Determination of the ratio of atoms and molecules in a tellurium beam using a mass spectrometer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is devoted to clarifying the ratio of atoms and molecules of tellurium vapor in interaction with various metal substrates (copper, nickel, atoms (Te) and molecules (Te2) present in the tellurium vapor phase, in mass spectrometric measurements correspond to ion currents of monomers J(Te+) and dimers — J(Te2+). The work was performed on a molecular beam epitaxy unit with desorption flow control by mass spectrometry and surface condition by fast electron diffraction. A molecular tellurium beam was obtained using a Knudsen type source. In this work, it is shown that the proportion of monomers in the total desorption beam significantly depends on the temperature of the substrate. This dependence corresponds to the dissociation energy of Te2 molecules of the order of 1.18 eV. At high temperatures (900 K), the proportion of Te monomers can reach 85%, and at low temperatures (650 K) — 8%. This circumstance should be taken into account when the composition of the vapor phase from the beam source can affect the processes under study. In particular, in mass spectrometric studies of the interaction of the vapor phase with the surface of a solid, for example, in the process of molecular beam epitaxy of CdTe.

Full Text

Restricted Access

About the authors

V. I. Mikhailov

NRC “Kurchatov institute”

Author for correspondence.
Email: vmikh1944@yandex.ru
Russian Federation, Moscow, 123098

L. E. Polyak

NRC “Kurchatov institute”

Email: vmikh1944@yandex.ru
Russian Federation, Moscow, 123098

References

  1. Zhang Y.-H., Smith D.J. // J. Vac. Sci. Technol. A. 2021. V. 39. P. 030803. https://www.doi.org/10.1116/6.0000802
  2. Arthur J.R. // Surf. Sci. 2002. V.500. P. 189. https://www.doi.org/10.1016/S0039-6028(01)01525-4
  3. Herman M.A., Sitter H. Molecular Beam Epitaxy. Springer-Verlag, 1989. 453 p.
  4. Эсаки Л., Джойс Б.А., Хекингботтом Р., Менх У., Чо А.И., Ченг Л., Плог К. Молекулярно-лучевая эпитаксия и гетероструктуры. Пер. с англ. / Ред. Алферов Ж.И., Шмарцев Ю.В. М.: Мир, 1989. 582 с. ISBN 5-03-000737-7
  5. Kumagai Y., Imada S., Baba T., Kobayashi M. // J. Cryst. Growth. 2011. V. 323. P. 132.
  6. Zhu X., Wu J., Hu Q., Hao X., Li W., Liu C., Su R. // J. Vac. Sci. Technol. A. 2021. V. 39. P. 063410. https://doi.org/10.1116/6.0001257
  7. Кожемякин Г.Н., Белов Ю.С., Артемов В.В., Труфанова М.К., Волчков И.С. // Кристаллография. 2022. Т. 67. № 3. С. 473. https://doi.org/10.31857/S0023476122030122
  8. Kornienko V., Oklobia O., Irvine S., Jones S., Munshi A., Sampath W., Abbas A., Curson K., Robertson S., Tse Y.Y., Barth K., Bowers J., Walls M. // Thin Solid Films. 2024. V. 793. P. 140277.
  9. Talwar D.N., Lu N., Ferguson I.T., Feng Zh.Ch. // J. Vac. Sci. Technol. A. 2021. V. 39. P. 063401. https://doi.org/10.1116/6.0001145
  10. Herman M.A., Kozhukhov A.V., Sadowski J.T. // J. Cryst. Growth. 1997. V. 174. P. 768.
  11. Несмеянов А.Н. Давление пара химических элементов. М.: Наука, 1961. 396 с.
  12. Гельман Ю.А., Сенько А.Ф., Виноградов В.Ф. // Приборы и техника эксперимента. 1994. № 4. С. 181.
  13. Neubert A. // High Temperature Science. 1978. V. 10. P. 261.
  14. Иванов Ю.М., Ванюков А.В. Халькогениды цинка, кадмия и ртути. М.: Металлургия, 1973. 168 c.
  15. Alikhanian A.S., Guskov V.N., Natarovsky A.M., Greenberg J.H., Fiederle M., Benz K.W. // J. Cryst. Growth. 2002. V. 240. P. 73.
  16. Рик Г.Р. Масс-спектроскопия. М.: Гос. Изд. Техн.теор. литературы, 1953. 296 c.
  17. Барнард Дж. Современная масс-спектрометрия. Москва: ИЛ, 1957. 416 c.
  18. Гельман Ю.А., Дымшиц Ю.М., Самохвалов Ю.Ф., Сенько А.Ф., Виноградов В.Ф., Лифшиц И.Е., Станишевский Э.Я., Чернов А.А. // Приборы и техника эксперимента. 1994. № 5. C. 181.
  19. Михайлов В.И., Поляк Л.Е // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 7. С. 43. https://doi/org/1031857/S102809602107013X
  20. El Sayed S.A. // The Open Thermodynamics Journal. 2013. V. 7. P. 88. https://doi.org/10.2174/1874396X01307010088
  21. Viswanathan R., Sai Baba M., Darwin D., Raj A., Balasubramanian R., Narasimhan T.S.L., Mathews C.K. // Spectrochimica Acta. B. 1994. V. 49. P. 243.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Example of experimental data (ordinate axis on the left, dots): change in ion currents J(Te+) (a) and J(Te2+) (b) and change in substrate temperature T (c) depending on time. The ordinate axis on the right (solid lines) shows the position of the shutters of the incident beam Te (MV) and the mass spectrometer (MS).

Download (65KB)
3. Fig. 2. Primary processing data for Ni and Cu substrates: average values ​​of ion currents J(Te+) (a) and J(Te2+) (b) depending on sample temperature T.

Download (24KB)
4. Fig. 3. Equivalent of the equilibrium constant of the reaction Те2 = Те + Те: experimental values ​​of the ion current function Fkr (dots) and the approximating curve Fapr (solid).

Download (9KB)

Copyright (c) 2024 Russian Academy of Sciences