Zero-valent Iron Nanoparticles: Biogenic Synthesis and their Medical Applications; Existing Challenges and Future Prospects


Cite item

Full Text

Abstract

Objective:In the last decade, nanobiotechnology is emerging as a keen prudence area owing to its widespread applications in the medical field. In this context, zero-valent iron nanoparticles (nZVI) have garnered tremendous attention attributed to their cheap, non-toxic, excellent paramagnetic nature, extremely reactive surface, and dual oxidation state that makes them excellent antioxidants and free-radical scavengers. Facile biogenic synthesis, in which a biological source is used as a template for the synthesis of NPs, is presumably dominant among other physical and chemical synthetic procedures. The purpose of this review is to elucidate plant-mediated synthesis of nZVI, although they have been successfully fabricated by microbes and other biological entities (such as starch, chitosan, alginate, cashew nut shell, etc.) as well.

Methods:The methodology of the study involved keyword searches of electronic databases, including ScienceDirect, NCBI, and Google Scholar (2008-2023). Search terms of the review included ‘biogenic synthesis of nZVI’, ‘plant-mediated synthesis of nZVI’, ‘medical applications of nZVI’, and ‘Recent advancements and future prospects of nZVI’.

Results:Various articles were identified and reviewed for biogenic fabrication of stable nZVI with the vast majority of studies reporting positive findings. The resultant nanomaterial found great interest for biomedical purposes such as their use as biocompatible anticancer, antimicrobial, antioxidant, and albumin binding agents that have not been adequately accessed in previous studies.

Conclusion:This review shows that there are potential cost savings applications to be made when using biogenic nZVI for medical purposes. However, the encountering challenges concluded later, along with the prospects for sustainable future development.

About the authors

Minahil Hayat

Department of Biotechnology, University of Sargodha

Author for correspondence.
Email: info@benthamscience.net

Sayyad Bukhari

Department of Biotechnology, University of Sargodha

Email: info@benthamscience.net

Muhammad Ashraf

Department of Biotechnology, University of Sargodha

Email: info@benthamscience.net

Sumreen Hayat

Institute of Microbiology, Government College University Faisalabad

Email: info@benthamscience.net

References

  1. Maťátková, O.; Michailidu, J.; Miškovská, A.; Kolouchová, I.; Masák, J.; Čejková, A. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol. Adv., 2022, 58, 107905. doi: 10.1016/j.biotechadv.2022.107905 PMID: 35031394
  2. Fu, R.; Yang, Y.; Xu, Z.; Zhang, X.; Guo, X.; Bi, D. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere, 2015, 138, 726-734. doi: 10.1016/j.chemosphere.2015.07.051 PMID: 26267258
  3. Mathew, N.K. K, R.V.; G, T.; Navaneethan, M.; Balakumar, S. Probing the influence of liquid nitrogen assisted chemical reduction on the nature of passivation layer, magnetic properties, and Cr (VI) remediation performance of nanoscale zero valent iron. J. Environ. Chem. Eng., 2023, 11(1), 109096. doi: 10.1016/j.jece.2022.109096
  4. Galdames, A.; Ruiz-Rubio, L.; Orueta, M.; Sánchez-Arzalluz, M.; Vilas-Vilela, J.L. Zero-valent iron nanoparticles for soil and groundwater remediation. Int. J. Environ. Res. Public Health, 2020, 17(16), 5817. doi: 10.3390/ijerph17165817 PMID: 32796749
  5. Hua, Y.; Li, D.; Zou, J.; Wang, W.; Wu, X.; Zhang, X.; Liu, Q.; Zhao, G.; Li, M.; Zhang, W.; Yang, J. Evolutional solid phase and solid-liquid interface uranium immobilization mechanisms by nanoscale zero-valent iron and enhanced uranium stability control strategy. Chem. Eng. J., 2023, 453, 139924. doi: 10.1016/j.cej.2022.139924
  6. Wang, Y.; Frutschi, M.; Suvorova, E.; Phrommavanh, V.; Descostes, M.; Osman, A.A.A.; Geipel, G.; Bernier-Latmani, R. Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nat. Commun., 2013, 4(1), 2942. doi: 10.1038/ncomms3942 PMID: 24346245
  7. Guo, X.; Shang, Y.; Liang, X.; Diao, Z.; Song, G.; Chen, D.; Wang, S.; Kong, L. A comparison of Ni-Co layered double oxides with memory effect on recovering U(VI) from wastewater to hydroxides. Chem. Eng. J., 2022, 446, 137220. doi: 10.1016/j.cej.2022.137220
  8. Gu, Y.; Gong, L.; Qi, J.; Cai, S.; Tu, W.; He, F. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: Experimental evidences and mechanism. Water Res., 2019, 159, 233-241. doi: 10.1016/j.watres.2019.04.061 PMID: 31100577
  9. Zhou, H.; Ma, M.; Zhao, Y.; Baig, S.A.; Hu, S.; Ye, M.; Wang, J. Integrated green complexing agent and biochar modified nano zero-valent iron for hexavalent chromium removal: A characterisation and performance study. Sci. Total Environ., 2022, 834, 155080. doi: 10.1016/j.scitotenv.2022.155080 PMID: 35398438
  10. Guo, J.; Yin, Z.; Zhong, W.; Jing, C. Immobilization and transformation of co-existing arsenic and antimony in highly contaminated sediment by nano zero-valent iron. J. Environ. Sci. (China), 2022, 112, 152-160. doi: 10.1016/j.jes.2021.05.007 PMID: 34955198
  11. Muthukumar, H.; Mohammed, S.N.; Chandrasekaran, N.; Sekar, A.D.; Pugazhendhi, A.; Matheswaran, M. Effect of iron doped Zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells. Int. J. Hydrogen Energy, 2019, 44(4), 2407-2416. doi: 10.1016/j.ijhydene.2018.06.046
  12. Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update post COVID ‐19 vaccines. Bioeng. Transl. Med., 2021, 6(3), e10246. doi: 10.1002/btm2.10246 PMID: 34514159
  13. Mauro, N.; Utzeri, M.A.; Varvarà, P.; Cavallaro, G. Functionalization of metal and carbon nanoparticles with potential in cancer theranostics. Molecules, 2021, 26(11), 3085. doi: 10.3390/molecules26113085 PMID: 34064173
  14. Okazoe, S.; Yasaka, Y.; Kudo, M.; Maeno, H.; Murakami, Y.; Kimura, Y. Synthesis of zero-valent iron nanoparticles via laser ablation in a formate ionic liquid under atmospheric conditions. Chem. Commun. (Camb.), 2018, 54(56), 7834-7837. doi: 10.1039/C8CC03350A PMID: 29947375
  15. Li, S.; Yan, W.; Zhang, W. Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem., 2009, 11(10), 1618. doi: 10.1039/b913056j
  16. Glasgow, W.; Fellows, B.; Qi, B.; Darroudi, T.; Kitchens, C.; Ye, L.; Crawford, T.M.; Mefford, O.T. Continuous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition. Particuology, 2016, 26, 47-53. doi: 10.1016/j.partic.2015.09.011
  17. Dongsheng, Z.; Wenqiang, G.; Guozhang, C.; Shuai, L.; Weizhou, J.; Youzhi, L. Removal of heavy metal lead(II) using nanoscale zero-valent iron with different preservation methods. Adv. Powder Technol., 2019, 30(3), 581-589. doi: 10.1016/j.apt.2018.12.013
  18. Parimala, L.; Santhanalakshmi, J. Studies on the iron nanoparticles catalyzed reduction of substituted aromatic ketones to alcohols. Journal of Nanoparticles, 2014, 2014, 1-10. doi: 10.1155/2014/156868
  19. Xie, Y.; Cwiertny, D.M. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Environ. Sci. Technol., 2010, 44(22), 8649-8655. doi: 10.1021/es102451t PMID: 20968304
  20. Nasiri, J.; Motamedi, E.; Naghavi, M.R.; Ghafoori, M. Removal of crystal violet from water using β-cyclodextrin functionalized biogenic zero-valent iron nanoadsorbents synthesized via aqueous root extracts of Ferula persica. J. Hazard. Mater., 2019, 367, 325-338. doi: 10.1016/j.jhazmat.2018.12.079 PMID: 30599405
  21. Elcey, C.; Kuruvilla, A.T.; Thomas, D. Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 408-417.
  22. Ding, C.; Cheng, W.; Sun, Y.; Wang, X. RETRACTED: Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0. Geochim. Cosmochim. Acta, 2015, 165, 86-107. doi: 10.1016/j.gca.2015.05.036
  23. Liu, L.; Zhang, Y.; Liu, R.; Wang, Z.; Xu, F.; Chen, Y.; Lin, K. Aerobic debromination of BDE-209 by Rhodococcus sp. coupled with zerovalent iron/activated carbon. Environ. Sci. Pollut. Res. Int., 2016, 23(4), 3925-3933. doi: 10.1007/s11356-015-5663-4 PMID: 26503005
  24. Guler, U.A.; Ersan, M.S. cerevisiae cells modified with nZVI: A novel magnetic biosorbent for nickel removal from aqueous solutions. Desalination Water Treat., 2016, 57(16), 7196-7208. doi: 10.1080/19443994.2015.1013992
  25. Subramaniyam, V.; Subashchandrabose, S.R.; Thavamani, P.; Megharaj, M.; Chen, Z.; Naidu, R. Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J. Appl. Phycol., 2015, 27(5), 1861-1869. doi: 10.1007/s10811-014-0492-2
  26. Mohamed, Y.M.; Azzam, A.M.; Amin, B.H.; Safwat, N.A. Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr. J. Biotechnol., 2015, 14(14), 1234-1241. doi: 10.5897/AJB2014.14286
  27. Pavani, K.V.; Kumar, N.S. Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species Kvp 12. Am J Nanomater, 2013, 1(2), 24-26.
  28. Monga, Y.; Kumar, P.; Sharma, R.K.; Filip, J.; Varma, R.S. Zbořil, R.; Gawande, M.B. Sustainable synthesis of nanoscale zerovalent iron particles for environmental remediation. ChemSusChem, 2020, 13(13), 3288-3305. doi: 10.1002/cssc.202000290 PMID: 32357282
  29. Shahwan, T.; Abu Sirriah, S.; Nairat, M. Boyacı E.; Eroğlu, A.E.; Scott, T.B.; Hallam, K.R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J., 2011, 172(1), 258-266. doi: 10.1016/j.cej.2011.05.103
  30. La Torre, G.; Backhaus, I.; Mannocci, A. Rating for narrative reviews: Concept and development of the International Narrative Systematic Assessment tool. Senses Sci, 2015, 2(2) doi: 10.14616/sands-2015-1-3135
  31. Liu, A.; Liu, J.; Zhang, W. Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water. Chemosphere, 2015, 119, 1068-1074. doi: 10.1016/j.chemosphere.2014.09.026 PMID: 25317915
  32. Turabik, M.; Simsek, U.B. Effect of synthesis parameters on the particle size of the zero valent iron particles. Inorganic and Nano-Metal Chemistry, 2017, 47(7), 1033-1043. doi: 10.1080/15533174.2016.1219869
  33. Pullin, H.; Springell, R.; Parry, S.; Scott, T. The effect of aqueous corrosion on the structure and reactivity of zero-valent iron nanoparticles. Chem. Eng. J., 2017, 308, 568-577. doi: 10.1016/j.cej.2016.09.088
  34. Qureashi, A.; Pandith, A.H.; Bashir, A.; Manzoor, T.; Malik, L.A.; Sheikh, F.A. Citrate coated magnetite: A complete magneto dielectric, electrochemical and DFT study for detection and removal of heavy metal ions. Surf. Interfaces, 2021, 23, 101004. doi: 10.1016/j.surfin.2021.101004
  35. Khare, P.; Singh, A.; Verma, S.; Bhati, A.; Sonker, A.K.; Tripathi, K.M.; Sonkar, S.K. Sunlight-induced selective photocatalytic degradation of methylene blue in bacterial culture by pollutant soot derived nontoxic graphene nanosheets. ACS Sustain. Chem.& Eng., 2018, 6(1), 579-589. doi: 10.1021/acssuschemeng.7b02929
  36. Xu, J.; Avellan, A.; Li, H.; Clark, E.A.; Henkelman, G.; Kaegi, R.; Lowry, G.V. Iron and sulfur precursors affect crystalline structure, speciation, and reactivity of sulfidized nanoscale zerovalent iron. Environ. Sci. Technol., 2020, 54(20), 13294-13303. doi: 10.1021/acs.est.0c03879 PMID: 32966049
  37. Kaur, M.; Gautam, A.; Guleria, P.; Singh, K.; Kumar, V. Green synthesis of metal nanoparticles and their environmental applications. Curr. Opin. Environ. Sci. Health, 2022, 29, 100390. doi: 10.1016/j.coesh.2022.100390
  38. Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv. Powder Technol., 2017, 28(1), 122-130. doi: 10.1016/j.apt.2016.09.003
  39. Ren, G.; Yang, L.; Zhang, Z.; Zhong, B.; Yang, X.; Wang, X. A new green synthesis of porous magnetite nanoparticles from waste ferrous sulfate by solid-phase reduction reaction. J. Alloys Compd., 2017, 710, 875-879. doi: 10.1016/j.jallcom.2017.03.337
  40. Chau, T.P.; Brindhadevi, K.; Krishnan, R.; Alyousef, M.A.; Almoallim, H.S.; Whangchai, N.; Pikulkaew, S. A novel synthesis, analysis and evaluation of Musa coccinea based zero valent iron nanoparticles for antimicrobial and antioxidant. Environ. Res., 2022, 209, 112770. doi: 10.1016/j.envres.2022.112770 PMID: 35063432
  41. Ali, I.; Afshinb, S.; Poureshgh, Y.; Azari, A.; Rashtbari, Y.; Feizizadeh, A.; Hamzezadeh, A.; Fazlzadeh, M. Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water. Environ. Sci. Pollut. Res. Int., 2020, 27(29), 36732-36743. doi: 10.1007/s11356-020-09310-1 PMID: 32564327
  42. Jha, A.K.; Chakraborty, S. Photocatalytic degradation of tetracycline and ciprofloxacin antibiotic residues in aqueous phase by biosynthesized nZVI using Sal (Shorea robusta) leaf extract. J. Water Supply, 2023, jws2023113. doi: 10.2166/aqua.2023.113
  43. Saleh, M.; Isik, Z.; Aktas, Y.; Arslan, H.; Yalvac, M.; Dizge, N. Green synthesis of zero valent iron nanoparticles using Verbascum thapsus and its Cr (VI) reduction activity. Bioresour. Technol. Rep., 2021, 13, 100637. doi: 10.1016/j.biteb.2021.100637
  44. Du, C.; Chen, H.; Gao, W.; Sun, W.; Peng, L.; Xu, N. Green synthesis of nano-zero valence iron with green tea and it’s implication in lead removal. Bull. Environ. Contam. Toxicol., 2023, 110(1), 10. doi: 10.1007/s00128-022-03649-6 PMID: 36512068
  45. Rashtbari, Y.; Sher, F.; Afshin, S.; Hamzezadeh, A.; Ahmadi, S.; Azhar, O.; Rastegar, A.; Ghosh, S.; Poureshgh, Y. Green synthesis of zero-valent iron nanoparticles and loading effect on activated carbon for furfural adsorption. Chemosphere, 2022, 287(Pt 1), 132114. doi: 10.1016/j.chemosphere.2021.132114 PMID: 34481171
  46. Panić S.; Petronijević M.; Vukmirović J.; Grba, N.; Savić S. Green synthesis of nanoscale zero-valent iron aggregates for catalytic degradation of textile dyes. Catal. Lett., 2023. doi: 10.1007/s10562-022-04257-z
  47. Abdelfatah, A.M.; El-Maghrabi, N.; Mahmoud, A.E.D.; Fawzy, M. Synergetic effect of green synthesized reduced graphene oxide and nano-zero valent iron composite for the removal of doxycycline antibiotic from water. Sci. Rep., 2022, 12(1), 19372. doi: 10.1038/s41598-022-23684-x PMID: 36371519
  48. Slijepčević N.; Pilipović D.T.; Kerkez, Đ.; Krčmar, D.; Bečelić-Tomin, M.; Beljin, J.; Dalmacija, B. A cost effective method for immobilization of Cu and Ni polluted river sediment with nZVI synthesized from leaf extract. Chemosphere, 2021, 263, 127816. doi: 10.1016/j.chemosphere.2020.127816 PMID: 32835965
  49. Apriliani, N. Green synthesis of nanoscale zero-valent iron and its activity as an adsorbent for Ni(II) and Cr(VI). Chem. Mater., 2022, 1(3), 71-76. doi: 10.56425/cma.v1i3.29
  50. Anasdass, J.R.; Kannaiyan, P.; Gopinath, S.C.B. Biosynthesis of zerovalent iron nanoparticles for catalytic reduction of 4‐nitrophenol and decoloration of textile dyes. Biotechnol. Appl. Biochem., 2022, 69(6), 2780-2793. doi: 10.1002/bab.2323 PMID: 35293654
  51. Abdel-Aziz, H.M.; Farag, R.S.; Abdel-Gawad, S.A. Carbamazepine removal from aqueous solution by green synthesis zero-valent iron/cu nanoparticles with Ficus benjamina leaves’ extract. Int. J. Environ. Res., 2019, 13(5), 843-852. doi: 10.1007/s41742-019-00220-w
  52. Sravanthi, K.; Ayodhya, D.; Swamy, P.Y. Green synthesis, characterization and catalytic activity of 4-nitrophenol reduction and formation of benzimidazoles using bentonite supported zero valent iron nanoparticles. Mater. Sci. Energy Technol., 2019, 2(2), 298-307. doi: 10.1016/j.mset.2019.02.003
  53. Abdelfatah, A.M.; Fawzy, M.; Eltaweil, A.S.; El-Khouly, M.E. Green synthesis of nano-zero-valent iron using Ricinus Communis seeds extract: Characterization and application in the treatment of methylene blue-polluted water. ACS Omega, 2021, 6(39), 25397-25411. doi: 10.1021/acsomega.1c03355 PMID: 34632198
  54. Rashtbari, Y.; Hazrati, S.; Azari, A.; Afshin, S.; Fazlzadeh, M.; Vosoughi, M. A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: Cephalexin adsorption experiments, mechanisms, isotherms and kinetics. Adv. Powder Technol., 2020, 31(4), 1612-1623. doi: 10.1016/j.apt.2020.02.001
  55. Gopal, G.; Sankar, H.; Natarajan, C.; Mukherjee, A. Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study. J. Environ. Manage., 2020, 254, 109812. doi: 10.1016/j.jenvman.2019.109812 PMID: 31733482
  56. Zhou, Y.; Li, X. Green synthesis of modified polyethylene packing supported tea polyphenols-NZVI for nitrate removal from wastewater: Characterization and mechanisms. Sci. Total Environ., 2022, 806(Pt 2), 150596. doi: 10.1016/j.scitotenv.2021.150596 PMID: 34592281
  57. Han, X.; Zhao, Y.; Zhao, F.; Wang, F.; Tian, G.; Liang, J. Novel synthesis of nanoscale zero-valent iron from iron ore tailings and green tea for the removal of methylene blue. Colloids Surf. A Physicochem. Eng. Asp., 2023, 656, 130412. doi: 10.1016/j.colsurfa.2022.130412
  58. Le, N.T.; Dang, T.D.; Hoang Binh, K.; Nguyen, T.M.; Xuan, T.N.; La, D.D.; Kumar Nadda, A.; Chang, S.W.; Nguyen, D.D. Green synthesis of highly stable zero-valent iron nanoparticles for organic dye treatment using Cleistocalyx operculatus leaf extract. Sustain. Chem. Pharm., 2022, 25, 100598. doi: 10.1016/j.scp.2022.100598
  59. Hassan, A.K.; Al-Kindi, G.Y.; Ghanim, D. Green synthesis of bentonite-supported iron nanoparticles as a heterogeneous Fenton-like catalyst: Kinetics of decolorization of reactive blue 238 dye. Water Sci. Eng., 2020, 13(4), 286-298. doi: 10.1016/j.wse.2020.12.001
  60. Yousefi, M.; Rahmani, K.; Jalilzadeh Yengejeh, R.; Goudarzi, G. Green synthesis of zero iron nanoparticles and its application in the degradation of Sulphacetamide by using of PS/nZVI process. Int. J. Environ. Anal. Chem., 2021, 1-14. doi: 10.1080/03067319.2021.1942862
  61. Van Hoang, N.; Thi Xuan Quynh, N.; Dang, T.D.; Nguyen Xuan, T.; Ngoc Toan, V.; Duc La, D. Green synthesis of fe/graphene nanocomposite using Cleistocalyx operculatus leaf extract as a reducing agent: Removal of pollutants (RhB Dye and Cr6+ Ions) in aqueous media. ChemistrySelect, 2022, 7(47) doi: 10.1002/slct.202203499
  62. Puiatti, G.A.; de Carvalho, J.P.; de Matos, A.T.; Lopes, R.P. Green synthesis of Fe0 nanoparticles using Eucalyptus grandis leaf extract: Characterization and application for dye degradation by a (Photo)Fenton-like process. J. Environ. Manage., 2022, 311, 114828. doi: 10.1016/j.jenvman.2022.114828 PMID: 35278918
  63. Van Hoang, N.; Nguyen-Thi, L.; Kim, G.M.; Dang, T.D.; Ngoc Toan, V.; La, D.D. Green synthesis of zero-valent iron nanoparticles by Cleistocalyx operculatus leaf extract using microfluidic device for degradation of the Rhodamine B dye. Adv Nat Sci Nanosci Nanotechnol, 2022, 13(4), 045007. doi: 10.1088/2043-6262/aca023
  64. Deewan, R.; Yan, D.Y.S.; Khamdahsag, P.; Tanboonchuy, V. Remediation of arsenic-contaminated water by green zero-valent iron nanoparticles. Environ. Sci. Pollut. Res. Int., 2022. doi: 10.1007/s11356-022-24535-y PMID: 36527549
  65. Zhang, J.; Niu, Y.; Zhou, Y.; Ju, S.; Gu, Y. Green preparation of nano-zero-valent iron-copper bimetals for nitrate removal: Characterization, reduction reaction pathway, and mechanisms. Adv. Powder Technol., 2022, 33(11), 103807. doi: 10.1016/j.apt.2022.103807
  66. Du, C.; Xu, N.; Yao, Z.; Bai, X.; Gao, Y.; Peng, L.; Gu, B.; Zhao, J. Mechanistic insights into sulfate and phosphate-mediated hexavalent chromium removal by tea polyphenols wrapped nano-zero-valent iron. Sci. Total Environ., 2022, 850, 157996. doi: 10.1016/j.scitotenv.2022.157996 PMID: 35964743
  67. Jha, A.K.; Chakraborty, S. Photocatalytic degradation of Congo Red under UV irradiation by zero valent iron nano particles (nZVI) synthesized using Shorea robusta (Sal) leaf extract. Water Sci. Technol., 2020, 82(11), 2491-2502. doi: 10.2166/wst.2020.517 PMID: 33339802
  68. Vitta, Y.; Figueroa, M.; Calderon, M.; Ciangherotti, C. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater. Sci. Energy Technol., 2020, 3, 97-103. doi: 10.1016/j.mset.2019.10.014
  69. Hamzezadeh, A.; Fazlzadeh, M.; Rahmani, K.; Poureshgh, Y. A novel green synthesis of zero valent iron nanoparticles (nZVI) using walnut green skin: characterisation, catalytic degradation and toxicity studies. Int. J. Environ. Anal. Chem., 2021, 1-17. doi: 10.1080/03067319.2021.1957463
  70. Koliana, R. Green synthesis of zero valent iron nanoparticles using malva extract and their antimicrobial activity; Notre Dame University-Louaize, 2022. PhD Thesis
  71. Qureashi, A.; Pandith, A.H.; Bashir, A.; Malik, L.A.; Manzoor, T.; Sheikh, F.A.; Fatima, K.; Haq, Z. Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles. Nanoscale Adv., 2023, 5(3), 742-755. doi: 10.1039/D2NA00610C PMID: 36756521
  72. Yang, C.; Ge, C.; Li, X.; Li, L.; Wang, B.; Lin, A.; Yang, W. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? Ecotoxicol. Environ. Saf., 2021, 208, 111552. doi: 10.1016/j.ecoenv.2020.111552 PMID: 33396093
  73. Kumari, N.; Behera, M.; Singh, R. Facile synthesis of biopolymer decorated magnetic coreshells for enhanced removal of xenobiotic azo dyes through experimental modelling. Food Chem. Toxicol., 2023, 171, 113518. doi: 10.1016/j.fct.2022.113518 PMID: 36436617
  74. Prabu, D.; Parthiban, R.; Kumar, P.S.; Namasivayam, S.K. Synthesis, characterization and antibacterial activity of nano zero-valent iron impregnated cashew nut shell. Int. J. Pharm. Pharm. Sci., 2015, 7(1), 139-141.
  75. Lawrinenko, M.; Laird, D.A.; van Leeuwen, J.H. Sustainable pyrolytic production of zerovalent iron. ACS Sustain. Chem.& Eng., 2017, 5(1), 767-773. doi: 10.1021/acssuschemeng.6b02105
  76. Vázquez-Guerrero, A.; Cortés-Martínez, R.; Alfaro-Cuevas-Villanueva, R.; Rivera-Muñoz, E.; Huirache-Acuña, R. Cd(II) and Pb(II) adsorption using a composite obtained from moringa oleifera lam. cellulose nanofibrils impregnated with iron nanoparticles. Water, 2021, 13(1), 89. doi: 10.3390/w13010089
  77. Ahmed, M.F.; Abbas, M.A.; Mahmood, A.; Ahmad, N.M.; Rasheed, H.; Qadir, M.A.; Khan, A.U.; Qiblawey, H.; Zhu, S.; Sadiq, R.; Khan, N.A. Hybrid beads of zero valent iron oxide nanoparticles and chitosan for removal of arsenic in contaminated water. Water, 2021, 13(20), 2876. doi: 10.3390/w13202876
  78. Parnis, M.; García, F.E.; Toledo, M.V.; Montesinos, V.N.; Quici, N. Zerovalent iron nanoparticles-alginate nanocomposites for Cr(VI) removal in water—influence of temperature, ph, dissolved oxygen, matrix, and nZVI surface composition. Water, 2022, 14(3), 484. doi: 10.3390/w14030484
  79. Sciscenko, I.; Luca, V.; Ramos, C.P.; Scott, T.B.; Montesinos, V.N.; Quici, N. Immobilization of nanoscale zerovalent iron in hierarchically channelled polyacrylonitrile for Cr(VI) remediation in wastewater. J. Water Process Eng., 2021, 39, 101704. doi: 10.1016/j.jwpe.2020.101704
  80. Li, Z.; Sun, Y.; Yang, Y.; Han, Y.; Wang, T.; Chen, J.; Tsang, D.C.W. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. J. Hazard. Mater., 2020, 383, 121240. doi: 10.1016/j.jhazmat.2019.121240 PMID: 31563767
  81. Prabu, D.; Kumar, P.S.; Narendrakumar, G.; Sathish, S. Characterization and optimization of process parameter for pharmaceutical waste management and disposal by using nano zero valent iron impregnated agricultural waste from aqueous solution. Res. J. Pharm. Technol., 2020, 13(11), 5306-5312.
  82. Prabu, D.; Kumar, P.S.; Varsha, M.; Sathish, S.; Vijai Anand, K.; Mercy, J.; Tiwari, A. Potential of nanoscale size zero valent iron nanoparticles impregnated activated carbon prepared from palm kernel shell for cadmium removal to avoid water pollution. Int. J. Environ. Anal. Chem., 2022, 102(18), 7224-7240. doi: 10.1080/03067319.2020.1828387
  83. Holloway, R.W.; Marignani, P.A. Targeting mTOR and glycolysis in HER2-positive breast cancer. Cancers (Basel), 2021, 13(12), 2922. doi: 10.3390/cancers13122922 PMID: 34208071
  84. Nolte, T.M.; Lu, B.; Hendriks, A.J. Nanoparticles in bodily tissues: predicting their equilibrium distributions. Environ. Sci. Nano, 2023, 10(2), 424-439. doi: 10.1039/D2EN00469K
  85. Santos, F.S.; Lago, F.R.; Yokoyama, L.; Fonseca, F.V. Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15. J. Mater. Res. Technol., 2017, 6(2), 178-183. doi: 10.1016/j.jmrt.2016.11.004
  86. Chen, K.; Lu, P.; Beeraka, N.M.; Sukocheva, O.A.; Madhunapantula, S.V.; Liu, J.; Sinelnikov, M.Y.; Nikolenko, V.N.; Bulygin, K.V.; Mikhaleva, L.M.; Reshetov, I.V.; Gu, Y.; Zhang, J.; Cao, Y.; Somasundaram, S.G.; Kirkland, C.E.; Fan, R.; Aliev, G. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin. Cancer Biol., 2022, 83, 556-569. doi: 10.1016/j.semcancer.2020.09.012 PMID: 33035656
  87. Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem., 2017, 86(1), 715-748. doi: 10.1146/annurev-biochem-061516-045037 PMID: 28441057
  88. Benhar, M.; Shytaj, I.L.; Stamler, J.S.; Savarino, A. Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J. Clin. Invest., 2016, 126(5), 1630-1639. doi: 10.1172/JCI85339 PMID: 27135880
  89. Wu, Y.N.; Shieh, D.B.; Yang, L.X.; Sheu, H.S.; Thordarson, R.; Chen, D-H.; Braet, F.; Braet, F. Characterization of Iron Core–Gold Shell Nanoparticles for Anti-Cancer Treatments: Chemical and Structural Transformations During Storage and Use. Materials (Basel), 2018, 11(12), 2572. doi: 10.3390/ma11122572 PMID: 30563014
  90. Hashemi, Z.; Ebrahimzadeh, M.A.; Biparva, P.; Mortazavi-Derazkola, S.; Goli, H.R.; Sadeghian, F.; Kardan, M.; Rafiei, A. Biogenic silver and zero-valent iron nanoparticles by Feijoa: Biosynthesis, characterization, cytotoxic, antibacterial and antioxidant activities. Anticancer. Agents Med. Chem., 2020, 20(14), 1673-1687. doi: 10.2174/1871520620666200619165910 PMID: 32560617
  91. Shevtsov, M.A.; Parr, M.A.; Ryzhov, V.A.; Zemtsova, E.G.; Arbenin, A.Y.; Ponomareva, A.N.; Smirnov, V.M.; Multhoff, G. Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats. Sci. Rep., 2016, 6(1), 29247. doi: 10.1038/srep29247 PMID: 27386761
  92. Huang, K.J.; Wei, Y.H.; Chiu, Y.C.; Wu, S.R.; Shieh, D.B. Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater. Sci., 2019, 7(4), 1311-1322. doi: 10.1039/C8BM01525B PMID: 30734774
  93. Yazdani, Z.; Biparva, P.; Rafiei, A.; Kardan, M.; Hadavi, S. Combination effect of cold atmospheric plasma with green synthesized zero-valent iron nanoparticles in the treatment of melanoma cancer model. PLoS One, 2022, 17(12), e0279120. doi: 10.1371/journal.pone.0279120 PMID: 36534669
  94. Yu, H.H.; Lin, C.H.; Chen, Y.C.; Chen, H.H.; Lin, Y.J.; Lin, K.Y.A. Dopamine‐modified zero‐valent iron nanoparticles for dual‐modality photothermal and photodynamic breast cancer therapy. ChemMedChem, 2020, 15(17), 1645-1651. doi: 10.1002/cmdc.202000192 PMID: 32338431
  95. Lacroix, A.; Edwardson, T.G.W.; Hancock, M.A.; Dore, M.D.; Sleiman, H.F. Development of DNA nanostructures for high-affinity binding to human serum albumin. J. Am. Chem. Soc., 2017, 139(21), 7355-7362. doi: 10.1021/jacs.7b02917 PMID: 28475327
  96. Mohan, V.; Sengupta, B.; Acharyya, A.; Yadav, R.; Das, N.; Sen, P. Region-specific double denaturation of human serum albumin: Combined effects of temperature and GnHCl on structural and dynamical responses. ACS Omega, 2018, 3(8), 10406-10417. doi: 10.1021/acsomega.8b00967 PMID: 31459168
  97. Sedaghat Anbouhi, T.; Mokhtari Esfidvajani, E.; Nemati, F.; Haghighat, S.; Sari, S.; Attar, F.; Pakaghideh, A.; Sohrabi, M.J.; Mousavi, S.E.; Falahati, M. Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles. Int. J. Nanomedicine, 2018, 14, 243-256. doi: 10.2147/IJN.S188497 PMID: 30643404
  98. Rana, P.; Sharma, S.; Sharma, R.; Banerjee, K. Apple pectin supported superparamagnetic (γ-Fe2O3) maghemite nanoparticles with antimicrobial potency. Mater. Sci. Energy Technol., 2019, 2(1), 15-21. doi: 10.1016/j.mset.2018.09.001
  99. Liu, S.S.; Qu, H.M.; Yang, D.; Hu, H.; Liu, W.L.; Qiu, Z.G.; Hou, A.M.; Guo, J.; Li, J.W.; Shen, Z.Q.; Jin, M. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res., 2018, 136, 131-136. doi: 10.1016/j.watres.2018.02.036 PMID: 29501757
  100. Webster, T.M.; McFarland, A.; Gebert, M.J.; Oliverio, A.M.; Nichols, L.M.; Dunn, R.R.; Hartmann, E.M.; Fierer, N. Structure and functional attributes of bacterial communities in premise plumbing across the United States. Environ. Sci. Technol., 2021, 55(20), 14105-14114. doi: 10.1021/acs.est.1c03309 PMID: 34606240
  101. Devatha, C.P. Effect of green synthesized iron nanoparticles by Azardirachta indica in different proportions on antibacterial activity. Environ. Nanotechnol. Monit. Manag., 2018, 9, 85-94. doi: 10.1016/j.enmm.2017.11.007
  102. Shaker Ardakani, L.; Alimardani, V.; Tamaddon, A.M.; Amani, A.M.; Taghizadeh, S. Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: Methyl orange dye degradation and antimicrobial properties. Heliyon, 2021, 7(2), e06159. doi: 10.1016/j.heliyon.2021.e06159 PMID: 33644459
  103. Jeyasundari, J.; Praba, P.S.; Jacob, Y.B.A.; Vasantha, V.S.; Shanmugaiah, V. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Psidium guajava plant and their antibacterial activity. Chem. Sci. Rev. Lett., 2017, 6(22), 1244-1252.
  104. Lu, X.; Hou, J.; Yang, K.; Zhu, L.; Xing, B.; Lin, D. Binding force and site-determined desorption and fragmentation of antibiotic resistance genes from metallic nanomaterials. Environ. Sci. Technol., 2021, 55(13), 9305-9316. doi: 10.1021/acs.est.1c02047 PMID: 34138538
  105. Yu, Z.; Li, X.; Guo, J. Combat antimicrobial resistance emergence and biofilm formation through nanoscale zero-valent iron particles. Chem. Eng. J., 2022, 444, 136569. doi: 10.1016/j.cej.2022.136569
  106. Lian, F.; Yu, W.; Zhou, Q.; Gu, S.; Wang, Z.; Xing, B. Size Matters: Nano-biochar triggers decomposition and transformation inhibition of antibiotic resistance genes in aqueous environments. Environ. Sci. Technol., 2020, 54(14), 8821-8829. doi: 10.1021/acs.est.0c02227 PMID: 32558563
  107. Zargar, S.M.; Agrawal, G.K.; Rakwal, R.; Fukao, Y. Quantitative proteomics reveals role of sugar in decreasing photosynthetic activity due to Fe deficiency. Front. Plant Sci., 2015, 6, 592. doi: 10.3389/fpls.2015.00592 PMID: 26284105
  108. Tiwari, A.; Mamedov, F.; Grieco, M.; Suorsa, M.; Jajoo, A.; Styring, S.; Tikkanen, M.; Aro, E.M. Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nat. Plants, 2016, 2(4), 16035. doi: 10.1038/nplants.2016.35 PMID: 27249566
  109. Miller, C.J.; Rose, A.L.; Waite, T.D. Importance of iron complexation for fenton-mediated hydroxyl radical production at circumneutral pH. Front. Mar. Sci., 2016, 3. doi: 10.3389/fmars.2016.00134
  110. Palchoudhury, S.; Jungjohann, K.L.; Weerasena, L.; Arabshahi, A.; Gharge, U.; Albattah, A.; Miller, J.; Patel, K.; Holler, R.A. Enhanced legume root growth with pre-soaking in α-Fe 2 O 3 nanoparticle fertilizer. RSC Advances, 2018, 8(43), 24075-24083. doi: 10.1039/C8RA04680H PMID: 35539206
  111. Wang, J.; Fang, Z.; Cheng, W.; Yan, X.; Tsang, P.E.; Zhao, D. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ. Pollut., 2016, 210, 338-345. doi: 10.1016/j.envpol.2016.01.028 PMID: 26803790
  112. Ghosh, I.; Mukherjee, A.; Mukherjee, A. In planta genotoxicity of nZVI: Influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Mutagenesis, 2017, 32(3), 371-387. doi: 10.1093/mutage/gex006 PMID: 28371930
  113. Auffan, M.; Achouak, W.; Rose, J.; Roncato, M.A.; Chanéac, C.; Waite, D.T.; Masion, A.; Woicik, J.C.; Wiesner, M.R.; Bottero, J.Y. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol., 2008, 42(17), 6730-6735. doi: 10.1021/es800086f PMID: 18800556
  114. Eslami, S.; Ebrahimzadeh, M.A.; Biparva, P. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Advances, 2018, 8(46), 26144-26155. doi: 10.1039/C8RA04451A PMID: 35541956
  115. Turunc, E.; Binzet, R.; Gumus, I.; Binzet, G.; Arslan, H. Green synthesis of silver and palladium nanoparticles using Lithodora hispidula (Sm.) Griseb. (Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide. Mater. Chem. Phys., 2017, 202, 310-319. doi: 10.1016/j.matchemphys.2017.09.032
  116. Gao, J.F.; Li, H.Y.; Pan, K.L.; Si, C.Y. Green synthesis of nanoscale zero-valent iron using a grape seed extract as a stabilizing agent and the application for quick decolorization of azo and anthraquinone dyes. RSC Advances, 2016, 6(27), 22526-22537. doi: 10.1039/C5RA26668H
  117. Leili, M.; Fazlzadeh, M.; Bhatnagar, A. Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions. Environ. Technol., 2018, 39(9), 1158-1172. doi: 10.1080/09593330.2017.1323956 PMID: 28443364
  118. Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Berenjian, A.; Ghasemi, Y. Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Process Synth, 2017, 6(5), 469-475. doi: 10.1515/gps-2016-0133
  119. Kamat, S.; Kumari, M. Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Front. Microbiol., 2023, 14, 1102615. doi: 10.3389/fmicb.2023.1102615 PMID: 36778867

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers