Activation of the polylactic acid surface by the glow discharge low-temperature plasma in Ar/air gas mixture flows with the addition of diethylamine vapor
- Authors: Korzhova А.G.1, Bryuzgina А.А.1, Khomutova U.V.1, Laput О.А.1, Vasenina I.V.2, Zuza D.А.3, Tuyakova S.G.1, Kurzina I.А.1
-
Affiliations:
- National Research Tomsk State University
- P.N. Lebedev Physical Institute
- Institute of High Current Electronics
- Issue: No 12 (2024)
- Pages: 53-63
- Section: Articles
- URL: https://rjsvd.com/1028-0960/article/view/685355
- DOI: https://doi.org/10.31857/S1028096024120064
- EDN: https://elibrary.ru/QXBJJY
- ID: 685355
Cite item
Abstract
The surface physicochemical properties of the polylactic acid modified by flows of low-temperature glow discharge plasma were studied. A mixture of argon and air acted as the plasma-forming gas; diethylamine vapor was injected into the plasma as a precursor of amino groups. The elemental composition and chemical state of the surface were studied using X-ray photoelectron spectroscopy. The attachment of nitrogen atoms to the polylactic acid surface and the formation of a bond between the surface carbon and the penetrated nitrogen have been established. It was shown that the hydrophilicity of the plasma modified polylactic acid surface was significantly increased. The obtained polylactic acid-based materials with the argon/air/diethylamine plasma modified surface may have prospects for use in biomedicine due to improved hydrophilicity and the presence of reactive oxygen- and nitrogen-containing functional groups on the surface.
Full Text

About the authors
А. G. Korzhova
National Research Tomsk State University
Author for correspondence.
Email: olesyalaput@gmail.com
Russian Federation, Tomsk
А. А. Bryuzgina
National Research Tomsk State University
Email: olesyalaput@gmail.com
Russian Federation, Tomsk
U. V. Khomutova
National Research Tomsk State University
Email: olesyalaput@gmail.com
Russian Federation, Tomsk
О. А. Laput
National Research Tomsk State University
Email: olesyalaput@gmail.com
Russian Federation, Tomsk
I. V. Vasenina
P.N. Lebedev Physical Institute
Email: olesyalaput@gmail.com
Russian Federation, Moscow
D. А. Zuza
Institute of High Current Electronics
Email: olesyalaput@gmail.com
Russian Federation, Tomsk
S. G. Tuyakova
National Research Tomsk State University
Email: olesyalaput@gmail.com
Russian Federation, Tomsk
I. А. Kurzina
National Research Tomsk State University
Email: olesyalaput@gmail.com
Russian Federation, Tomsk
References
- Chen Y., Geever L.M., Killion J.A., Lyons J.G., Higginbotham C.L., Devine D.M. // Polym. Plast. Technol. Eng. 2016. V. 55. № 10. P. 1057. https://www.doi.org/10.1080/03602559.2015.1132465
- Hamad K., Kaseem M., Yang H.W., Deri F., Ko Y.G. // Express Polym. Lett. 2015. V. 9. № 5. P. 435. https://www.doi.org/10.3144/expresspolymlett.2015.42
- Bernardo M.P., da Silva B.C.R., Hamouda A.E.I., de Toledo M.A.S., Schalla C., Rütten S., Goetzke R., Mattoso L.H.C., Zenke M., Sechi A. // Sci. Rep. 2022. V. 12. https://www.doi.org/10.1038/s41598-022-05207-w
- Sivagnanamani G.S., Rashia B.S., Vasumathi M. // Polym. Compos. 2022. V. 43. № 1. P. 173. https://www.doi.org/10.1002/pc.26365
- Pellis A., Silvestrini L., Scaini D., Coburn J.M., Gardossi L., Kaplan D.L., Herrero Acero E., Guebitz G.M. // Process Biochem. 2017. V. 59. P. 77. https://www.doi.org/10.1016/j.procbio.2016.10.014
- Salahuddin N., Abdelwahab M., Gaber M., Elneanaey S. // Mater. Sci. Eng. C. 2022. V. 108. https://www.doi.org/https://www.doi.org/10.1016/j.msec.2019.110337
- Gugutkov D., Gustavsson J., Cantini M., Salmeron-Sánchez M., Altankov G. // J. Tissue Eng. Regen. Med. 2017. V. 11. № 10. P. 2774. https://www.doi.org/https://www.doi.org/10.1002/term.2172
- Romanova O.A., Tenchurin T.H., Demina T.S., Sytina E.V., Shepelev A.D., Rudyak S.G., Klein O.I., Krasheninnikov S.V., Safronova E.I., Kamyshinsky R.A. // Cell Prolif. 2019. V. 52. https://www.doi.org/10.1111/cpr.12598
- Baptista R., Guedes M. // Mater. Sci. Eng. 2021. V. 118. P. 111528. https://www.doi.org/10.1016/j.msec.2020.111528
- Farah S., Anderson D.G., Langer R. // Adv. Drug Deliv. Rev. 2016. V. 107. P. 367. https://www.doi.org/10.1016/j.addr.2016.06.012
- Abd Alsace R.A., Aladdin A., Othman N., Malek R.A., Leng O., Aziz R., El Enchase H. // J. Chem. Pharm. Res. 2015. P. 51.
- Asadollahi M., Gerashi E., Zohrevand M., Zarei M., Shahab Sayedain S., Alizadeh R., Labbaf S., Atari M. // Bioprinting. 2022. V. 27. https://www.doi.org/10.1016/j.bprint.2022.e00228
- Li Z., Jiao D., Zhang W., Ren K., Qiu L., Tian C., Li Y., Li J., Zhou X., Zhao Y., Han X. // Colloids Surf. B. 2021. V. 206. https://www.doi.org/10.1016/j.colsurfb.2021.111949
- Szczepanska P., Szymanowski H., Suwalska M., Rosinska K., Skrodzki M., Uznanski P., Bociaga D., Bubko I., Drozd E., Gruber-Bzura B., Deszczynski J.M., Sobczyk-Guzenda A. // Ceram. Int. 2023. V. 49. № 5. P. 7692. https://www.doi.org/10.1016/j.ceramint.2022.10.263
- Benatti A.C.B., Pattaro A.F., Rodrigues A.A., Xavier M.V., Kaasi A., Barbosa M.I.R., Jardini A.L., Filho R.M., Kharmandayan P. // Mater. Biomed. Engineer. 2019. P. 83. https://www.doi.org/10.1016/B978-0-12-816901-8.00004-3
- Perinelli D.R., Cespi M., Bonacucina G., Palmieri, G.F. // J. Pharm. Investig. 2019. V. 49. P. 443. https://www.doi.org/10.1007/s40005-019-00442-2
- Chen J., Yu M., Guo B., Ma P. X., Yin Z. // J. Colloid Interface Sci. 2018. V. 51. P. 517. https://www.doi.org/10.1016/j.jcis.2017.12.062
- Thomas M.S., Pillai P.K.S., Faria M., Cordeiro N., Barud H., Thomas S., Pothen L.A. // J. Mater. Sci. Mater. Med. 2018. V. 29. № 9. P. 137. https://www.doi.org/10.1007/s10856-018-6146-1
- Alisir S.H., Ozdemir N., Burgaz E., Dege N., Canavar, Y.E. // Fibers Polym. 2021. V. 22. № 10. P. 2738. https://www.doi.org/10.1007/s12221-021-0166-z
- Scaffaro R., Lopresti F., Marino A., Nostro, A. // Appl. Microbiol. Biotechnol. 2018. V. 102. P. 7739–7756. https://www.doi.org/10.1007/s00253-018-9220-1.
- Gleissner C., Landsiedel J., Bechtold T., Pham T. // Polymer Rev. 2022. V. 62. № 4. P. 757. https://www.doi.org/10.1080/15583724.2022.2025601
- Michael F.M., Khalid M., Walvekar R., Siddiqui H., Balaji A.B. Surface modification techniques of biodegradable and biocompatible polymers // Biodegradable and Biocompatible Polymer Composites: Processing, Properties and Applications. / Ed. Navinchandra G.S. Elsevier, 2018. P. 33. https://doi.org/10.1016/B978-0-08-100970-3.00002-X
- Nageswaran G., Jothi L., Jagannathan S. // Non-thermal plasma technology for polymeric materials. 2019. P. 95. https://www.doi.org/10.1016/b978-0-12-813152-7.00004-4
- Cools P., De Geyter N., Morent R. PLA enhanced via plasma technology: a review // New Developments in Polylactic Acid Research. / Ed. Winthrop C. Nova Science Publishers, Inc. 2015. P. 79.
- Izdebska-Podsiadły J. // Coatings. 2023. V. 13. P. 279. https://www.doi.org/10.3390/coatings13020279
- Izdebska-Podsiadły J., Dörsam E. // Bull. Mater. Sci. 2021. V. 44. P. 79. https://www.doi.org/10.1007/s12034-021-02355-z
- Yang Y.W., Wu J.Y., Liu C.T., Liao G.C., Huang H.Y., Hsu R.Q., Chiang M.H., Wu J.S. // J. Biomed. Mater. Res. A. 2014. V. 102. № 1. P. 160. https://www.doi.org/10.1002/jbm.a.34681
- Sarapirom S., Yu L.D., Boonyawan D., Chaiwong C. // Appl. Surf. Sci. 2014. V. 310. P. 42.
- De Geyter N., Morent R., Desmet T., Trentesaux M., Gengembre L., Dubruel P. // Surf. Coat. Technol. 2010. V. 204. № 20. https://www.doi.org/10.1016/j.surfcoat.2010.03.037
- Egghe T., Van Guyse J. F., Ghobeira R., Morent R., Hoogenboom R., De Geyter N. // Polymer Degradation and Stability. 2021. V. 187. https://www.doi.org/10.1016/j.polymdegradstab. 2021.109543
- Wigwag R., Finke B., Rebel H., Mischler N., Quasar M., Schaefer J., Schnabelrauch M. // Adv. Eng. Mater. 2011. V. 13. № 5. P. 165. https://www.doi.org/10.1002/adem.201080116
- Cheng K.Y., Chang, C.H., Yang Y.W., Liao G.C., Liu C.T., Wu J.S. // Appl. Surf. Sci. 2017. V. 394. P. 534. https://www.doi.org/10.1016/j.apsusc.2016.10.093
- Laput O.A., Vasenina I.V., Korzhova A.G., Bryuzgina A.A., Khomutova U.V., Tuyakova S.G., Akhmadeev Y.H., Shugurov V.V., Bolbasov E.N., Tverdokhlebov S.I., Chernyavskii A.V., Kurzina I.A. // Polymers. 2023. V. 15. № 16. P. 3381. https://www.doi.org/10.3390/polym15163381
- Zuza D.A., Nekhoroshev V.O., Batrakov A.V., Markov A.B., Kurzina I.A. // Vacuum. 2023. V. 207. https://www.doi.org/https://www.doi.org/10.1016/j.vacuum.2022.111690.
- Zuza D.A., Nekhoroshev V.O., Batrakov A.V., Markov A.B., Chernyavskii A.V., Kurzina I.A. // Vacuum. 2023. V. 221. https://www.doi.org/10.1016/j.vacuum.2023.112858
- CasaXPS: Processing Software for XPS, AES, SIMS and More. (2022) Casa Software Ltd. http://www.casaxps.com/
- KRÜSS Software. (2022) KRÜSS Scientific Instruments, Inc., Matthews, NC, USA. https://www. kruss-scientific.com
- Owens D., Wendt R. // J. Appl. Polym. Sci. 1969. V. 13. P. 1741. https://doi.org/10.1002/app.1969.070130815
- Beamson G., Briggs D. High Resolution XPS of Organic Polymers. Chichester: Wiley, 1992. 295 p.
- Greczynski G., Hultman L. // J. Appl. Phys. 2022. V. 132. № 1. https://www.doi.org/10.1063/5.0086359
- Jordá-Vilaplana A., Fombuena V., García-García D., Samper M.D., Sánchez-Nácher L. // Eur. Polym. J. 2014. V. 58. P. 23. https://www.doi.org/10.1016/j.eurpolymj.2014.06.002
- Jacobs T., Declercq H., de Geyter N., Cornelissen R., Dubruel P., Leys Ch., Beaurain A., Payen E., Morent R. // J. Mater. Sci. Mater. Med. 2013. V. 24. P. 469–478. https://www.doi.org/10.1007/s10856-012-4807-z
- Czwartos J., Budner B., Bartnik A. // Express Polym. Lett. 2020. V. 14. P. 1063. https://www.doi.org/10.3144/expresspolymlett.2020.86
- Laput O.A., Vasenina I.V., Botvin V.V., Kurzina I.A // J. Mater. Sci. 2022. P. 1. https://www.doi.org/10.1007/s10853-021-06687-3
- Yastremsky E.V., Patsaev T.D., Mikhutkin A.A., Sharikov R.V., Kamyshinsky R.A., Lukanina K.I., Vasiliev A.L. // Cryst. Rep. 2022. V. 67. № 3. P. 421. https://www.doi.org/10.1134/S1063774522030233
- Demina T.S., Piskarev M.S., Birdibekova A.V., Veryasova N.N., Shpichka A.I., Kosheleva N.V., Timashev P.S. // Polymers. 2022. V 14. № 22. https://www.doi.org/10.3390/polym14224886
- NIST X-ray Photoelectron Spectroscopy Database (2000) NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD. https://www.doi.org/10.18434/T4T88K
- Jiang T., Carbone E.J., Lo K.W.-H., Laurencin C.T. // Prog. Polym. Sci. 2015. V. 46. P. 1. https://www.doi.org/10.1016/j.progpolymsci.2014.12.001
- Hasan A., Memic A., Annabi N., Hossain M., Paul A., Dokmeci M.R., Khademhosseini A. // Acta Biomater. 2014. V. 10. № 1. P. 11. https://www.doi.org/10.1016/j.actbio.2013.08.022
- Сумм Б.Д. Физико-химические основы смачивания и растекания. М.: Химия, 1976.232 с.
Supplementary files
