.; Giraud, S.; Hauet, T.; Guillard, J. Oxidative stress evaluation in ischemia reperfusion models: Characteristics, limits and perspectives. Int. J. Mol. Sci., 2021, 22(5), 2366. doi: 10.3390/ijms22052366 PMID: 33673423
  85. Danobeitia, J.S.; Djamali, A.; Fernandez, L.A. The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis. Fibrogenesis Tissue Repair, 2014, 7(1), 16. doi: 10.1186/1755-1536-7-16 PMID: 25383094
  86. Jia, J.; Zang, E.; Lv, L.; Li, Q.; Zhang, C.; Xia, Y.; Zhang, L.; Dang, L.; Li, M. Flavonoids in myocardial ischemia-reperfusion injury: Therapeutic effects and mechanisms. Chin. Herb. Med., 2021, 13(1), 49-63. doi: 10.1016/j.chmed.2020.09.002 PMID: 36117755
  87. Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants, 2019, 8(2), 35. doi: 10.3390/antiox8020035 PMID: 30764536
  88. Yu, B.; Zhang, Y.; Wang, T.; Guo, J.; Kong, C.; Chen, Z.; Ma, X.; Qiu, T. MAPK signaling pathways in hepatic ischemia/reperfusion injury. J. Inflamm. Res., 2023, 16, 1405-1418. doi: 10.2147/JIR.S396604 PMID: 37012971
  89. Sung, B.; Pandey, M.K.; Aggarwal, B.B. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol. Pharmacol., 2007, 71(6), 1703-1714. doi: 10.1124/mol.107.034512 PMID: 17387141
  90. Bi, M.; Li, D.; Zhang, J. Role of curcumin in ischemia and reperfusion injury. Front. Pharmacol., 2023, 14, 1057144. doi: 10.3389/fphar.2023.1057144 PMID: 37021057
  91. Zhang, S.; Rao, S.; Yang, M.; Ma, C.; Hong, F.; Yang, S. Role of mitochondrial pathways in cell apoptosis during He-patic ischemia/reperfusion injury. Int. J. Mol. Sci., 2022, 23(4), 2357. doi: 10.3390/ijms23042357 PMID: 35216473
  92. Van Opdenbosch, N.; Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity, 2019, 50(6), 1352-1364. doi: 10.1016/j.immuni.2019.05.020 PMID: 31216460
  93. Shi, T.; Dansen, T.B. Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxid. Redox Signal., 2020, 33(12), 839-859. doi: 10.1089/ars.2020.8074 PMID: 32151151
  94. Park, C.; Cha, H.J.; Kim, D.H.; Kwon, C.Y.; Park, S.H.; Hong, S.H.; Bang, E.; Cheong, J.; Kim, G.Y.; Choi, Y.H. Fisetin protects C2C12 mouse myoblasts from oxidative stress-induced cytotoxicity through regulation of the Nrf2/HO-1 signaling. J. Microbiol. Biotechnol., 2023, 33(5), 591-599. doi: 10.4014/jmb.2212.12042 PMID: 36859395
  95. Arab, H.A.; Sasani, F.; Rafiee, M.H.; Fatemi, A.; Javaheri, A. Histological and biochemical alterations in early-stage lobar ischemia-reperfusion in rat liver. World J. Gastroenterol., 2009, 15(16), 1951-1957. doi: 10.3748/wjg.15.1951 PMID: 19399926
  96. Cearra, I.; Herrero de la Parte, B.; Moreno-Franco, D.I.; García-Alonso, I. A reproducible method for biochemical, histological and functional assessment of the effects of ischaemia–reperfusion syndrome in the lower limbs. Sci. Rep., 2021, 11(1), 19325. doi: 10.1038/s41598-021-98887-9 PMID: 34588582
  97. Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12. doi: 10.1002/path.2697 PMID: 20225336
  98. Ahsan, A.; Liu, M.; Zheng, Y.; Yan, W.; Pan, L.; Li, Y.; Ma, S.; Zhang, X.; Cao, M.; Wu, Z.; Hu, W.; Chen, Z.; Zhang, X. Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm. Sin. B, 2021, 11(7), 1708-1720. doi: 10.1016/j.apsb.2020.10.018 PMID: 34386317
  99. Hung, C.M.; Garcia-Haro, L.; Sparks, C.A.; Guertin, D.A. mTOR-dependent cell survival mechanisms. Cold Spring Harb. Perspect. Biol., 2012, 4(12), a008771. doi: 10.1101/cshperspect.a008771 PMID: 23124837
  100. Zaffagnini, G.; Martens, S. Mechanisms of selective autophagy. J. Mol. Biol., 2016, 428(9)(9 Pt A), 1714-1724. doi: 10.1016/j.jmb.2016.02.004 PMID: 26876603
  101. Liu, K-Y.; Mo, Y.; Sun, Y-Y. Autophagy and inflammation in ischemic stroke. Neural Regen. Res., 2020, 15(8), 1388-1396. doi: 10.4103/1673-5374.274331 PMID: 31997797
  102. Suh, Y.; Afaq, F.; Khan, N.; Johnson, J.J.; Khusro, F.H.; Mukhtar, H. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis, 2010, 31(8), 1424-1433. doi: 10.1093/carcin/bgq115 PMID: 20530556
  103. Zhang, W.; Xu, C.; Sun, J.; Shen, H.M.; Wang, J.; Yang, C. Impairment of the autophagy–lysosomal pathway in Alzheimer’s diseases: Pathogenic mechanisms and therapeutic potential. Acta Pharm. Sin. B, 2022, 12(3), 1019-1040. doi: 10.1016/j.apsb.2022.01.008 PMID: 35530153
  104. Kalogeris, T.; Bao, Y.; Korthuis, R.J. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol., 2014, 2, 702-714. doi: 10.1016/j.redox.2014.05.006 PMID: 24944913
  105. Loor, G.; Kondapalli, J.; Iwase, H.; Chandel, N.S.; Waypa, G.B.; Guzy, R.D.; Vanden Hoek, T.L.; Schumacker, P.T. Mitochondrial oxidant stress triggers cell death in simulated ischemia–reperfusion. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(7), 1382-1394. doi: 10.1016/j.bbamcr.2010.12.008 PMID: 21185334
  106. Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16. doi: 10.1155/2013/162750 PMID: 24470791
  107. Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333. doi: 10.1111/j.1753-4887.1998.tb01670.x PMID: 9838798
  108. Bothiraja, C.; Yojana, B.D.; Pawar, A.P.; Shaikh, K.S.; Thorat, U.H. Fisetin-loaded nanocochleates: Formulation, characterisation, in vitro anticancer testing, bioavailability and biodistribution study. Expert Opin. Drug Deliv., 2014, 11(1), 17-29. doi: 10.1517/17425247.2013.860131 PMID: 24294925
  109. Krishnakumar, I.M.; Jaja-Chimedza, A.; Joseph, A.; Balakrishnan, A.; Maliakel, B.; Swick, A. Enhanced bioavailability and pharmacokinetics of a novel hybrid-hydrogel formulation of fisetin orally administered in healthy individuals: A randomised double-blinded comparative crossover study. J. Nutr. Sci., 2022, 11, e74. doi: 10.1017/jns.2022.72 PMID: 36304817
  110. Xiong, H.H.; Lin, S.Y.; Chen, L.L.; Ouyang, K.H.; Wang, W.J. The interaction between flavonoids and intestinal microbes: A review. Foods, 2023, 12(2), 320. doi: 10.3390/foods12020320 PMID: 36673411
  111. Kawabata, K.; Sugiyama, Y.; Sakano, T.; Ohigashi, H. Flavonols enhanced production of anti‐inflammatory substance(s) by Bifidobacterium adolescentis: Prebiotic actions of galangin, quercetin, and fisetin. Biofactors, 2013, 39(4), 422-429. doi: 10.1002/biof.1081 PMID: 23554103
  112. Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos, R.M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int. J. Pharm., 2013, 444(1-2), 146-154. doi: 10.1016/j.ijpharm.2013.01.050 PMID: 23380621
  113. Kadari, A.; Gudem, S.; Kulhari, H.; Bhandi, M.M.; Borkar, R.M.; Kolapalli, V.R.M.; Sistla, R. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles. Drug Deliv., 2017, 24(1), 224-232. doi: 10.1080/10717544.2016.1245366 PMID: 28156161
  114. Maher, P. Fisetin acts on multiple pathways to reduce the impact of age and disease on CNS function. Front. Biosci., 2015, 7, 58. doi: 10.2741/s425 PMID: 25961687
  115. Syed, D.N.; Adhami, V.M.; Khan, N.; Khan, M.I.; Mukhtar, H. Exploring the molecular targets of dietary flavonoid fisetin in cancer. Semin. Cancer Biol., 2016, 40-41, 130-140. doi: 10.1016/j.semcancer.2016.04.003 PMID: 27163728
  116. Prasath, G.S.; Subramanian, S.P. Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 2011, 668(3), 492-496. doi: 10.1016/j.ejphar.2011.07.021 PMID: 21816145
  117. Guo, P.; Feng, Y.Y. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats. Trop. J. Pharm. Res., 2017, 16(8), 1819-1826. doi: 10.4314/tjpr.v16i8.10

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers