TiO2 Nanoparticles in Cancer Therapy as Nanocarriers in Paclitaxels Delivery and Nanosensitizers in Phototherapies and/or Sonodynamic Therapy
- Authors: Tonelli F.1, Tonelli F.1, Cordeiro H.2
-
Affiliations:
- Department of Biochemistry, Federal University of São João del Rei, UFSJ
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP
- Issue: Vol 25, No 2 (2024)
- Pages: 133-143
- Section: Biotechnology
- URL: https://rjsvd.com/1389-2010/article/view/644738
- DOI: https://doi.org/10.2174/1389201024666230518124829
- ID: 644738
Cite item
Full Text
Abstract
Nanomaterials have been offering improvements in different areas due to their unique characteristics, but cytotoxicity associated with their use is still a topic that concerns researchers. Causing cell death, at first glance, may seem to be a problem and the studies regarding signaling pathways involved in this toxicity are still in their infancy. However, there are scenarios in which this feature is desirable, such as in cancer treatment. Anti-cancer therapies aim to eliminate the cells of malignant tumors as selectively as possible. From this perspective, titanium dioxide (TiO2) nanoparticles (NPs) deserve to be highlighted as important and efficient tools. Besides being able to induce cell death, these NPs can also be used to deliver anti-cancer therapeutics. These drugs can be obtained from natural sources, such as paclitaxel (an antitumoral molecule derived from a vegetal source). The present review aims to explore the recent knowledge of TiO2 NPs as nanocarriers (promoting the nanodelivery of paclitaxel) and as nanosensitizers to be used in phototherapies and/or sonodynamic therapy aiming to treat cancer. Signaling pathways triggered by this nanomaterial inside cells leading to apoptosis (a desirable fate when targeting tumor cells) and challenges related to the clinical translation of these NPs will also receive attention.
About the authors
Fernanda Tonelli
Department of Biochemistry, Federal University of São João del Rei, UFSJ
Author for correspondence.
Email: info@benthamscience.net
Flávia Tonelli
Department of Biochemistry, Federal University of São João del Rei, UFSJ
Email: info@benthamscience.net
Helon Cordeiro
Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP
Email: info@benthamscience.net
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309. doi: 10.1038/s41586-019-1730-1 PMID: 31723286
- Bukhari, S.N.A. Emerging nanotherapeutic approaches to overcome drug resistance in cancers with update on clinical trials. Pharmaceutics, 2022, 14(4), 866. doi: 10.3390/pharmaceutics14040866 PMID: 35456698
- Li, R.; Chen, Z.; Dai, Z.; Yu, Y. Nanotechnology assisted photo- and sonodynamic therapy for overcoming drug resistance. Cancer Biol. Med., 2021, 18(2), 388-400. doi: 10.20892/j.issn.2095-3941.2020.0328 PMID: 33755377
- Qu, Y.; Kang, M.; Cheng, X.; Zhao, J. Chitosan-coated titanium dioxide-embedded paclitaxel nanoparticles enhance anti-tumor efficacy against osteosarcoma. Front. Oncol., 2020, 10, 577280. doi: 10.3389/fonc.2020.577280 PMID: 33014883
- Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24(1), 40. doi: 10.1186/s11658-019-0164-y PMID: 31223315
- Hasanzadeh Kafshgari, M.; Kah, D.; Mazare, A.; Nguyen, N.T.; Distaso, M.; Peukert, W.; Goldmann, W.H.; Schmuki, P.; Fabry, B. Anodic titanium dioxide nanotubes for magnetically guided therapeutic delivery. Sci. Rep., 2019, 9(1), 13439. doi: 10.1038/s41598-019-49513-2 PMID: 31530838
- Çeşmeli, S.; Biray-Avci, C. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J. Drug Target., 2018, 2018, 1-13. PMID: 30252540
- Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; Chen, H.; Hu, H.; Zhang, Z.; Jin, Y. Recent progress in drug delivery. Acta Pharm. Sin. B, 2019, 9(6), 1145-1162. doi: 10.1016/j.apsb.2019.08.003 PMID: 31867161
- Sungur, Ş. Titanium dioxide nanoparticles. In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V.; Torres-Martínez, L.M.; Kharisov, B.I., Eds.; Springer: Amsterdam, 2020; pp. 1-18. doi: 10.1007/978-3-030-11155-7_9-1
- Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.M.; Shaban, M. A review on green synthesis of TiO2 NPs: Photocatalysis and antimicrobial applications. Polymers, 2022, 14(7), 1444. doi: 10.3390/polym14071444 PMID: 35406317
- Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Atapour, A.; Amani, A.M.; Savar, D.A.; Babapoor, A.; Arjmand, O. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), 855-872. doi: 10.1080/21691401.2018.1517769 PMID: 30328732
- Salama, B.; El-Sherbini, E.S.; El-Sayed, G.; El-Adl, M.; Kanehira, K.; Taniguchi, A. The effects of TiO2 nanoparticles on cisplatin cytotoxicity in cancer cell lines. Int. J. Mol. Sci., 2020, 21(2), 605. doi: 10.3390/ijms21020605 PMID: 31963452
- Gojznikar, J. Zdravković B.; Vidak, M.; Leskoek, B.; Ferk, P. TiO2 nanoparticles and their effects on eukaryotic cells: A double-edged sword. Int. J. Mol. Sci., 2022, 23(20), 12353. doi: 10.3390/ijms232012353 PMID: 36293217
- Shabbir, S.; Kulyar, M.F.A.; Bhutta, Z.A.; Boruah, P.; Asif, M. Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population. Bionanoscience, 2021, 11(2), 621-632. doi: 10.1007/s12668-021-00836-3 PMID: 33520589
- Brassolatti, P.; de Almeida, R.J.M. Franco de, G.K.; de Castro, C.A.; Flores, L.G.L.; Dias de, L.F.B.; Pedrino, M.; Assis, M.; Nani, L.M.; Cancino-Bernardi, J.; Speglich, C.; Frade, M.A.; de Freitas, A.F. Functionalized titanium nanoparticles induce oxidative stress and cell death in human skin cells. Int. J. Nanomedicine, 2022, 17, 1495-1509. doi: 10.2147/IJN.S325767 PMID: 35388270
- Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical applications of TiO2 nanostructures: Recent advances. Int. J. Nanomedicine, 2020, 15, 3447-3470. doi: 10.2147/IJN.S249441 PMID: 32523343
- Sun, Q.; Ishii, T.; Kanehira, K.; Sato, T.; Taniguchi, A. Uniform TiO 2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner. Biomater. Sci., 2017, 5(5), 1014-1021. doi: 10.1039/C6BM00946H PMID: 28338134
- Rahmani Kukia, N.; Rasmi, Y.; Abbasi, A.; Koshoridze, N.; Shirpoor, A.; Burjanadze, G.; Saboory, E. Bio-Effects of TiO2 Nanoparticles on Human Colorectal Cancer and Umbilical Vein Endothelial Cell Lines. Asian Pac. J. Cancer Prev., 2018, 19(10), 2821-2829. PMID: 30361551
- Zhang, L.; Xie, X.; Zhou, Y.; Yu, D.; Deng, Y.; Ouyang, J.; Yang, B.; Luo, D.; Zhang, D.; Kuang, H. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice. Int. J. Nanomedicine, 2018, 13, 777-789. doi: 10.2147/IJN.S152400 PMID: 29440900
- Waseem, M.; Kaushik, P.; Dutta, S.; Chakraborty, R.; Hassan, M.I.; Parvez, S. Modulatory role of quercetin in mitochondrial dysfunction in titanium dioxide nanoparticle-induced hepatotoxicity. ACS Omega, 2022, 7(4), 3192-3202. doi: 10.1021/acsomega.1c04740 PMID: 35128232
- He, Q.; Zhou, X.; Liu, Y.; Gou, W.; Cui, J.; Li, Z.; Wu, Y.; Zuo, D. Titanium dioxide nanoparticles induce mouse hippocampal neuron apoptosis via oxidative stress- and calcium imbalance-mediated endoplasmic reticulum stress. Environ. Toxicol. Pharmacol., 2018, 63, 6-15. doi: 10.1016/j.etap.2018.08.003 PMID: 30114659
- Fattori, A.C.M.; Brassolatti, P.; Feitosa, K.A.; Matheus, P.; Correia, R.O.; Albuquerque, Y.R.; Rodolpho, J.M.A.; Luna, G.L.F.; Cancino-Bernardi, J.; Zucolotto, V.; Speglich, C.; Rossi, K.N.Z.P.; Freitas Anibal, F. Titanium dioxide nanoparticle (TiO2 NP) induces toxic effects on la-9 mouse fibroblast cell line. Cell. Physiol. Biochem., 2023, 57(2), 63-81. doi: 10.33594/000000616 PMID: 36945889
- Hong, J.; Hong, F.; Ze, Y.; Zhang, Y.Q. The nano-TiO2 exposure can induce hepatic inflammation involving in a JAKSTAT signalling pathway. J. Nanopart. Res., 2016, 18(6), 162. doi: 10.1007/s11051-016-3472-4
- Zhao, Y.; Tang, Y.; Liu, S.; Jia, T.; Zhou, D.; Xu, H. Foodborne TiO2 nanoparticles induced more severe hepatotoxicity in fructose-induced metabolic syndrome mice via exacerbating oxidative stress-mediated intestinal barrier damage. Foods, 2021, 10(5), 986. doi: 10.3390/foods10050986 PMID: 33946424
- Grissa, I.; ElGhoul, J.; Mrimi, R.; Mir, L.E.; Cheikh, H.B.; Horcajada, P. In deep evaluation of the neurotoxicity of orally administered TiO2 nanoparticles. Brain Res. Bull., 2020, 155, 119-128. doi: 10.1016/j.brainresbull.2019.10.005 PMID: 31715315
- Ze, Y.; Sheng, L.; Zhao, X.; Hong, J.; Ze, X.; Yu, X.; Pan, X.; Lin, A.; Zhao, Y.; Zhang, C.; Zhou, Q.; Wang, L.; Hong, F. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS One, 2014, 9(3), e92230. doi: 10.1371/journal.pone.0092230 PMID: 24658543
- Krüger, K.; Schrader, K.; Klempt, M. Cellular response to titanium dioxide nanoparticles in intestinal epithelial caco-2 cells is dependent on endocytosis-associated structures and mediated by EGFR. Nanomaterials, 2017, 7(4), 79. doi: 10.3390/nano7040079 PMID: 28387727
- Hong, F.; Wang, L.; Yu, X.; Zhou, Y.; Hong, J.; Sheng, L. Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice. Nanoscale Res. Lett., 2015, 10(1), 326. doi: 10.1186/s11671-015-1029-6 PMID: 26269254
- Ye, L.; Hong, F.; Ze, X.; Li, L.; Zhou, Y.; Ze, Y. Toxic effects of TiO 2 nanoparticles in primary cultured rat sertoli cells are mediated via a dysregulated Ca2+/PKC/p38 MAPK/NF-κB cascade. J. Biomed. Mater. Res. A, 2017, 105(5), 1374-1382. doi: 10.1002/jbm.a.36021 PMID: 28188686
- Bischoff, N.S.; de Kok, T.M.; Sijm, D.T.H.M.; van Breda, S.G.; Briedé, J.J.; Castenmiller, J.J.M.; Opperhuizen, A.; Chirino, Y.I.; Dirven, H.; Gott, D.; Houdeau, E.; Oomen, A.G.; Poulsen, M.; Rogler, G.; van Loveren, H. Possible adverse effects of food additive E171 (Titanium Dioxide) related to particle specific human toxicity, including the immune system. Int. J. Mol. Sci., 2020, 22(1), 207. doi: 10.3390/ijms22010207 PMID: 33379217
- Behnam, M.A.; Emami, F.; Sobhani, Z.; Dehghanian, A.R. The application of titanium dioxide (TiO2) nanoparticles in the photo-thermal therapy of melanoma cancer model. Iran. J. Basic Med. Sci., 2018, 21(11), 1133-1139. PMID: 30483386
- Zhang, D.Y.; Liu, H.; Younis, M.R.; Lei, S.; Chen, Y.; Huang, P.; Lin, J. In-situ TiO2-x decoration of titanium carbide MXene for photo/sono-responsive antitumor theranostics. J. Nanobiotechnology, 2022, 20(1), 53. doi: 10.1186/s12951-022-01253-8 PMID: 35090484
- Sargazi, S.; Er, S.; Sacide Gelen, S.; Rahdar, A.; Bilal, M.; Arshad, R.; Ajalli, N.; Farhan Ali Khan, M.; Pandey, S. Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: An updated and comprehensive review. J. Drug Deliv. Sci. Technol., 2022, 75, 103605. doi: 10.1016/j.jddst.2022.103605
- Liang, X.; Xie, Y.; Wu, J.; Wang, J. Petković M.; Stepić M.; Zhao, J.; Ma, J.; Mi, L. Functional titanium dioxide nanoparticle conjugated with phthalocyanine and folic acid as a promising photosensitizer for targeted photodynamic therapy in vitro and in vivo. J. Photochem. Photobiol. B, 2021, 215, 112122. doi: 10.1016/j.jphotobiol.2020.112122 PMID: 33433386
- Al-Nemrawi, N.; Hameedat, F.; Al-Husein, B.; Nimrawi, S. Photolytic controlled release formulation of methotrexate loaded in chitosan/TiO2 nanoparticles for breast cancer. Pharmaceuticals, 2022, 15(2), 149. doi: 10.3390/ph15020149 PMID: 35215259
- Garcia Diosa, J.A.; Gonzalez Orive, A.; Weinberger, C.; Schwiderek, S.; Knust, S.; Tiemann, M.; Grundmeier, G.; Keller, A.; Camargo Amado, R.J. TIO 2 nanoparticle coatings on glass surfaces for the selective trapping of leukemia cells from peripheral blood. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(12), 2142-2153. doi: 10.1002/jbm.b.34862 PMID: 33982864
- Ma, M.; Cheng, L.; Wang, L.; Liang, X.; Yang, L.; Zhang, A. Enhanced photodynamic therapy of TiO2/N-succinyl-chitosan composite for killing cancer cells. Braz. J. Pharm. Sci., 2022, 58, e181116. doi: 10.1590/s2175-97902022e181116
- Wan, G.Y.; Wan, G-Y.; Liu, Y.; Chen, B-W.; Liu, Y-Y.; Wang, Y-S.; Zhang, N.; Liu, Y.; Chen, B-W.; Liu, Y-Y.; Wang, Y-S.; Zhang, N. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol. Med., 2016, 13(3), 325-338. doi: 10.20892/j.issn.2095-3941.2016.0068 PMID: 27807500
- Lin, X.; Huang, R.; Huang, Y.; Wang, K.; Li, H.; Bao, Y.; Wu, C.; Zhang, Y.; Tian, X.; Wang, X. Nanosonosensitizer-augmented sonodynamic therapy combined with checkpoint blockade for cancer immunotherapy. Int. J. Nanomedicine, 2021, 16, 1889-1899. doi: 10.2147/IJN.S290796 PMID: 33707944
- Lee, G.P.; Willis, A.; Pernal, S.; Phakatkar, A.; Shokuhfar, T.; Blot, V.; Engelhard, H.H. Targeted sonodynamic destruction of glioblastoma cells using antibodytitanium dioxide nanoparticle conjugates. Nanomedicine, 2021, 16(7), 523-534. doi: 10.2217/nnm-2020-0452 PMID: 33660528
- Kim, S.; Im, S.; Park, E.Y.; Lee, J.; Kim, C.; Kim, T.; Kim, W.J. Drug-loaded titanium dioxide nanoparticle coated with tumor targeting polymer as a sonodynamic chemotherapeutic agent for anti-cancer therapy. Nanomedicine, 2020, 24, 102110. doi: 10.1016/j.nano.2019.102110 PMID: 31666202
- Tan, X.; Huang, J.; Wang, Y.; He, S.; Jia, L.; Zhu, Y.; Pu, K.; Zhang, Y.; Yang, X. Transformable nanosensitizer with tumor microenvironment‐activated sonodynamic process and calcium release for enhanced cancer immunotherapy. Angew. Chem. Int. Ed., 2021, 60(25), 14051-14059. doi: 10.1002/anie.202102703 PMID: 33797161
- Aksel, M.; Kesmez, Ö. Yavaş A.; Bilgin, M.D. Titaniumdioxide mediated sonophotodynamic therapy against prostate cancer. J. Photochem. Photobiol. B, 2021, 225, 112333. doi: 10.1016/j.jphotobiol.2021.112333 PMID: 34688979
- Akram, M.W.; Raziq, F.; Fakhar-e-Alam, M.; Aziz, M.H.; Alimgeer, K.S.; Atif, M.; Amir, M.; Hanif, A.; Aslam Farooq, W. Tailoring of Au-TiO2 nanoparticles conjugated with doxorubicin for their synergistic response and photodynamic therapy applications. J. Photochem. Photobiol. Chem., 2019, 384, 112040. doi: 10.1016/j.jphotochem.2019.112040
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803. doi: 10.1021/acs.jnatprod.9b01285 PMID: 32162523
- Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect., 2021, 11(1), 5-13. doi: 10.1007/s13659-020-00293-7 PMID: 33389713
- Varsha, K.; Sharma, A.; Kaur, A.; Madan, J.; Pandey, R.S.; Jain, U.K. Natural plant-derived anticancer drugs nanotherapeutics: A review on preclinical to clinical success. In: Nanostructures for Cancer Therapy Micro and Nano Technologies; 1st ed; Ficai, A.; Grumezescu, A.M., Eds.; Elsevier: New York, 2017; p. 775-809. doi: 10.1016/B978-0-323-46144-3.00028-3
- Oberlies, N.H.; Kroll, D.J. Camptothecin and taxol: Historic achievements in natural products research. J. Nat. Prod., 2004, 67(2), 129-135. doi: 10.1021/np030498t PMID: 14987046
- Leung, J.C.; Cassimeris, L. Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: Roles of depolymerizing kinesins and severing proteins. Cancer Biol. Ther., 2019, 20(10), 1337-1347. doi: 10.1080/15384047.2019.1638678 PMID: 31345098
- Zhang, H.; Qiu, L. Brutons Tyrosine Kinase (BTK) inhibitors as sensitizing agents for cancer chemotherapy. In: Protein Kinase Inhibitors as Sensitizing Agents for Chemotherapy: Cancer Sensitizing Agents for Chemotherapy; 1st ed; Chen, Z.S.; Yang, D.H., Eds.; Academic Press: New York, 2019; p. 109-124. doi: 10.1016/B978-0-12-816435-8.00008-0
- Sideris, S.; Aoun, F.; Zanaty, M.; Martinez, N.C.; Latifyan, S.; Awada, A.; Gil, T. Efficacy of weekly paclitaxel treatment as a single agent chemotherapy following first-line cisplatin treatment in urothelial bladder cancer. Mol. Clin. Oncol., 2016, 4(6), 1063-1067. doi: 10.3892/mco.2016.821 PMID: 27284445
- Zhang, Y.; Tang, Y.; Tang, X.; Wang, Y.; Zhang, Z.; Yang, H. Paclitaxel induces the apoptosis of prostate cancer cells via ros-mediated HIF-1α Expression. Molecules, 2022, 27(21), 7183. doi: 10.3390/molecules27217183 PMID: 36364008
- Gupta, A.; Gomes, F.; Lorigan, P. The role for chemotherapy in the modern management of melanoma. Melanoma Manag., 2017, 4(2), 125-136. doi: 10.2217/mmt-2017-0003 PMID: 30190915
- Khalifa, A.M.; Elsheikh, M.A.; Khalifa, A.M.; Elnaggar, Y.S.R. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J. Control. Release, 2019, 311-312, 125-137. doi: 10.1016/j.jconrel.2019.08.034 PMID: 31476342
- Patel, V.K.; Sarim, K.M.; Patel, A.K.; Rout, P.K.; Kalra, A. Synthetic microbial ecology and nanotechnology for the production of Taxol and its precursors: A step towards sustainable production of cancer therapeutics. Design of Nanostructures for Theranostics Applications, 1st ed; Grumezescu, A.M., Ed.; William Andrew: New York, 2018, pp. 563-587.
- De Luca, R.; Profita, G.; Cicero, G. Nab-paclitaxel in pretreated metastatic breast cancer: Evaluation of activity, safety, and quality of life. OncoTargets Ther., 2019, 12, 1621-1627. doi: 10.2147/OTT.S191519 PMID: 30881017
- Raza, F.; Zafar, H.; Khan, M.W.; Ullah, A.; Khan, A.U.; Baseer, A.; Fareed, R.; Sohail, M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. Materials Advances, 2022, 3(5), 2268-2290. doi: 10.1039/D1MA00961C
- Devanand Venkatasubbu, G.; Ramasamy, S.; Ramakrishnan, V.; Kumar, J. Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv. Powder Technol., 2013, 24(6), 947-954. doi: 10.1016/j.apt.2013.01.008
- Wang, T.; Jiang, H.; Wan, L.; Zhao, Q.; Jiang, T.; Wang, B.; Wang, S. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater., 2015, 13, 354-363. doi: 10.1016/j.actbio.2014.11.010 PMID: 25462846
- Wu, Z.; Setyawati, M.I.; Lim, H.K.; Ng, K.W.; Tay, C.Y. Nanoparticle-induced chemoresistance: The emerging modulatory effects of engineered nanomaterials on human intestinal cancer cell redox metabolic adaptation. Nanoscale, 2022, 14(39), 14491-14507. doi: 10.1039/D2NR03893E PMID: 36106385
- Li, Y.; Teng, X.; Wang, Y.; Yang, C.; Yan, X.; Li, J. Neutrophil delivered hollow titania covered persistent luminescent nanosensitizer for ultrosound augmented chemo/immuno glioblastoma therapy. Adv. Sci., 2021, 8(17), 2004381. doi: 10.1002/advs.202004381 PMID: 34196474
- Lee, S.; Kim, J.; Kim, J.; Hoshiar, A.K.; Park, J.; Lee, S.; Kim, J.; Pané, S.; Nelson, B.J.; Choi, H. A needle‐type microrobot for targeted drug delivery by affixing to a microtissue. Adv. Healthc. Mater., 2020, 9(7), 1901697. doi: 10.1002/adhm.201901697 PMID: 32129011
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B, 2022, 12(7), 3049-3062. doi: 10.1016/j.apsb.2022.02.002 PMID: 35865092
- Zhang, X.; Zhang, Y.; Ye, X.; Guo, X.; Zhang, T.; He, J. Overview of phase IV clinical trials for postmarket drug safety surveillance: A status report from the ClinicalTrials.gov registry. BMJ Open, 2016, 6(11), e010643. doi: 10.1136/bmjopen-2015-010643 PMID: 27881517
- Clinicaltrials.gov. 9 Studies found for: TiO2; U.S. National Library of Medicine: Bethesda (MD), 2023.
- Application of palliative treatment in children with brain stem glioma and recurrent high-grade tumors in the central nervous system with the nanomaterial NPt-Ca; U.S. National Library of Medicine: Bethesda, MD, 2022.
- Rodríguez, F.; Caruana, P.; De la Fuente, N.; Español, P.; Gámez, M.; Balart, J.; Llurba, E.; Rovira, R.; Ruiz, R.; Martín-Lorente, C.; Corchero, J.L.; Céspedes, M.V. Nano-based approved pharmaceuticals for cancer treatment: Present and future challenges. Biomolecules, 2022, 12(6), 784. doi: 10.3390/biom12060784 PMID: 35740909
- FDA. Nanotechnology Guidance Documents; U.S. Food and Drug Administration: Silver Spring (MD), 2018.
- Paradise, J. Regulating nanomedicine at the food and drug administration. AMA J. Ethics, 2019, 21(4), E347-E355. doi: 10.1001/amajethics.2019.347 PMID: 31012422
Supplementary files
