Dependence of magnetic and magnetoimpedance properties of samples of amorphous Fe-based alloys on their shape. Influence of the glass shell thickness in the case of microwires

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Amorphous magnetic metal alloys are a rather new class of materials compared to crystalline ones. They differ significantly from crystalline materials in their structure, physical and magnetic properties. The amorphous state of matter is a state in which there is no long-range order in the arrangement of atoms. The lack of long-range order often leads to changes in physical properties that are difficult or impossible to obtain in a solid with a crystalline structure. One important factor is the extremely small value of magnetocrystalline anisotropy, which leads to an increase in the contributions of magnetoelastic anisotropy and shape anisotropy. In the presented work, a comparative analysis of the magnetic properties of three types of samples prepared from amorphous Fe77.5Si12.5B10 alloy (ribbons, thick wires and glass-shell microwires) has been carried out. It is found that the impedance characteristics of all the samples are quite small, although it depends on the type of sample. For composite samples (glass-sheathed microwire), the magnetic properties strongly depend on both the thickness of the metallic core and the ratio of the total thickness of the microwire to the thickness of the metallic core. The obtained experimental results are presented in the form of graphical dependencies.

Full Text

Restricted Access

About the authors

N. S. Perov

Lomonosov Moscow State University

Author for correspondence.
Email: perov@magn.ru
Russian Federation, Moscow

V. V. Rodionova

I. Kant Baltic Federal University

Email: valeriarodionova@gmail.com
Russian Federation, Kaliningrad

S. V. Samchenko

Lomonosov Moscow State University

Email: perov@magn.ru
Russian Federation, Moscow

V. V. Molokanov

A.A. Baikov Institute of Metallurgy and Materials Science

Email: perov@magn.ru
Russian Federation, Moscow

References

  1. Inoue A., Kong F. // Encyclopedia of Smart Materials. 2022. V. 5. P. 10. https://www.doi.org/10.1016/B978-0-12-803581-8.11725-4
  2. Zhukova V., Corte-Leon P., Blanco J.M., Ipatov M., Gonzalez-Legarreta L., Gonzalez A., Zhukov A. // Chemosensors. 2022. V. 10. № 1. P. 26. https://www.doi.org/10.3390/chemosensors10010026
  3. Золотухин И.В., Калинин Ю.Е., Стогней О.В. Новые направления физического материаловедения, Изд-во Воронежского государственного университета. 2000. 360 с.
  4. Corte-Leon P., Zhukova V., Chizhik, A., Blanco J.M., Ipatov M., Gonzalez-Legarreta L., Zhukov A. // Sensors. 2020. V. 20. No 24. P. 7203. https://www.doi.org/10.3390/s20247203
  5. A.Zhukov, M. Ipatov, M. Churyukanova, S. Kaloshkin, V. Zhukova // Journal of Alloys and Compounds. 2014. V. 586. P. 279. https://www.doi.org/10.1016/j.jallcom.2012.10.082
  6. Olivera J., De La Cruz-Blas C. A., Gómez-Polo C. // Sensors and Actuators A: Physical. 2011. V. 168. P. 90. https://www.doi.org/10.1016/j.sna.2011.04.012
  7. Zhukova V., Ipatov M., Zhukov A. // Sensors. 2009. V. 9. № 11. P. 9216. https://www.doi.org/10.3390/s91109216
  8. Li D.R., Lu Z.C., Zhou S.X. // J. Appl. Phys. 2004. V. 95. № 1. P. 204. https://www.doi.org/10.1063/1.1630697
  9. Zhukov A., Corte-Leon P., Gonzalez-Legarreta L., Ipatov M., Blanco J.M., Gonzalez A., Zhukova V. // J. Phys. D: Appl. Phys. 2022. V. 55. № 25. P. 253003. https://www.doi.org/10.1088/1361-6463/AC4FD7
  10. Mohri K., Uchiyama T., Panina L. V., Yamamoto M., Bushida K. // J. Sensors. 2015. V. 2015. P. 718069. https://www.doi.org/10.1155/2015/718069
  11. Молоканов В.В., Умнов П.П., Куракова Н.В., Свиридова Т.А., Шалыгин А.Н., Ковнеристый Ю.К. // Перспективные материалы. 2006. Т. 2. С. 5. https://www.doi.org/1028-978X
  12. Chizhik A., Zhukov A., Blanco J.M., Szymczak R. // J. Magn. Magn. Mater. 2022. V. 249. P. 99. https://www.doi.org/10.1016/S0304-8853(02)00513-9
  13. Zhukova V., Corte-Leon P., Blanco J.M., Ipatov M., Gonzalez J., Zhukov A. // Chemosensors. 2021. V. 9. № 5. P. 100. https://www.doi.org/10.3390/chemosensors9050100
  14. Panina L., Dzhumazoda A., Nematov M., Alam J., Trukhanov A., Yudanov N., Morchenko A., Zhukov A., Rodionova V. // Sensors. 2019. V. 19. P. 5089. https://www.doi.org/10.3390/s19235089
  15. Молоканов В.В., Шалыгин А.Н., Петржик М.И., Михайлова Т.Н., Филиппов К.С., Дьяконова Н.П., Свиридова Т.А., Захарова Е.А.// Перспективные материалы. 2003. Т. 10. № 1. P. 5. https://www.doi.org/1028-978X
  16. Дорофеева Е.А., Прокошин А.Ф. // ФММ. 1984. Т. 57. С. 500.
  17. Mohri K., Humphrey F.B., Kawashuma K., Kimura K., Mizutani M. // IEEE Trans. Magn. 1990. V. 26 № 5. P. 1789. https://www.doi.org/10.1023/A:1014451124945
  18. Taylor G.F. // Phys. Rev. 1924. V. 23. № 5. P. 655. https://www.doi.org/10.1103/PhysRev.23.655
  19. Бадинтер Е.Я., Берман Н.Р., Драбенко И.Ф., Заборовский В.И. Литой микропровод и его свойства. Кишинев: Штиннца, 1973. 273 с.
  20. Molokanov V.V., Shalygin A.N., Umnov P.P., Chueva T.R., Umnova N.V., Simakov S.V.// Inorg. Mater.: Appl. Res. 2019. V. 3. С. 463. https://www.doi.org/10.1134/S2075113319020278
  21. Самсонова В.В., Рахманов А.А., Настасюк А.Н., Якубов И.Т.., Антонов А.С. Влияние статических и динамических размагничивающих полей на магнитоимпеданс в микропроводе на основе кобальта. // Сборник трудов ХХ международной школы-семинара “Новые Магнитные Материалы Микроэлектроники”, Москва. 2006. С. 444.
  22. Zhukova V., Chizhik A., Zhukov A., Torcunov A., Larin V., Gonzalez J. // IEEE transactions on magnetics. 2002. V. 38. № 5. P. 3090. https://www.doi.org/10.1109/TMAG.2002.802397
  23. Zhanga K., Lvb Z., Yaoa B., Wang D. // J. Non-Cryst. Solids. 2005. V. 352. P. 78. https://www.doi.org/10.1016/j.jnoncrysol.2005.10.023
  24. Mohri K., Humphrey F.B., Kawashima K., Kimura K., Muzutani M. // IEEE Trans. Magn. 1990. V. 26. P. 1789. https://www.doi.org/10.1109/20.104526
  25. Рахманов А.А., Самсонова В.В., Антонов А.С., Перов Н.С. Особенности магнитных и магнитоимпедансных свойств аморфных микропроводов в стеклянной оболочке на основе железа. // Сборник трудов XX международной школы-семинара “Новые Магнитные Материалы Микроэлектроники”, Москва. 2006. С. 814.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Magnetic hysteresis loops when the magnetic field is oriented along the axis of a sample of different shapes: 1 — tape; 2 — wire; 3 — microwire.

Download (13KB)
3. Fig. 2. Magnetoimpedance dependences for samples of different shapes: a) wire; b) microwire; c) tape. Alternating current frequency 0.5 (1); 1.0 (2); 2.0 (3); 4.0 MHz (4). Negative values ​​of H correspond to the direction of the magnetic field opposite to the initial one.

Download (63KB)
4. Fig. 3. Magnetic hysteresis loop for a microwire of Fe77.5Si12.5B10 composition in a glass shell with d = 12 μm, D/d = 1.75, length L = 1.5 cm.

Download (11KB)
5. Fig. 4. Dependence of the coercive force of Fe77.5Si12.5B10 microwires 1.5 cm long on the ratio of the diameters of the wire in the glass shell and its metal core D/d.

Download (9KB)
6. Fig. 5. Dependence of the coercive force of Fe77.5Si12.5B10 microwires 1.5 cm long on the ratio of the diameters of the wire in the glass shell and its metal core at a fixed thickness of the metal core d ~11 μm.

Download (10KB)
7. Fig. 6. Dependence of the coercive force of Fe77.5Si12.5B10 microwires 1.5 cm long on the thickness of the metal core.

Download (9KB)

Copyright (c) 2024 Russian Academy of Sciences