Diversity and Isolation of Endophytic Fungi in Panax japonicus and Biotransformation Activity on Saponins


Cite item

Full Text

Abstract

Objectives::This study reports the diversity and community structure differences of the endophytic fungi of Panax japonicus of different ages to obtain novel endophytic fungi with glycoside hydrolytic activity for rare saponins production.

Methods::This study used the high-throughput sequencing method to analyze the diversity and community structure of endophytic fungi of P. japonicus. The endophytic fungi were processed by traditional isolation, culture, conservation, and ITS rDNA sequence analyses. Then the total saponins of P. japonicus were used as the substrate to evaluate the glycoside hydrolytic activity.

Results::The composition analysis of the community structure showed that the abundance, evenness, and diversity of endophytic fungi of nine-year-old P. japonicus were the best among all samples. A total of 210 endophytic fungi were isolated from P. japonicus samples and further annotated by sequencing the internal transcribed spacer. Then the biotransformation activity of obtained strains was further examined on total saponins of P. japonicus (TSPJ), with a strain identified as Fusarium equiseti (No.30) from 7-year-old P. japonicus showing significant glycoside hydrolytic activity on TSPJ, including ginsenoside Ro→zinglbroside R1, pseudoginsenoside RT1→pseudoginsenoside RP1, chikusetsusaponin IV→tarasaponin VI and chikusetsusaponin IVa →calenduloside E.

Conclusion::These results reveal the diversity and community structure differences of the endophytic fungi of P. japonicus with different ages and establish a resource library of endophytic fungi of P. japonicus. More importantly, we identified a valuable endophytic fungus with glycoside hydrolytic activity and provided a promising convenient microbial transformation approach to produce minor deglycosylated ginsenosides.

About the authors

Pengfei Li

Institute of Chinese Materia Medica,, Shanghai University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xiaofeng Ling

Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine

Email: info@benthamscience.net

Shujuan Zhao

Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine

Email: info@benthamscience.net

Lili Xu

Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Rufeng Wang

Institute of Chinese Materia Medica,, Shanghai University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Shu, G.; Jiang, S.; Mu, J.; Yu, H.; Duan, H.; Deng, X. Antitumor immunostimulatory activity of polysaccharides from Panax japonicus C. A. Mey: Roles of their effects on CD4 + T cells and tumor associated macrophages. Int. J. Biol. Macromol., 2018, 111, 430-439. doi: 10.1016/j.ijbiomac.2018.01.011 PMID: 29317237
  2. He, H.; Xu, J.; Xu, Y.; Zhang, C.; Wang, H.; He, Y.; Wang, T.; Yuan, D. Cardioprotective effects of saponins from Panax japonicus on acute myocardial ischemia against oxidative stress-triggered damage and cardiac cell death in rats. J. Ethnopharmacol., 2012, 140(1), 73-82. doi: 10.1016/j.jep.2011.12.024 PMID: 22226974
  3. Guo, X.; Ji, J.; Jose, K.S.G.S.; Hou, X.; Luo, Y.; Fu, X.; Mei, Z.; Feng, Z. Computational prediction of antiangiogenesis synergistic mechanisms of total saponins of Panax japonicus against rheumatoid arthritis. Front. Pharmacol., 2020, 11, 566129. doi: 10.3389/fphar.2020.566129 PMID: 33324204
  4. Yang, W.; Hu, Y.; Wu, W.; Ye, M.; Guo, D. Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity. Phytochemistry, 2014, 106, 7-24. doi: 10.1016/j.phytochem.2014.07.012 PMID: 25108743
  5. Yamahara, J.; Kubomura, Y.; Miki, K.; Fujimura, H. Anti-ulcer action of Panax japonicus rhizome. J. Ethnopharmacol., 1987, 19(1), 95-101. doi: 10.1016/0378-8741(87)90141-3 PMID: 3586698
  6. Yang, B.R.; Yuen, S.C.; Fan, G.Y.; Cong, W.H.; Leung, S.W.; Lee, S.M.Y. Identification of certain Panax species to be potential substitutes for Panax notoginseng in hemostatic treatments. Pharmacol. Res., 2018, 134, 1-15. doi: 10.1016/j.phrs.2018.05.005 PMID: 29772270
  7. Sun, Q.; Sun, Q.; Liu, Y.; Sun, X.; Tao, H. Anti-apoptotic effect of hyperbaric oxygen preconditioning on a rat model of myocardial infarction. J. Surg. Res., 2011, 171(1), 41-46. doi: 10.1016/j.jss.2010.01.036 PMID: 20421116
  8. Gao, Y.; Yuan, D.; Gai, L.; Wu, X.; Shi, Y.; He, Y.; Liu, C.; Zhang, C.; Zhou, G.; Yuan, C. Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling. J. Ginseng Res., 2021, 45(3), 408-419. doi: 10.1016/j.jgr.2020.08.005 PMID: 34025134
  9. Yun, T.K. Brief introduction of Panax ginseng C.A. Meyer. J. Korean Med. Sci., 2001, 16, S3-S5. doi: 10.3346/jkms.2001.16.S.S3 PMID: 11748372
  10. Xia, P.; Bai, Z.; Liang, T.; Yang, D.; Liang, Z.; Yan, X.; Liu, Y. High-performance liquid chromatography based chemical fingerprint analysis and chemometric approaches for the identification and distinction of three endangered Panax plants in Southeast Asia. J. Sep. Sci., 2016, 39(20), 3880-3888. doi: 10.1002/jssc.201600460 PMID: 27550557
  11. Yoshizaki, K.; Devkota, H.P.; Fujino, H.; Yahara, S. Saponins composition of rhizomes, taproots, and lateral roots of Satsuma-ninjin (Panax japonicus). Chem. Pharm. Bull., 2013, 61(3), 344-350. doi: 10.1248/cpb.c12-00764 PMID: 23291557
  12. Cui, L.; Wu, S.; Zhao, C.; Yin, C. Microbial conversion of major ginsenosides in ginseng total saponins by Platycodon grandiflorum endophytes. J. Ginseng Res., 2016, 40(4), 366-374. doi: 10.1016/j.jgr.2015.11.004 PMID: 27746689
  13. Yang, W.; Zhou, J.; Harindintwali, J.D.; Yu, X. Production of minor ginsenosides by combining Stereum hirsutum and cellulase. PLoS One, 2021, 16(8), e0255899. doi: 10.1371/journal.pone.0255899 PMID: 34358262
  14. Xu, H.L.; Chen, G.H.; Wu, Y.T.; Xie, L.P.; Tan, Z.B.; Liu, B.; Fan, H.J.; Chen, H.M.; Huang, G.Q.; Liu, M.; Zhou, Y.C. Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway. J. Ginseng Res., 2022, 46(1), 156-166. doi: 10.1016/j.jgr.2021.05.011 PMID: 35058732
  15. Zhang, X.H.; Xu, X.X.; Xu, T. Ginsenoside Ro suppresses interleukin-1β-induced apoptosis and inflammation in rat chondrocytes by inhibiting NF-κB. Chin. J. Nat. Med., 2015, 13(4), 283-289. doi: 10.1016/S1875-5364(15)30015-7 PMID: 25908625
  16. Zheng, S.; Xiao, S.; Wang, J.; Hou, W.; Wang, Y. Inhibitory effects of ginsenoside ro on the growth of B16F10 melanoma via its metabolites. Molecules, 2019, 24(16), 2985. doi: 10.3390/molecules24162985 PMID: 31426477
  17. Li, W.N.; Fan, D.D. Biocatalytic strategies for the production of ginsenosides using glycosidase: Current state and perspectives. Appl. Microbiol. Biotechnol., 2020, 104(9), 3807-3823. doi: 10.1007/s00253-020-10455-9 PMID: 32125478
  18. Kim, S.Y.; Lee, H.N.; Hong, S.J.; Kang, H.J.; Cho, J.Y.; Kim, D.; Ameer, K.; Kim, Y.M. Enhanced biotransformation of the minor ginsenosides in red ginseng extract by Penicillium decumbens β-glucosidase. Enzyme Microb. Technol., 2022, 153, 109941. doi: 10.1016/j.enzmictec.2021.109941 PMID: 34785432
  19. Petrini, O.; Sieber, T.N.; Toti, L.; Viret, O. Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat. Toxins, 1993, 1(3), 185-196. doi: 10.1002/nt.2620010306 PMID: 1344919
  20. Qin, J.C.; Zhang, Y.M.; Gao, J.M.; Bai, M.S.; Yang, S.X.; Laatsch, H.; Zhang, A.L. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg. Med. Chem. Lett., 2009, 19(6), 1572-1574. doi: 10.1016/j.bmcl.2009.02.025 PMID: 19246197
  21. Joshee, S.; Paulus, B.C.; Park, D.; Johnston, P.R. Diversity and distribution of fungal foliar endophytes in New Zealand Podocarpaceae. Mycol. Res., 2009, 113(9), 1003-1015. doi: 10.1016/j.mycres.2009.06.004 PMID: 19539758
  22. Porras-Alfaro, A.; Bayman, P. Hidden fungi, emergent properties: Endophytes and microbiomes. Annu. Rev. Phytopathol., 2011, 49(1), 291-315. doi: 10.1146/annurev-phyto-080508-081831 PMID: 19400639
  23. Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem., 2011, 11(2), 159-168. doi: 10.2174/138955711794519492 PMID: 21222580
  24. Ren, C.G.; Dai, C.C. Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biol., 2012, 12(1), 128. doi: 10.1186/1471-2229-12-128 PMID: 22856333
  25. Jia, M.; Chen, L.; Xin, H.L.; Zheng, C.J.; Rahman, K.; Han, T.; Qin, L.P. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Front. Microbiol., 2016, 7, 906. doi: 10.3389/fmicb.2016.00906 PMID: 27375610
  26. Deshmukh, S.; Gupta, M.; Prakash, V.; Saxena, S. Endophytic fungi: A source of potential antifungal compounds. J. Fungi., 2018, 4(3), 77. doi: 10.3390/jof4030077 PMID: 29941838
  27. Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv., 2020, 39, 107462. doi: 10.1016/j.biotechadv.2019.107462 PMID: 31669137
  28. Agusta, A.; Maehara, S.; Ohashi, K.; Simanjuntak, P.; Shibuya, H. Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem. Pharm. Bull., 2005, 53(12), 1565-1569. doi: 10.1248/cpb.53.1565 PMID: 16327190
  29. Shibuya, H.; Kitamura, C.; Maehara, S.; Nagahata, M.; Winarno, H.; Simanjuntak, P.; Kim, H.S.; Wataya, Y.; Ohashi, K. Transformation of Cinchona alkaloids into 1-N-oxide derivatives by endophytic Xylaria sp isolated from Cinchona pubescens. Chem. Pharm. Bull., 2003, 51(1), 71-74. doi: 10.1248/cpb.51.71 PMID: 12520132
  30. Cheng, L.; Zhang, H.; Cui, H.; Davari, M.D.; Wei, B.; Wang, W.; Yuan, Q. Efficient enzyme-catalyzed production of diosgenin: Inspired by the biotransformation mechanisms of steroid saponins in Talaromyces stollii CLY-6. Green Chem., 2021, 23(16), 5896-5910. doi: 10.1039/D0GC04152A
  31. Luo, S.L.; Dang, L.Z.; Li, J.F.; Zou, C.G.; Zhang, K.Q.; Li, G.H. Biotransformation of saponins by endophytes isolated from Panax notoginseng. Chem. Biodivers., 2013, 10(11), 2021-2031.
  32. Guo, C.L.; Yang, X.Y.; Chen, Z.M.; Wu, S.; Wang, C.X.; Huang, L.Q.; Cui, X.M. The content determination of biotransformation of Rb1 in the total saponins of Panax notoginseng by a plant endophyte Coniochaeta sp. Zhong Yao Cai, 2016, 39(5), 1075-1078. PMID: 30133192
  33. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods, 2016, 13(7), 581-583. doi: 10.1038/nmeth.3869 PMID: 27214047
  34. Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 2018, 6(1), 90. doi: 10.1186/s40168-018-0470-z PMID: 29773078
  35. Tan, G.; Hu, M.; Li, X.; Pan, Z.; Li, M.; Li, L.; Yang, M. High-throughput sequencing and metabolomics reveal differences in bacterial diversity and metabolites between red and white sufu. Front. Microbiol., 2020, 11, 758. doi: 10.3389/fmicb.2020.00758 PMID: 32390991
  36. Han, Y.; Sun, B.; Hu, X.; Zhang, H.; Jiang, B.; Spranger, M.I.; Zhao, Y. Transformation of bioactive compounds by Fusarium sacchari fungus isolated from the soil-cultivated ginseng. J. Agric. Food Chem., 2007, 55(23), 9373-9379. doi: 10.1021/jf070354a PMID: 17935295
  37. Quan, L.H.; Jin, Y.; Wang, C.; Min, J.W.; Kim, Y.J.; Yang, D.C. Enzymatic transformation of the major ginsenoside Rb2 to minor compound Y and compound K by a ginsenoside-hydrolyzing β-glycosidase from Microbacterium esteraromaticum. J. Ind. Microbiol. Biotechnol., 2012, 39(10), 1557-1562. doi: 10.1007/s10295-012-1158-1 PMID: 22717707
  38. Tian, Y.; Wang, S.; Shang, H.; Wang, W.Q.; Wang, B.Q.; Zhang, X.; Xu, X.D.; Sun, G.B.; Sun, X.B. The clickable activity-based probe of anti-apoptotic calenduloside E. Pharm. Biol., 2019, 57(1), 133-139. doi: 10.1080/13880209.2018.1557699 PMID: 30843752
  39. Tian, Y.; Du, Y.Y.; Shang, H.; Wang, M.; Sun, Z.H.; Wang, B.Q.; Deng, D.; Wang, S.; Xu, X.D.; Sun, G.B.; Sun, X.B. Calenduloside E analogues protecting H9c2 cardiomyocytes against HO-induced apoptosis: Design, synthesis and biological evaluation. Front. Pharmacol., 2017, 8, 862-888. doi: 10.3389/fphar.2017.00862 PMID: 29218010
  40. Li, L.; Wang, D.; Sun, C.; Li, Y.; Lu, H.; Wang, X. Comprehensive lipidome and metabolome profiling investigations of Panax quinquefolius and application in different growing regions using liquid chromatography coupled with mass spectrometry. J. Agric. Food Chem., 2021, 69(23), 6710-6719. doi: 10.1021/acs.jafc.1c02241 PMID: 34080852
  41. Gómez, O.C.; Luiz, J.H.H. Endophytic fungi isolated from medicinal plants: Future prospects of bioactive natural products from Tabebuia/Handroanthus endophytes. Appl. Microbiol. Biotechnol., 2018, 102(21), 9105-9119. doi: 10.1007/s00253-018-9344-3 PMID: 30203146
  42. Yan, L.; Zhao, H.; Zhao, X.; Xu, X.; Di, Y.; Jiang, C.; Shi, J.; Shao, D.; Huang, Q.; Yang, H.; Jin, M. Production of bioproducts by endophytic fungi: Chemical ecology, biotechnological applications, bottlenecks, and solutions. Appl. Microbiol. Biotechnol., 2018, 102(15), 6279-6298. doi: 10.1007/s00253-018-9101-7 PMID: 29808328

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers