Activation of the polylactic acid surface by the glow discharge low-temperature plasma in Ar/air gas mixture flows with the addition of diethylamine vapor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The surface physicochemical properties of the polylactic acid modified by flows of low-temperature glow discharge plasma were studied. A mixture of argon and air acted as the plasma-forming gas; diethylamine vapor was injected into the plasma as a precursor of amino groups. The elemental composition and chemical state of the surface were studied using X-ray photoelectron spectroscopy. The attachment of nitrogen atoms to the polylactic acid surface and the formation of a bond between the surface carbon and the penetrated nitrogen have been established. It was shown that the hydrophilicity of the plasma modified polylactic acid surface was significantly increased. The obtained polylactic acid-based materials with the argon/air/diethylamine plasma modified surface may have prospects for use in biomedicine due to improved hydrophilicity and the presence of reactive oxygen- and nitrogen-containing functional groups on the surface.

Full Text

Restricted Access

About the authors

А. G. Korzhova

National Research Tomsk State University

Author for correspondence.
Email: olesyalaput@gmail.com
Russian Federation, Tomsk

А. А. Bryuzgina

National Research Tomsk State University

Email: olesyalaput@gmail.com
Russian Federation, Tomsk

U. V. Khomutova

National Research Tomsk State University

Email: olesyalaput@gmail.com
Russian Federation, Tomsk

О. А. Laput

National Research Tomsk State University

Email: olesyalaput@gmail.com
Russian Federation, Tomsk

I. V. Vasenina

P.N. Lebedev Physical Institute

Email: olesyalaput@gmail.com
Russian Federation, Moscow

D. А. Zuza

Institute of High Current Electronics

Email: olesyalaput@gmail.com
Russian Federation, Tomsk

S. G. Tuyakova

National Research Tomsk State University

Email: olesyalaput@gmail.com
Russian Federation, Tomsk

I. А. Kurzina

National Research Tomsk State University

Email: olesyalaput@gmail.com
Russian Federation, Tomsk

References

  1. Chen Y., Geever L.M., Killion J.A., Lyons J.G., Higginbotham C.L., Devine D.M. // Polym. Plast. Technol. Eng. 2016. V. 55. № 10. P. 1057. https://www.doi.org/10.1080/03602559.2015.1132465
  2. Hamad K., Kaseem M., Yang H.W., Deri F., Ko Y.G. // Express Polym. Lett. 2015. V. 9. № 5. P. 435. https://www.doi.org/10.3144/expresspolymlett.2015.42
  3. Bernardo M.P., da Silva B.C.R., Hamouda A.E.I., de Toledo M.A.S., Schalla C., Rütten S., Goetzke R., Mattoso L.H.C., Zenke M., Sechi A. // Sci. Rep. 2022. V. 12. https://www.doi.org/10.1038/s41598-022-05207-w
  4. Sivagnanamani G.S., Rashia B.S., Vasumathi M. // Polym. Compos. 2022. V. 43. № 1. P. 173. https://www.doi.org/10.1002/pc.26365
  5. Pellis A., Silvestrini L., Scaini D., Coburn J.M., Gardossi L., Kaplan D.L., Herrero Acero E., Guebitz G.M. // Process Biochem. 2017. V. 59. P. 77. https://www.doi.org/10.1016/j.procbio.2016.10.014
  6. Salahuddin N., Abdelwahab M., Gaber M., Elneanaey S. // Mater. Sci. Eng. C. 2022. V. 108. https://www.doi.org/https://www.doi.org/10.1016/j.msec.2019.110337
  7. Gugutkov D., Gustavsson J., Cantini M., Salmeron-Sánchez M., Altankov G. // J. Tissue Eng. Regen. Med. 2017. V. 11. № 10. P. 2774. https://www.doi.org/https://www.doi.org/10.1002/term.2172
  8. Romanova O.A., Tenchurin T.H., Demina T.S., Sytina E.V., Shepelev A.D., Rudyak S.G., Klein O.I., Krasheninnikov S.V., Safronova E.I., Kamyshinsky R.A. // Cell Prolif. 2019. V. 52. https://www.doi.org/10.1111/cpr.12598
  9. Baptista R., Guedes M. // Mater. Sci. Eng. 2021. V. 118. P. 111528. https://www.doi.org/10.1016/j.msec.2020.111528
  10. Farah S., Anderson D.G., Langer R. // Adv. Drug Deliv. Rev. 2016. V. 107. P. 367. https://www.doi.org/10.1016/j.addr.2016.06.012
  11. Abd Alsace R.A., Aladdin A., Othman N., Malek R.A., Leng O., Aziz R., El Enchase H. // J. Chem. Pharm. Res. 2015. P. 51.
  12. Asadollahi M., Gerashi E., Zohrevand M., Zarei M., Shahab Sayedain S., Alizadeh R., Labbaf S., Atari M. // Bioprinting. 2022. V. 27. https://www.doi.org/10.1016/j.bprint.2022.e00228
  13. Li Z., Jiao D., Zhang W., Ren K., Qiu L., Tian C., Li Y., Li J., Zhou X., Zhao Y., Han X. // Colloids Surf. B. 2021. V. 206. https://www.doi.org/10.1016/j.colsurfb.2021.111949
  14. Szczepanska P., Szymanowski H., Suwalska M., Rosinska K., Skrodzki M., Uznanski P., Bociaga D., Bubko I., Drozd E., Gruber-Bzura B., Deszczynski J.M., Sobczyk-Guzenda A. // Ceram. Int. 2023. V. 49. № 5. P. 7692. https://www.doi.org/10.1016/j.ceramint.2022.10.263
  15. Benatti A.C.B., Pattaro A.F., Rodrigues A.A., Xavier M.V., Kaasi A., Barbosa M.I.R., Jardini A.L., Filho R.M., Kharmandayan P. // Mater. Biomed. Engineer. 2019. P. 83. https://www.doi.org/10.1016/B978-0-12-816901-8.00004-3
  16. Perinelli D.R., Cespi M., Bonacucina G., Palmieri, G.F. // J. Pharm. Investig. 2019. V. 49. P. 443. https://www.doi.org/10.1007/s40005-019-00442-2
  17. Chen J., Yu M., Guo B., Ma P. X., Yin Z. // J. Colloid Interface Sci. 2018. V. 51. P. 517. https://www.doi.org/10.1016/j.jcis.2017.12.062
  18. Thomas M.S., Pillai P.K.S., Faria M., Cordeiro N., Barud H., Thomas S., Pothen L.A. // J. Mater. Sci. Mater. Med. 2018. V. 29. № 9. P. 137. https://www.doi.org/10.1007/s10856-018-6146-1
  19. Alisir S.H., Ozdemir N., Burgaz E., Dege N., Canavar, Y.E. // Fibers Polym. 2021. V. 22. № 10. P. 2738. https://www.doi.org/10.1007/s12221-021-0166-z
  20. Scaffaro R., Lopresti F., Marino A., Nostro, A. // Appl. Microbiol. Biotechnol. 2018. V. 102. P. 7739–7756. https://www.doi.org/10.1007/s00253-018-9220-1.
  21. Gleissner C., Landsiedel J., Bechtold T., Pham T. // Polymer Rev. 2022. V. 62. № 4. P. 757. https://www.doi.org/10.1080/15583724.2022.2025601
  22. Michael F.M., Khalid M., Walvekar R., Siddiqui H., Balaji A.B. Surface modification techniques of biodegradable and biocompatible polymers // Biodegradable and Biocompatible Polymer Composites: Processing, Properties and Applications. / Ed. Navinchandra G.S. Elsevier, 2018. P. 33. https://doi.org/10.1016/B978-0-08-100970-3.00002-X
  23. Nageswaran G., Jothi L., Jagannathan S. // Non-thermal plasma technology for polymeric materials. 2019. P. 95. https://www.doi.org/10.1016/b978-0-12-813152-7.00004-4
  24. Cools P., De Geyter N., Morent R. PLA enhanced via plasma technology: a review // New Developments in Polylactic Acid Research. / Ed. Winthrop C. Nova Science Publishers, Inc. 2015. P. 79.
  25. Izdebska-Podsiadły J. // Coatings. 2023. V. 13. P. 279. https://www.doi.org/10.3390/coatings13020279
  26. Izdebska-Podsiadły J., Dörsam E. // Bull. Mater. Sci. 2021. V. 44. P. 79. https://www.doi.org/10.1007/s12034-021-02355-z
  27. Yang Y.W., Wu J.Y., Liu C.T., Liao G.C., Huang H.Y., Hsu R.Q., Chiang M.H., Wu J.S. // J. Biomed. Mater. Res. A. 2014. V. 102. № 1. P. 160. https://www.doi.org/10.1002/jbm.a.34681
  28. Sarapirom S., Yu L.D., Boonyawan D., Chaiwong C. // Appl. Surf. Sci. 2014. V. 310. P. 42.
  29. De Geyter N., Morent R., Desmet T., Trentesaux M., Gengembre L., Dubruel P. // Surf. Coat. Technol. 2010. V. 204. № 20. https://www.doi.org/10.1016/j.surfcoat.2010.03.037
  30. Egghe T., Van Guyse J. F., Ghobeira R., Morent R., Hoogenboom R., De Geyter N. // Polymer Degradation and Stability. 2021. V. 187. https://www.doi.org/10.1016/j.polymdegradstab. 2021.109543
  31. Wigwag R., Finke B., Rebel H., Mischler N., Quasar M., Schaefer J., Schnabelrauch M. // Adv. Eng. Mater. 2011. V. 13. № 5. P. 165. https://www.doi.org/10.1002/adem.201080116
  32. Cheng K.Y., Chang, C.H., Yang Y.W., Liao G.C., Liu C.T., Wu J.S. // Appl. Surf. Sci. 2017. V. 394. P. 534. https://www.doi.org/10.1016/j.apsusc.2016.10.093
  33. Laput O.A., Vasenina I.V., Korzhova A.G., Bryuzgina A.A., Khomutova U.V., Tuyakova S.G., Akhmadeev Y.H., Shugurov V.V., Bolbasov E.N., Tverdokhlebov S.I., Chernyavskii A.V., Kurzina I.A. // Polymers. 2023. V. 15. № 16. P. 3381. https://www.doi.org/10.3390/polym15163381
  34. Zuza D.A., Nekhoroshev V.O., Batrakov A.V., Markov A.B., Kurzina I.A. // Vacuum. 2023. V. 207. https://www.doi.org/https://www.doi.org/10.1016/j.vacuum.2022.111690.
  35. Zuza D.A., Nekhoroshev V.O., Batrakov A.V., Markov A.B., Chernyavskii A.V., Kurzina I.A. // Vacuum. 2023. V. 221. https://www.doi.org/10.1016/j.vacuum.2023.112858
  36. CasaXPS: Processing Software for XPS, AES, SIMS and More. (2022) Casa Software Ltd. http://www.casaxps.com/
  37. KRÜSS Software. (2022) KRÜSS Scientific Instruments, Inc., Matthews, NC, USA. https://www. kruss-scientific.com
  38. Owens D., Wendt R. // J. Appl. Polym. Sci. 1969. V. 13. P. 1741. https://doi.org/10.1002/app.1969.070130815
  39. Beamson G., Briggs D. High Resolution XPS of Organic Polymers. Chichester: Wiley, 1992. 295 p.
  40. Greczynski G., Hultman L. // J. Appl. Phys. 2022. V. 132. № 1. https://www.doi.org/10.1063/5.0086359
  41. Jordá-Vilaplana A., Fombuena V., García-García D., Samper M.D., Sánchez-Nácher L. // Eur. Polym. J. 2014. V. 58. P. 23. https://www.doi.org/10.1016/j.eurpolymj.2014.06.002
  42. Jacobs T., Declercq H., de Geyter N., Cornelissen R., Dubruel P., Leys Ch., Beaurain A., Payen E., Morent R. // J. Mater. Sci. Mater. Med. 2013. V. 24. P. 469–478. https://www.doi.org/10.1007/s10856-012-4807-z
  43. Czwartos J., Budner B., Bartnik A. // Express Polym. Lett. 2020. V. 14. P. 1063. https://www.doi.org/10.3144/expresspolymlett.2020.86
  44. Laput O.A., Vasenina I.V., Botvin V.V., Kurzina I.A // J. Mater. Sci. 2022. P. 1. https://www.doi.org/10.1007/s10853-021-06687-3
  45. Yastremsky E.V., Patsaev T.D., Mikhutkin A.A., Sharikov R.V., Kamyshinsky R.A., Lukanina K.I., Vasiliev A.L. // Cryst. Rep. 2022. V. 67. № 3. P. 421. https://www.doi.org/10.1134/S1063774522030233
  46. Demina T.S., Piskarev M.S., Birdibekova A.V., Veryasova N.N., Shpichka A.I., Kosheleva N.V., Timashev P.S. // Polymers. 2022. V 14. № 22. https://www.doi.org/10.3390/polym14224886
  47. NIST X-ray Photoelectron Spectroscopy Database (2000) NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD. https://www.doi.org/10.18434/T4T88K
  48. Jiang T., Carbone E.J., Lo K.W.-H., Laurencin C.T. // Prog. Polym. Sci. 2015. V. 46. P. 1. https://www.doi.org/10.1016/j.progpolymsci.2014.12.001
  49. Hasan A., Memic A., Annabi N., Hossain M., Paul A., Dokmeci M.R., Khademhosseini A. // Acta Biomater. 2014. V. 10. № 1. P. 11. https://www.doi.org/10.1016/j.actbio.2013.08.022
  50. Сумм Б.Д. Физико-химические основы смачивания и растекания. М.: Химия, 1976.232 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Survey spectra of the polylactide surface before (1) and after modification with Ar/air (2) and Ar/air/DEA (3) plasma.

Download (14KB)
3. Fig. 2. Regions of high-resolution C1s photoelectron spectra for PLA samples before (a) and after modification with Ar/air (b) and Ar/air/DEA (c) plasma.

Download (64KB)
4. Fig. 3. Regions of high-resolution photoelectron spectra of N1s for samples after plasma modification Ar/air (1) and Ar/air/DEA (2).

Download (18KB)
5. Fig. 4. SEM images of the sample surface and diagrams of the distribution of fiber diameters (in the insets) of PL (a) and PL modified with Ar/air plasma (b) and Ar/air/DEA (c).

Download (87KB)

Copyright (c) 2024 Russian Academy of Sciences