Probiotics Show Promise as a Novel Natural Treatment for Neurological Disorders


Cite item

Full Text

Abstract

Probiotics are beneficial microorganisms shown to improve human health when consumed regularly and in sufficient quantities. Numerous health benefits can be attained by possessing important metabolites with nutritional and medicinal qualities. It has been shown through scientific research that these living microbial consortiums can influence a variety of mental health outcomes, including but not limited to anxiety, depression, cognitive processes, stress responses, and behavioral patterns. Selected strains of bacteria and yeasts control how the central nervous system (CNS) communicates with the gut-brain axis (GBA) through neuronal, humoral, and metabolic pathways to ease mood. Psychobiotics are substances that can affect the digestive system as well as mood and anxiety. There is scant evidence to validate the beneficial effects of psychiatric drugs in treating neurological diseases or disorders. The therapeutic method of research into psychobiotics opens exciting prospects for the future of the field of development. This review compiles the current evidence available in the scientific literature on the use of probiotics to influence neurological disorders.

About the authors

Preeti Jha

Department of Biotechnology, Amity Institute of Biotechnology, Amity University

Email: info@benthamscience.net

Neha Dangi

Department of Pharmaceutical Sciences,, Alwar Pharmacy College, M.I.A.

Email: info@benthamscience.net

Shikha Sharma

Department of Pharmaceutical Science,, Lords University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kerry, R.G.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H-S.; Das, G. Benefaction of probiotics for human health: A review. Yao Wu Shi Pin Fen Xi, 2018, 26(3), 927-939. PMID: 29976412
  2. Alagiakrishnan, K.; Halverson, T. Microbial therapeutics in neurocognitive and psychiatric disorders. J. Clin. Med. Res., 2021, 13(9), 439-459. doi: 10.14740/jocmr4575 PMID: 34691318
  3. Lubomski, M.; Tan, A.H.; Lim, S.Y.; Holmes, A.J.; Davis, R.L.; Sue, C.M. Parkinson’s disease and the gastrointestinal microbiome. J. Neurol., 2020, 267(9), 2507-2523. doi: 10.1007/s00415-019-09320-1 PMID: 31041582
  4. Painold, A.; Mörkl, S.; Kashofer, K.; Halwachs, B.; Dalkner, N.; Bengesser, S.; Birner, A.; Fellendorf, F.; Platzer, M.; Queissner, R.; Schütze, G.; Schwarz, M.J.; Moll, N.; Holzer, P.; Holl, A.K.; Kapfhammer, H.P.; Gorkiewicz, G.; Reininghaus, E.Z. A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord., 2019, 21(1), 40-49. doi: 10.1111/bdi.12682 PMID: 30051546
  5. Thakur, A.K.; Tariq, U. Therapeutic potential and recent development of psychobiotics for the management of brain disorders. Trends Appl. Sci. Res., 2019, 14(2), 70-79. doi: 10.3923/tasr.2019.70.79
  6. Kwok, L.Y.; Wang, L.; Zhang, J.; Guo, Z.; Zhang, H. A pilot study on the effect of Lactobacillus casei Zhang on intestinal microbiota parameters in Chinese subjects of different age. Benef. Microbes, 2014, 5(3), 295-304. doi: 10.3920/BM2013.0047 PMID: 24854958
  7. Grenham, S.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Brain-gutmicrobe communication in health and disease. Front. Physiol., 2011, 2, 94. doi: 10.3389/fphys.2011.00094
  8. Bear, T.L.K.; Dalziel, J.E.; Coad, J.; Roy, N.C.; Butts, C.A.; Gopal, P.K. The role of the gut microbiota in dietary interventions for depression and anxiety. Adv. Nutr., 2020, 11(4), 890-907. doi: 10.1093/advances/nmaa016 PMID: 32149335
  9. Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the manipulation of bacteria-gutbrain signals. Trends Neurosci., 2016, 39(11), 763-781. doi: 10.1016/j.tins.2016.09.002 PMID: 27793434
  10. Tomar, P.; Sharma, S.; Dangi, N. Probiotics and Health: A Review; Current Probiotics, 2023. doi: 10.2174/2666649901666230509155058
  11. Sharma, H.; Bajwa, J. Potential role and mechanism of probiotics. Ann. Rom. Soc. Cell Biol., 2021, 25, 3616-3624.
  12. Al-Asmakh, M.; Hedin, L. Microbiota and the control of blood tissue barriers. Tissue Barriers, 2015, 3(3), e1039691. doi: 10.1080/21688370.2015.1039691 PMID: 26451344
  13. Ding, H.T.; Taur, Y.; Walkup, J.T. Gut microbiota and autism: Key concepts and findings. J. Autism Dev. Disord., 2017, 47(2), 480-489. doi: 10.1007/s10803-016-2960-9 PMID: 27882443
  14. Zhuang, Z.Q.; Shen, L.L.; Li, W.W.; Fu, X.; Zeng, F.; Gui, L.; Lü, Y.; Cai, M.; Zhu, C.; Tan, Y.L.; Zheng, P.; Li, H.Y.; Zhu, J.; Zhou, H.D.; Bu, X.L.; Wang, Y.J. Gut microbiota is altered in patients with Alzheimer’s disease. J. Alzheimers Dis., 2018, 63(4), 1337-1346. doi: 10.3233/JAD-180176 PMID: 29758946
  15. Hu, X.; Wang, T.; Jin, F. Alzheimer’s disease and gut microbiota. Sci. China Life Sci., 2016, 59(10), 1006-1023. doi: 10.1007/s11427-016-5083-9 PMID: 27566465
  16. Rautava, S. Early microbial contact, the breast milk microbiome and child health. J. Dev. Orig. Health Dis., 2016, 7(1), 5-14. doi: 10.1017/S2040174415001233 PMID: 26051698
  17. Bright, M.; Bulgheresi, S. A complex journey: Transmission of microbial symbionts. Nat. Rev. Microbiol., 2010, 8(3), 218-230. doi: 10.1038/nrmicro2262 PMID: 20157340
  18. Borre, Y.E.; O’Keeffe, G.W.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med., 2014, 20(9), 509-518. doi: 10.1016/j.molmed.2014.05.002 PMID: 24956966
  19. Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell, 2012, 148(6), 1258-1270. doi: 10.1016/j.cell.2012.01.035 PMID: 22424233
  20. Tau, G.Z.; Peterson, B.S. Normal development of brain circuits. Neuropsychopharmacology, 2010, 35(1), 147-168. doi: 10.1038/npp.2009.115 PMID: 19794405
  21. Roca-Saavedra, P.; Mendez-Vilabrille, V.; Miranda, J.M.; Nebot, C.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Food additives, contaminants and other minor components: Effects on human gut microbiota—a review. J. Physiol. Biochem., 2018, 74(1), 69-83. doi: 10.1007/s13105-017-0564-2 PMID: 28488210
  22. Rodríguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; Marchesi, J.R.; Collado, M.C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis., 2015, 26, 26050. PMID: 25651996
  23. Jakobsson, H.E.; Abrahamsson, T.R.; Jenmalm, M.C.; Harris, K.; Quince, C.; Jernberg, C.; Björkstén, B.; Engstrand, L.; Andersson, A.F. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut, 2014, 63(4), 559-566. doi: 10.1136/gutjnl-2012-303249 PMID: 23926244
  24. El Aidy, S.; Dinan, T.G.; Cryan, J.F. Gut microbiota: The conductor in the orchestra of immune-neuroendocrine communication. Clin. Ther., 2015, 37(5), 954-967. doi: 10.1016/j.clinthera.2015.03.002 PMID: 25846319
  25. Clarke, G.; Cryan, J.F.; Dinan, T.G.; Quigley, E.M. Review article: Probiotics for the treatment of irritable bowel syndrome - focus on lactic acid bacteria. Aliment. Pharmacol. Ther., 2012, 35(4), 403-413. doi: 10.1111/j.1365-2036.2011.04965.x PMID: 22225517
  26. Collins, S.M.; Bercik, P. Intestinal bacteria influence brain activity in healthy humans. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(6), 326-327. doi: 10.1038/nrgastro.2013.76 PMID: 23648940
  27. De Palma, G.; Collins, S.M.; Bercik, P.; Verdu, E.F. The microbiota-gut-brain axis in gastrointestinal disorders: Stressed bugs, stressed brain or both? J. Physiol., 2014, 592(14), 2989-2997. doi: 10.1113/jphysiol.2014.273995 PMID: 24756641
  28. Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol., 2012, 10(11), 735-742. doi: 10.1038/nrmicro2876 PMID: 23000955
  29. Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci., 2011, 108(38), 16050-16055. doi: 10.1073/pnas.1102999108 PMID: 21876150
  30. Svensson, E.; Horváth-Puhó, E.; Thomsen, R.W.; Djurhuus, J.C.; Pedersen, L.; Borghammer, P.; Sørensen, H.T. Vagotomy and subsequent risk of Parkinson’s disease. Ann. Neurol., 2015, 78(4), 522-529. doi: 10.1002/ana.24448 PMID: 26031848
  31. Bercik, P.; Park, A.J.; Sinclair, D.; Khoshdel, A.; Lu, J.; Huang, X.; Deng, Y.; Blennerhassett, P.A.; Fahnestock, M.; Moine, D.; Berger, B.; Huizinga, J.D.; Kunze, W.; McLean, P.G.; Bergonzelli, G.E.; Collins, S.M.; Verdu, E.F. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil., 2011, 23(12), 1132-1139. doi: 10.1111/j.1365-2982.2011.01796.x PMID: 21988661
  32. El Aidy, S.; Dinan, T.G.; Cryan, J.F. Immune modulation of the brain-gut-microbe axis. Front. Microbiol., 2014, 5, 146. doi: 10.3389/fmicb.2014.00146 PMID: 24778631
  33. Sherwin, E.; Rea, K.; Dinan, T.G.; Cryan, J.F. A gut (microbiome) feeling about the brain. Curr. Opin. Gastroenterol., 2016, 32(2), 96-102. doi: 10.1097/MOG.0000000000000244 PMID: 26760398
  34. Xu, D.; Gao, J.; Gillilland, M., III; Wu, X.; Song, I.; Kao, J.Y.; Owyang, C. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology, 2014, 146(2), 484-496.e4. doi: 10.1053/j.gastro.2013.10.026 PMID: 24161699
  35. Dedovic, K.; Ngiam, J. The cortisol awakening response and major depression: examining the evidence. Neuropsychiatr. Dis. Treat., 2015, 11, 1181-1189. doi: 10.2147/NDT.S62289 PMID: 25999722
  36. Osborne, D.M.; Pearson-Leary, J.; McNay, E.C. The neuroenergetics of stress hormones in the hippocampus and implications for memory. Front. Neurosci., 2015, 9, 164. doi: 10.3389/fnins.2015.00164 PMID: 25999811
  37. Chichlowski, M.; Rudolph, C. Visceral pain and gastrointestinal microbiome. J. Neurogastroenterol. Motil., 2015, 21(2), 172-181. doi: 10.5056/jnm15025 PMID: 25829337
  38. Smith, C.J.; Emge, J.R.; Berzins, K.; Lung, L.; Khamishon, R.; Shah, P.; Rodrigues, D.M.; Sousa, A.J.; Reardon, C.; Sherman, P.M.; Barrett, K.E.; Gareau, M.G. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(8), G793-G802. doi: 10.1152/ajpgi.00238.2014 PMID: 25190473
  39. Savignac, H.M.; Kiely, B.; Dinan, T.G.; Cryan, J.F. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil., 2014, 26(11), 1615-1627. doi: 10.1111/nmo.12427 PMID: 25251188
  40. Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; Cazaubiel, J.M. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr., 2011, 105(5), 755-764. doi: 10.1017/S0007114510004319 PMID: 20974015
  41. Savignac, H.M.; Tramullas, M.; Kiely, B.; Dinan, T.G.; Cryan, J.F. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res., 2015, 287, 59-72. doi: 10.1016/j.bbr.2015.02.044 PMID: 25794930
  42. D’Mello, C.; Ronaghan, N.; Zaheer, R.; Dicay, M.; Le, T.; MacNaughton, W.K.; Surrette, M.G.; Swain, M.G. Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J. Neurosci., 2015, 35(30), 10821-10830. doi: 10.1523/JNEUROSCI.0575-15.2015 PMID: 26224864
  43. Thomas, B.H.; Ciliska, D.; Dobbins, M.; Micucci, S. A process for systematically reviewing the literature: Providing the research evidence for public health nursing interventions. Worldviews Evid. Based Nurs., 2004, 1(3), 176-184. doi: 10.1111/j.1524-475X.2004.04006.x PMID: 17163895
  44. Ohland, C.L.; Kish, L.; Bell, H.; Thiesen, A.; Hotte, N.; Pankiv, E.; Madsen, K.L. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology, 2013, 38(9), 1738-1747. doi: 10.1016/j.psyneuen.2013.02.008 PMID: 23566632
  45. Davari, S.; Talaei, S.A.; Alaei, H.; salami, M. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: Behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience, 2013, 240, 287-296. doi: 10.1016/j.neuroscience.2013.02.055 PMID: 23500100
  46. Lyte, M. Microbial endocrinology in the microbiome-gut-brain axis: How bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog., 2013, 9(11), e1003726. doi: 10.1371/journal.ppat.1003726 PMID: 24244158
  47. Lyte, M. Microbial endocrinology and the microbiota-gut-brain axis. Adv. Exp. Med. Biol., 2014, 817, 3-24. doi: 10.1007/978-1-4939-0897-4_1 PMID: 24997027
  48. Holzer, P.; Farzi, A. Neuropeptides and the microbiota-gut-brain axis. In: Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease; Springer: New York, USA, 2014; pp. 195-219. doi: 10.1007/978-1-4939-0897-4_9
  49. del Zoppo, G.J.; Mabuchi, T. Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow Metab., 2003, 23(8), 879-894. doi: 10.1097/01.WCB.0000078322.96027.78 PMID: 12902832
  50. Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; Gulyás, B.; Halldin, C.; Hultenby, K.; Nilsson, H.; Hebert, H.; Volpe, B.T.; Diamond, B.; Pettersson, S. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med., 2014, 6(263), 263ra158. doi: 10.1126/scitranslmed.3009759 PMID: 25411471
  51. den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 2013, 54(9), 2325-2340. doi: 10.1194/jlr.R036012 PMID: 23821742
  52. Minamiyama, M.; Katsuno, M.; Adachi, H.; Waza, M.; Sang, C.; Kobayashi, Y.; Tanaka, F.; Doyu, M.; Inukai, A.; Sobue, G. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet., 2004, 13(11), 1183-1192. doi: 10.1093/hmg/ddh131 PMID: 15102712
  53. Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11(10), 577-591. doi: 10.1038/nrendo.2015.128 PMID: 26260141
  54. Slominski, A.; Semak, I.; Pisarchik, A.; Sweatman, T.; Szczesniewski, A.; Wortsman, J. Conversion of L -tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett., 2002, 511(1-3), 102-106. doi: 10.1016/S0014-5793(01)03319-1 PMID: 11821057
  55. Alexander, K.S.; Pocivavsek, A.; Wu, H.Q.; Pershing, M.L.; Schwarcz, R.; Bruno, J.P. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: Reversal with galantamine. Neuroscience, 2013, 238, 19-28. doi: 10.1016/j.neuroscience.2013.01.063 PMID: 23395862
  56. Khalil, O.S.; Pisar, M.; Forrest, C.M.; Vincenten, M.C.J.; Darlington, L.G.; Stone, T.W. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring. Eur. J. Neurosci., 2014, 39(10), 1558-1571. doi: 10.1111/ejn.12535 PMID: 24646396
  57. Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712. doi: 10.1038/nrn3346 PMID: 22968153
  58. Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: Paradigm shift in neuroscience. J. Neurosci., 2014, 34(46), 15490-15496. doi: 10.1523/JNEUROSCI.3299-14.2014 PMID: 25392516
  59. Luczynski, P.; McVey Neufeld, K.A.; Oriach, C.S.; Clarke, G.; Dinan, T.G.; Cryan, J.F. Growing up in a bubble: Using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol., 2016, 19(8), pyw020. doi: 10.1093/ijnp/pyw020 PMID: 26912607
  60. Tarr, A.J.; Galley, J.D.; Fisher, S.E.; Chichlowski, M.; Berg, B.M.; Bailey, M.T. The prebiotics 3′Sialyllactose and 6′Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut–brain axis. Brain Behav. Immun., 2015, 50, 166-177. doi: 10.1016/j.bbi.2015.06.025 PMID: 26144888
  61. Buffington, S.A.; Di Prisco, G.V.; Auchtung, T.A.; Ajami, N.J.; Petrosino, J.F.; Costa-Mattioli, M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell, 2016, 165(7), 1762-1775. doi: 10.1016/j.cell.2016.06.001 PMID: 27315483
  62. Dinan, T.G.; Cryan, J.; Shanahan, F.; Keeling, P.W.N.; Quigley, E.M.M. IBS: An epigenetic perspective. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(8), 465-471. doi: 10.1038/nrgastro.2010.99 PMID: 20585338
  63. Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Krajmalnik-Brown, R.; Wittung-Stafshede, P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell, 2016, 167(6), 1469-1480.e12. doi: 10.1016/j.cell.2016.11.018 PMID: 27912057
  64. Park, S.H.; Videlock, E.J.; Shih, W.; Presson, A.P.; Mayer, E.A.; Chang, L. Adverse childhood experiences are associated with irritable bowel syndrome and gastrointestinal symptom severity. Neurogastroenterol. Motil., 2016, 28(8), 1252-1260. doi: 10.1111/nmo.12826 PMID: 27061107
  65. Mazurak, N.; Broelz, E.; Storr, M.; Enck, P. Probiotic therapy of the irritable bowel syndrome: Why is the evidence still poor and what can be done about it? J. Neurogastroenterol. Motil., 2015, 21(4), 471-485. doi: 10.5056/jnm15071 PMID: 26351253
  66. Ford, A.C.; Quigley, E.M.M.; Lacy, B.E.; Lembo, A.J.; Saito, Y.A.; Schiller, L.R.; Soffer, E.E.; Spiegel, B.M.R.; Moayyedi, P. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: Systematic review and meta-analysis. Am. J. Gastroenterol., 2014, 109(10), 1547-1561. doi: 10.1038/ajg.2014.202 PMID: 25070051
  67. Whorwell, P.J.; Altringer, L.; Morel, J.; Bond, Y.; Charbonneau, D.; O’Mahony, L.; Kiely, B.; Shanahan, F.; Quigley, E.M.M. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am. J. Gastroenterol., 2006, 101(7), 1581-1590. doi: 10.1111/j.1572-0241.2006.00734.x PMID: 16863564
  68. O’Mahony, L.; McCarthy, J.; Kelly, P.; Hurley, G.; Luo, F.; Chen, K.; O’Sullivan, G.C.; Kiely, B.; Collins, J.K.; Shanahan, F.; Quigley, E.M.M. Lactobacillus and bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles. Gastroenterology, 2005, 128(3), 541-551. doi: 10.1053/j.gastro.2004.11.050 PMID: 15765388
  69. De Palma, G.; Blennerhassett, P.; Lu, J.; Deng, Y.; Park, A.J.; Green, W.; Denou, E.; Silva, M.A.; Santacruz, A.; Sanz, Y.; Surette, M.G.; Verdu, E.F.; Collins, S.M.; Bercik, P. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun., 2015, 6(1), 7735. doi: 10.1038/ncomms8735 PMID: 26218677
  70. Takada, M.; Nishida, K.; Kataoka-Kato, A.; Gondo, Y.; Ishikawa, H.; Suda, K.; Kawai, M.; Hoshi, R.; Watanabe, O.; Igarashi, T.; Kuwano, Y.; Miyazaki, K.; Rokutan, K. Probiotic Lactobacillus casei strain Shirota relieves stress‐associated symptoms by modulating the gut–brain interaction in human and animal models. Neurogastroenterol. Motil., 2016, 28(7), 1027-1036. doi: 10.1111/nmo.12804 PMID: 26896291
  71. Schrezenmeir, J.; de Vrese, M. Probiotics, prebiotics, and synbiotics—approaching a definition. Am. J. Clin. Nutr., 2001, 73(S2), 361s-364s. doi: 10.1093/ajcn/73.2.361s PMID: 11157342
  72. Dinan, T.G.; Stilling, R.M.; Stanton, C.; Cryan, J.F. Collective unconscious: How gut microbes shape human behavior. J. Psychiatr. Res., 2015, 63, 1-9. doi: 10.1016/j.jpsychires.2015.02.021 PMID: 25772005
  73. Erdman, S.E.; Poutahidis, T. Probiotic ‘glow of health’: It’s more than skin deep. Benef. Microbes, 2014, 5(2), 109-119. doi: 10.3920/BM2013.0042 PMID: 24675231
  74. Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav., 2015, 138, 179-187. doi: 10.1016/j.physbeh.2014.10.033 PMID: 25446201
  75. Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci., 2015, 9, 392. doi: 10.3389/fncel.2015.00392 PMID: 26528128
  76. Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ, 2016, 188(16), 1157-1165. doi: 10.1503/cmaj.151179 PMID: 27221269
  77. Park, H.; Lee, J.Y.; Shin, C.M.; Kim, J.M.; Kim, T.J.; Kim, J.W. Characterization of gastrointestinal disorders in patients with parkinsonian syndromes. Parkinsonism Relat. Disord., 2015, 21(5), 455-460. doi: 10.1016/j.parkreldis.2015.02.005 PMID: 25726518
  78. Felice, V.D.; Quigley, E.M.; Sullivan, A.M.; O’Keeffe, G.W.; O’Mahony, S.M. Microbiota-gut-brain signalling in Parkinson’s disease: Implications for non-motor symptoms. Parkinsonism Relat. Disord., 2016, 27, 1-8. doi: 10.1016/j.parkreldis.2016.03.012 PMID: 27013171
  79. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria; World Health Organization: Córdoba, Argentina, 2001.
  80. Hansen, R.; Scott, K.P.; Khan, S.; Martin, J.C.; Berry, S.H.; Stevenson, M.; Okpapi, A.; Munro, M.J.; Hold, G.L. First-pass meconium samples from healthy term vaginally-delivered neonates: An analysis of the microbiota. PLoS One, 2015, 10(7), e0133320. doi: 10.1371/journal.pone.0133320 PMID: 26218283
  81. Al-muzafar, H.M.; Amin, K.A. Probiotic mixture improves fatty liver disease by virtue of its action on lipid profiles, leptin, and inflammatory biomarkers. BMC Complement. Altern. Med., 2017, 17(1), 43. doi: 10.1186/s12906-016-1540-z PMID: 28086768
  82. West, C.E.; Jenmalm, M.C.; Kozyrskyj, A.L.; Prescott, S.L. Probiotics for treatment and primary prevention of allergic diseases and asthma: Looking back and moving forward. Expert Rev. Clin. Immunol., 2016, 12(6), 625-639. doi: 10.1586/1744666X.2016.1147955 PMID: 26821735
  83. Rayes, N.; Seehofer, D.; Hansen, S.; Boucsein, K.; Müller, A.R.; Serke, S.; Bengmark, S.; Neuhaus, P. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: A controlled trial in liver transplant recipients. Transplantation, 2002, 74(1), 123-127. doi: 10.1097/00007890-200207150-00021 PMID: 12134110
  84. Salami, M. Interplay of good bacteria and central nervous system: Cognitive aspects and mechanistic considerations. Front. Neurosci., 2021, 15, 613120-, 15, 613120. doi: 10.3389/fnins.2021.613120 PMID: 33642976
  85. Ivanov, I.I.; Honda, K. Intestinal commensal microbes as immune modulators. Cell Host Microbe, 2012, 12(4), 496-508. doi: 10.1016/j.chom.2012.09.009 PMID: 23084918
  86. Culligan, E.P.; Hill, C.; Sleator, R.D. Probiotics and gastrointestinal disease: Successes, problems and future prospects. Gut Pathog., 2009, 1(1), 19. doi: 10.1186/1757-4749-1-19 PMID: 19930635
  87. Liu, J.; Sun, J.; Wang, F.; Yu, X.; Ling, Z.; Li, H.; Zhang, H.; Jin, J.; Chen, W.; Pang, M.; Yu, J.; He, Y.; Xu, J. Neuroprotective effects of Clostridium butyricum against vascular dementia in mice via metabolic butyrate. BioMed Res. Int., 2015, 2015, 1-12. doi: 10.1155/2015/412946 PMID: 26523278
  88. Undseth, R.; Jakobsdottir, G.; Nyman, M.; Berstad, A.; Valeur, J. Low serum levels of short-chain fatty acids after lactulose ingestion may indicate impaired colonic fermentation in patients with irritable bowel syndrome. Clin. Exp. Gastroenterol., 2015, 8, 303-308. PMID: 26664152

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers