Molecular Mechanisms and Therapeutic Potential of Resolvins in Cancer - Current Status and Perspectives
- Authors: Tajbakhsh A.1, Yousefi F.2, Farahani N.3, Savardashtaki A.1, Reiner .4, Jamialahmadi T.5, Sahebkar A.5
-
Affiliations:
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences
- Department of Biological Sciences, Tarbiat Modares University
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine, University of Zagreb
- Applied Biomedical Research Center, Mashhad University of Medical Sciences
- Issue: Vol 31, No 36 (2024)
- Pages: 5898-5917
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjsvd.com/0929-8673/article/view/645248
- DOI: https://doi.org/10.2174/0929867331666230727100123
- ID: 645248
Cite item
Full Text
Abstract
:Resolvins are specialized pro-resolving mediators derived from omega-3 fatty acids that can suppress several cancer-related molecular pathways, including important activation of transcription parameters in the tumor cells and their microenvironment, inflammatory cell infiltration, cytokines as well as chemokines. Recently, an association between resolvins and an important anti-inflammatory process in apoptotic tumor cell clearance (efferocytosis) was shown. The inflammation status or the oncogene activation increases the risk of cancer development via triggering the transcriptional agents, including nuclear factor kappa-light-chain-enhancer of activated B cells by generating the pro-inflammatory lipid molecules and infiltrating the tumor cells along with the high level of pro-inflammatory signaling. These events can cause an inflammatory microenvironment. Resolvins might decrease the leukocyte influx into the inflamed tissues. It is widely accepted that resolvins prohibit the development of debris-triggered cancer via increasing the clearance of debris, especially by macrophage phagocytosis in tumors without any side effects. Resolvins D2, D1, and E1 might suppress tumor-growing inflammation by activation of macrophages clearance of cell debris in the tumor. Resolvin D5 can assist patients with pain during treatment. However, the effects of resolvins as anti-inflammatory mediators in cancers are not completely explained. Thus, based on the most recent studies, we tried to summarize the most recent knowledge on resolvins in cancers.
About the authors
Amir Tajbakhsh
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences
Email: info@benthamscience.net
Fatemeh Yousefi
Department of Biological Sciences, Tarbiat Modares University
Email: info@benthamscience.net
Najmeh Farahani
Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences
Email: info@benthamscience.net
Amir Savardashtaki
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences
Email: info@benthamscience.net
eljko Reiner
Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine, University of Zagreb
Email: info@benthamscience.net
Tannaz Jamialahmadi
Applied Biomedical Research Center, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Amirhossein Sahebkar
Applied Biomedical Research Center, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Jiang, L.; Poon, I.K.H. Methods for monitoring the progression of cell death, cell disassembly and cell clearance. Apoptosis, 2019, 24(3-4), 208-220. doi: 10.1007/s10495-018-01511-x PMID: 30684146
- Benish, M.; Ben-Eliyahu, S. Surgery as a double-edged sword: A clinically feasible approach to overcome the metastasis-promoting effects of surgery by blunting stress and prostaglandin responses. Cancers, 2010, 2(4), 1929-1951. doi: 10.3390/cancers2041929 PMID: 24281210
- Magge, R.S.; DeAngelis, L.M. The double-edged sword: Neurotoxicity of chemotherapy. Blood Rev., 2015, 29(2), 93-100. doi: 10.1016/j.blre.2014.09.012 PMID: 25445718
- Panigrahy, D.; Gartung, A.; Yang, J.; Yang, H.; Gilligan, M.M.; Sulciner, M.L.; Bhasin, S.S.; Bielenberg, D.R.; Chang, J.; Schmidt, B.A.; Piwowarski, J.; Fishbein, A.; Soler-Ferran, D.; Sparks, M.A.; Staffa, S.J.; Sukhatme, V.; Hammock, B.D.; Kieran, M.W.; Huang, S.; Bhasin, M.; Serhan, C.N.; Sukhatme, V.P. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J. Clin. Invest., 2019, 129(7), 2964-2979. doi: 10.1172/JCI127282 PMID: 31205032
- Krall, J.A.; Reinhardt, F.; Mercury, O.A.; Pattabiraman, D.R.; Brooks, M.W.; Dougan, M.; Lambert, A.W.; Bierie, B.; Ploegh, H.L.; Dougan, S.K.; Weinberg, R.A. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl. Med., 2018, 10(436), eaan3464. doi: 10.1126/scitranslmed.aan3464 PMID: 29643230
- de Boer, M.; van Deurzen, C.H.M.; van Dijck, J.A.A.M.; Borm, G.F.; van Diest, P.J.; Adang, E.M.M.; Nortier, J.W.R.; Rutgers, E.J.T.; Seynaeve, C.; Menke-Pluymers, M.B.E.; Bult, P.; Tjan-Heijnen, V.C.G. Micrometastases or isolated tumor cells and the outcome of breast cancer. N. Engl. J. Med., 2009, 361(7), 653-663. doi: 10.1056/NEJMoa0904832 PMID: 19675329
- Gilroy, D.W.; Lawrence, T.; Perretti, M.; Rossi, A.G. Inflammatory resolution: New opportunities for drug discovery. Nat. Rev. Drug Discov., 2004, 3(5), 401-416. doi: 10.1038/nrd1383 PMID: 15136788
- Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882. doi: 10.1016/j.cell.2010.02.029 PMID: 20303877
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444. doi: 10.1038/nature07205 PMID: 18650914
- Pisco, A.O.; Huang, S. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: What does not kill me strengthens me. Br. J. Cancer, 2015, 112(11), 1725-1732. doi: 10.1038/bjc.2015.146 PMID: 25965164
- Brock, A.; Huang, S. Precision oncology: Between vaguely right and precisely wrong. Cancer Res., 2017, 77(23), 6473-6479. doi: 10.1158/0008-5472.CAN-17-0448 PMID: 29162615
- Serhan, C.N. Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol., 2007, 25, 101-137. doi: 10.1146/annurev.immunol.25.022106.141647
- Serhan, C.N.; Brain, S.D.; Buckley, C.D.; Gilroy, D.W.; Haslett, C.; ONeill, L.A.J.; Perretti, M.; Rossi, A.G.; Wallace, J.L. Resolution of in flammation: State of the art, definitions and terms. FASEB J., 2007, 21(2), 325-332. doi: 10.1096/fj.06-7227rev PMID: 17267386
- Razi, S.; Yaghmoorian Khojini, J.; Kargarijam, F.; Panahi, S.; Tahershamsi, Z.; Tajbakhsh, A.; Gheibihayat, S.M. Macrophage efferocytosis in health and disease. Cell Biochem. Funct., 2023, 41(2), 152-165. doi: 10.1002/cbf.3780 PMID: 36794573
- Janakiram, N.B.; Mohammed, A.; Rao, C.V. Role of lipoxins, resolvins, and other bioactive lipids in colon and pancreatic cancer. Cancer Metastasis Rev., 2011, 30(3-4), 507-523. doi: 10.1007/s10555-011-9311-2 PMID: 22015691
- Sulciner, M.L.; Serhan, C.N.; Gilligan, M.M.; Mudge, D.K.; Chang, J.; Gartung, A.; Lehner, K.A.; Bielenberg, D.R.; Schmidt, B.; Dalli, J.; Greene, E.R.; Gus-Brautbar, Y.; Piwowarski, J.; Mammoto, T.; Zurakowski, D.; Perretti, M.; Sukhatme, V.P.; Kaipainen, A.; Kieran, M.W.; Huang, S.; Panigrahy, D. Resolvins suppress tumor growth and enhance cancer therapy. J. Exp. Med., 2018, 215(1), 115-140. doi: 10.1084/jem.20170681 PMID: 29191914
- Pirault, J.; Bäck, M. Lipoxin and resolvin receptors transducing the resolution of inflammation in cardiovascular disease. Front. Pharmacol., 2018, 9(1273), 1273. doi: 10.3389/fphar.2018.01273 PMID: 30487747
- Sun, Y.P.; Oh, S.F.; Uddin, J.; Yang, R.; Gotlinger, K.; Campbell, E.; Colgan, S.P.; Petasis, N.A.; Serhan, C.N. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J. Biol. Chem., 2007, 282(13), 9323-9334. doi: 10.1074/jbc.M609212200 PMID: 17244615
- Serhan, C.N.; Hong, S.; Gronert, K.; Colgan, S.P.; Devchand, P.R.; Mirick, G.; Moussignac, R.L. Resolvins. J. Exp. Med., 2002, 196(8), 1025-1037. doi: 10.1084/jem.20020760 PMID: 12391014
- Krishnamoorthy, S.; Recchiuti, A.; Chiang, N.; Yacoubian, S.; Lee, C.H.; Yang, R.; Petasis, N.A.; Serhan, C.N. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl. Acad. Sci. USA, 2010, 107(4), 1660-1665. doi: 10.1073/pnas.0907342107 PMID: 20080636
- Merched, A.J.; Ko, K.; Gotlinger, K.H.; Serhan, C.N.; Chan, L. Atherosclerosis: Evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J., 2008, 22(10), 3595-3606. doi: 10.1096/fj.08-112201 PMID: 18559988
- Tajbakhsh, A.; Rezaee, M.; Kovanen, P.T.; Sahebkar, A. A. Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Pharmacol. Ther., 188, 12-25.2018,
- Kobayashi, N.; Karisola, P.; Peña-Cruz, V.; Dorfman, D.M.; Jinushi, M.; Umetsu, S.E.; Butte, M.J.; Nagumo, H.; Chernova, I.; Zhu, B.; Sharpe, A.H.; Ito, S.; Dranoff, G.; Kaplan, G.G.; Casasnovas, J.M.; Umetsu, D.T.; DeKruyff, R.H.; Freeman, G.J. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity, 2007, 27(6), 927-940. doi: 10.1016/j.immuni.2007.11.011 PMID: 18082433
- Krishnamoorthy, N.; Abdulnour, R.E.E.; Walker, K.H.; Engstrom, B.D.; Levy, B.D. Specialized proresolving mediators in innate and adaptive immune responses in airway diseases. Physiol. Rev., 2018, 98(3), 1335-1370. doi: 10.1152/physrev.00026.2017 PMID: 29717929
- Lund, T.; Mangsbo, S.M.; Scholz, H.; Gjorstrup, P.; Tötterman, T.H.; Korsgren, O.; Foss, A. Resolvin E1 reduces proinflammatory markers in human pancreatic islets in vitro. Exp. Clin. Endocrinol. Diabetes, 2010, 118(4), 237-244. doi: 10.1055/s-0029-1241825 PMID: 20119897
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis, 2009, 30(7), 1073-1081. doi: 10.1093/carcin/bgp127 PMID: 19468060
- Liu, X.; Yin, L.; Shen, S.; Hou, Y. Inflammation and cancer: Paradoxical roles in tumorigenesis and implications in immunotherapies. Genes Dis., 2023, 10(1), 151-164. doi: 10.1016/j.gendis.2021.09.006 PMID: 37013041
- Malekghasemi, S.; Majidi, J.; Baghbanzadeh, A.; Abdolalizadeh, J.; Baradaran, B.; Aghebati-Maleki, L. Tumor-associated macrophages: Protumoral macrophages in inflammatory tumor microenvironment. Adv. Pharm. Bull., 2020, 10(4), 556-565. doi: 10.34172/apb.2020.066 PMID: 33062602
- Negus, R.P.; Stamp, G.W.; Hadley, J.; Balkwill, F.R. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am. J. Pathol., 1997, 150(5), 1723-1734. PMID: 9137096
- Singh, N.; Baby, D.; Rajguru, J.; Patil, P.; Thakkannavar, S.; Pujari, V. Inflammation and cancer. Ann. Afr. Med., 2019, 18(3), 121-126. doi: 10.4103/aam.aam_56_18 PMID: 31417011
- Aggarwal, B.B.; Vijayalekshmi, R.V.; Sung, B. Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe. Clin. Cancer Res., 2009, 15(2), 425-430. doi: 10.1158/1078-0432.CCR-08-0149 PMID: 19147746
- Zhang, Y.; Kong, W.; Jiang, J. Prevention and treatment of cancer targeting chronic inflammation: Research progress, potential agents, clinical studies and mechanisms. Sci. China Life Sci., 2017, 60(6), 601-616. doi: 10.1007/s11427-017-9047-4 PMID: 28639101
- Cordon-Cardo, C.; Prives, C. At the crossroads of inflammation and tumorigenesis. J. Exp. Med., 1999, 190(10), 1367-1370. doi: 10.1084/jem.190.10.1367 PMID: 10562311
- Lee, S.H.; Cho, S.Y.; Yoon, Y.; Park, C.; Sohn, J.; Jeong, J.J.; Jeon, B.N.; Jang, M.; An, C.; Lee, S.; Kim, Y.Y.; Kim, G.; Kim, S.; Kim, Y.; Lee, G.B.; Lee, E.J.; Kim, S.G.; Kim, H.S.; Kim, Y.; Kim, H.; Yang, H.S.; Kim, S.; Kim, S.; Chung, H.; Moon, M.H.; Nam, M.H.; Kwon, J.Y.; Won, S.; Park, J.S.; Weinstock, G.M.; Lee, C.; Yoon, K.W.; Park, H. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice. Nat. Microbiol., 2021, 6(3), 277-288. doi: 10.1038/s41564-020-00831-6 PMID: 33432149
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther., 2021, 6(1), 263. doi: 10.1038/s41392-021-00658-5 PMID: 34248142
- Philip, M.; Rowley, D.A.; Schreiber, H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol., 2004, 14(6), 433-439. doi: 10.1016/j.semcancer.2004.06.006 PMID: 15489136
- Lin, A.; Karin, M. NF-κB in cancer: A marked target. Semin. Cancer Biol., 2003, 13(2), 107-114. doi: 10.1016/S1044-579X(02)00128-1 PMID: 12654254
- Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer, 2009, 9(5), 361-371. doi: 10.1038/nrc2628 PMID: 19343034
- Micheau, O.; Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 2003, 114(2), 181-190. doi: 10.1016/S0092-8674(03)00521-X PMID: 12887920
- Vacca, P.; Munari, E.; Tumino, N.; Moretta, F.; Pietra, G.; Vitale, M.; Del Zotto, G.; Mariotti, F.R.; Mingari, M.C.; Moretta, L. Human natural killer cells and other innate lymphoid cells in cancer: friends or foes? Immunol. Lett., 2018, 201, 14-19. doi: 10.1016/j.imlet.2018.11.004 PMID: 30439479
- Chrisikos, T.T.; Zhou, Y.; Slone, N.; Babcock, R.; Watowich, S.S.; Li, H.S. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Mol. Immunol., 2019, 110, 24-39. doi: 10.1016/j.molimm.2018.01.014
- Mottola, G.; Chatterjee, A.; Wu, B.; Chen, M.; Conte, M.S. Aspirin-triggered resolvin D1 attenuates PDGF-induced vascular smooth muscle cell migration via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway. PLoS One, 2017, 12(3), e0174936. doi: 10.1371/journal.pone.0174936 PMID: 28362840
- Yin, C.; Argintaru, D.; Heit, B. Rab17 mediates intermixing of phagocytosed apoptotic cells with recycling endosomes. Small GTPases, 2019, 10(3), 218-226. doi: 10.1080/21541248.2017.1308852 PMID: 28471261
- Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity, 2010, 32(5), 593-604. doi: 10.1016/j.immuni.2010.05.007 PMID: 20510870
- Ishida, T.; Yoshida, M.; Arita, M.; Nishitani, Y.; Nishiumi, S.; Masuda, A.; Mizuno, S.; Takagawa, T.; Morita, Y.; Kutsumi, H.; Inokuchi, H.; Serhan, C.N.; Blumberg, R.S.; Azuma, T. Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodiuminduced colitis. Inflamm. Bowel Dis., 2010, 16(1), 87-95. doi: 10.1002/ibd.21029 PMID: 19572372
- Connor, K.M.; SanGiovanni, J.P.; Lofqvist, C.; Aderman, C.M.; Chen, J.; Higuchi, A.; Hong, S.; Pravda, E.A.; Majchrzak, S.; Carper, D.; Hellstrom, A.; Kang, J.X.; Chew, E.Y.; Salem, N., Jr; Serhan, C.N.; Smith, L.E.H. Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med., 2007, 13(7), 868-873. doi: 10.1038/nm1591 PMID: 17589522
- Serhan, C.N. Novel lipid mediators and resolution mechanisms in acute inflammation: To resolve or not? Am. J. Pathol., 2010, 177(4), 1576-1591. doi: 10.2353/ajpath.2010.100322 PMID: 20813960
- Norris, P.C.; Libreros, S.; Serhan, C.N. Resolution metabolomes activated by hypoxic environment. Sci. Adv., 2019, 5(10), eaax4895. doi: 10.1126/sciadv.aax4895 PMID: 31681846
- Shepelin, D.; Korzinkin, M.; Vanyushina, A.; Aliper, A.; Borisov, N.; Vasilov, R.; Zhukov, N.; Sokov, D.; Prassolov, V.; Gaifullin, N.; Zhavoronkov, A.; Bhullar, B.; Buzdin, A. Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human. Oncotarget, 2016, 7(1), 656-670. doi: 10.18632/oncotarget.6394 PMID: 26624979
- Zhong, X.; Lee, H.N.; Surh, Y.J. RvD1 inhibits TNFα-induced c-Myc expression in normal intestinal epithelial cells and destabilizes hyper-expressed c-Myc in colon cancer cells. Biochem. Biophys. Res. Commun., 2018, 496(2), 316-323. doi: 10.1016/j.bbrc.2017.12.171 PMID: 29305860
- Polavarapu, S.; Dwarakanath, B.S.; Das, U.N. Differential action of polyunsaturated fatty acids and eicosanoids on bleomycin-induced cytotoxicity to neuroblastoma cells and lymphocytes. Arch. Med. Sci., 2018, 1(1), 207-229. doi: 10.5114/aoms.2018.72244 PMID: 29379552
- Lu, Y.; Xu, Q.; Yin, G.; Xu, W.; Jiang, H. Resolvin D1 inhibits the proliferation of lipopolysaccharide-treated HepG2 hepatoblastoma and PLC/PRF/5 hepatocellular carcinoma cells by targeting the MAPK pathway. Exp. Ther. Med., 2018, 16(4), 3603-3610. doi: 10.3892/etm.2018.6651 PMID: 30233715
- Prevete, N.; Liotti, F.; Illiano, A.; Amoresano, A.; Pucci, P.; de Paulis, A.; Melillo, R.M. Formyl peptide receptor 1 suppresses gastric cancer angiogenesis and growth by exploiting inflammation resolution pathways. OncoImmunology, 2017, 6(4), e1293213. doi: 10.1080/2162402X.2017.1293213 PMID: 28507800
- Fedirko, V.; McKeown-Eyssen, G.; Serhan, C.N.; Barry, E.L.; Sandler, R.S.; Figueiredo, J.C.; Ahnen, D.J.; Bresalier, R.S.; Robertson, D.J.; Anderson, C.W.; Baron, J.A. Plasma lipoxin A4 and resolvin D1 are not associated with reduced adenoma risk in a randomized trial of aspirin to prevent colon adenomas. Mol. Carcinog., 2017, 56(8), 1977-1983. doi: 10.1002/mc.22629 PMID: 28218420
- Eritja, N.; Jové, M.; Fasmer, K.E.; Gatius, S.; Portero-Otin, M.; Trovik, J.; Krakstad, C.; Sol, J.; Pamplona, R.; Haldorsen, I.S.; Matias-Guiu, X. Tumour-microenvironmental blood flow determines a metabolomic signature identifying lysophospholipids and resolvin D as biomarkers in endometrial cancer patients. Oncotarget, 2017, 8(65), 109018-109026. doi: 10.18632/oncotarget.22558 PMID: 29312587
- Mohri, Y.; Tanaka, K.; Imaoka, H.; Miki, C.; Fujikawa, H.; Shimura, T.; Toiyama, Y.; Araki, T.; Inoue, Y.; Kusunoki, M. DHA-enriched supplement ameliorates cancer-associated systemic inflammatory response via resolvin D1 production: A single institutional study. Biomed. Res. Ther., 2016, 1(3), 120-125.
- Kuang, H.; Hua, X.; Zhou, J.; Yang, R. Resolvin D1 and E1 alleviate the progress of hepatitis toward liver cancer in long-term concanavalin A-induced mice through inhibition of NF-κB activity. Oncol. Rep., 2016, 35(1), 307-317. doi: 10.3892/or.2015.4389 PMID: 26531230
- Liu, Y.; Yuan, X.; Li, W.; Cao, Q.; Shu, Y. Aspirin-triggered resolvin D1 inhibits TGF-β1-induced EMT through the inhibition of the mTOR pathway by reducing the expression of PKM2 and is closely linked to oxidative stress. Int. J. Mol. Med., 2016, 38(4), 1235-1242. doi: 10.3892/ijmm.2016.2721 PMID: 27573422
- Halder, R.C.; Almasi, A.; Sagong, B.; Leung, J.; Jewett, A.; Fiala, M. Curcuminoids and omega-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon gamma production. Front Physiol., 2015, 6, 129. doi: 10.3389/fphys.2015.00129 PMID: 26052286
- Cholkar, K.; Trinh, H.M.; Vadlapudi, A.D.; Wang, Z.; Pal, D.; Mitra, A.K. Interaction studies of resolvin E1 analog (RX-10045) with efflux transporters. J. Ocul. Pharmacol. Ther., 2015, 31(4), 248-255. doi: 10.1089/jop.2014.0144 PMID: 25844889
- Al-Zaubai, N.; Johnstone, C.N.; Leong, M.M.; Li, J.; Rizzacasa, M.; Stewart, A.G. Resolvin D2 supports MCF-7 cell proliferation via activation of estrogen receptor. J. Pharmacol. Exp. Ther., 2014, 351(1), 172-180. doi: 10.1124/jpet.114.214403 PMID: 25077525
- Lee, H.J.; Park, M.K.; Lee, E.J.; Lee, C.H. Resolvin D1 inhibits TGF-β1-induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32. Int. J. Biochem. Cell Biol., 2013, 45(12), 2801-2807. doi: 10.1016/j.biocel.2013.09.018 PMID: 24120851
- Ye, Y.; Scheff, N.N.; Bernabe, D.; Salvo, E.; Ono, K.; Liu, C.; Veeramachaneni, R.; Viet, C.T.; Viet, D.T.; Dolan, J.C.; Schmidt, B.L. Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology., 2018, 139, 182-193. doi: 10.1016/j.neuropharm.2018.07.016
- Mattoscio, D.; Ferri, G.; Miccolo, C.; Chiocca, S.; Romano, M.; Recchiuti, A. Gene expression of the D-series resolvin pathway predicts activation of anti-tumor immunity and clinical outcomes in head and neck cancer. Int. J. Mol. Sci., 2022, 23(12), 6473. doi: 10.3390/ijms23126473 PMID: 35742918
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90. doi: 10.3322/caac.20107 PMID: 21296855
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899. doi: 10.1016/j.cell.2010.01.025 PMID: 20303878
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
- Baumgarten, S.C.; Frasor, J. Minireview: Inflammation: An instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol. Endocrinol., 2012, 26(3), 360-371. doi: 10.1210/me.2011-1302 PMID: 22301780
- Kang, G.J.; Lee, H.J.; Kang, Y.P.; Kim, E.J.; Kim, H.J.; Byun, H.J.; Park, M.K.; Cho, H.; Kwon, S.W.; Lee, C.H. High-mobility group box 1 suppresses resolvin D1-induced phagocytosis via induction of resolvin D1-inactivating enzyme, 15-hydroxyprostaglandin dehydrogenase. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(9), 1981-1988. doi: 10.1016/j.bbadis.2015.07.005 PMID: 26170058
- Assaraf, Y.G. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist. Updat., 2006, 9(4-5), 227-246. doi: 10.1016/j.drup.2006.09.001 PMID: 17092765
- Robey, R.W.; Polgar, O.; Deeken, J.; To, K.W.; Bates, S.E. ABCG2: Determining its relevance in clinical drug resistance. Cancer Metastasis Rev., 2007, 26(1), 39-57. doi: 10.1007/s10555-007-9042-6 PMID: 17323127
- Cancer IAfRo. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. 2018. Available from: https://www.iarc.who.int/wp-content/uploads/2018/09/pr263_E.pdf
- Gomes, M.; Teixeira, A.L.; Coelho, A.; Araujo, A.; Medeiros, R. The role of inflammation in lung cancer. Adv. Exp. Med. Biol., 2014, 816, 1-23. doi: 10.1007/978-3-0348-0837-8_1
- Cho, W.C.S.; Kwan, C.K.; Yau, S.; So, P.P.F.; Poon, P.C.M.; Au, J.S.K. The role of inflammation in the pathogenesis of lung cancer. Expert Opin. Ther. Targets, 2011, 15(9), 1127-1137. doi: 10.1517/14728222.2011.599801 PMID: 21751938
- Walser, T.; Cui, X.; Yanagawa, J.; Lee, J.M.; Heinrich, E.; Lee, G.; Sharma, S.; Dubinett, S.M. Smoking and lung cancer: The role of inflammation. Proc. Am. Thorac. Soc., 2008, 5(8), 811-815. doi: 10.1513/pats.200809-100TH PMID: 19017734
- Kim, M.J.; Lee, Y.J.; Yoon, Y.S.; Kim, M.; Choi, J.H.; Kim, H.S.; Kang, J.L. Apoptotic cells trigger the ABCA1/STAT6 pathway leading to PPAR-γ expression and activation in macrophages. J. Leukoc. Biol., 2018, 103(5), 885-895. doi: 10.1002/JLB.2A0817-341RR PMID: 29603355
- Huber, M.A.; Kraut, N.; Beug, H. Molecular requirements for epithelialmesenchymal transition during tumor progression. Curr. Opin. Cell Biol., 2005, 17(5), 548-558. doi: 10.1016/j.ceb.2005.08.001 PMID: 16098727
- Gilligan, M.M.; Gartung, A.; Sulciner, M.L.; Norris, P.C.; Sukhatme, V.P.; Bielenberg, D.R.; Huang, S.; Kieran, M.W.; Serhan, C.N.; Panigrahy, D. Aspirin-triggered proresolving mediators stimulate resolution in cancer. Proc. Natl. Acad. Sci. USA, 2019, 116(13), 6292-6297. doi: 10.1073/pnas.1804000116 PMID: 30862734
- Itzkowitz, S.H.; Yio, X. Inflammation and Cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 287(1), G7-G17. doi: 10.1152/ajpgi.00079.2004 PMID: 15194558
- Kraus, S.; Arber, N. Inflammation and colorectal cancer. Curr. Opin. Pharmacol., 2009, 9(4), 405-410. doi: 10.1016/j.coph.2009.06.006 PMID: 19589728
- Wang, S.; Liu, Z.; Wang, L.; Zhang, X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell. Mol. Immunol., 2009, 6(5), 327-334. doi: 10.1038/cmi.2009.43 PMID: 19887045
- Sitarz, R.; Skierucha, M.; Mielko, J.; Offerhaus, G.J.A.; Maciejewski, R.; Polkowski, W.P. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag. Res., 2018, 10, 239-248. doi: 10.2147/CMAR.S149619 PMID: 29445300
- Cheng, T-Y.; Wu, M-S.; Lin, J-T.; Lin, M-T.; Shun, C-T.; Hua, K-T.; Kuo, M-L. Formyl Peptide receptor 1 expression is associated with tumor progression and survival in gastric cancer. Anticancer Res., 2014, 34(5), 2223-2229. PMID: 24778024
- Prevete, N.; Liotti, F.; Visciano, C.; Marone, G.; Melillo, R.M.; de Paulis, A. The formyl peptide receptor 1 exerts a tumor suppressor function in human gastric cancer by inhibiting angiogenesis. Oncogene, 2015, 34(29), 3826-3838. doi: 10.1038/onc.2014.309 PMID: 25263443
- Blot, W.J.; McLaughlin, J.K.; Winn, D.M.; Austin, D.F.; Greenberg, R.S.; Preston-Martin, S.; Bernstein, L.; Schoenberg, J.B.; Stemhagen, A.; Fraumeni, J.F., Jr Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res., 1988, 48(11), 3282-3287. PMID: 3365707
- Ji, R.R.; Xu, Z.Z.; Strichartz, G.; Serhan, C.N. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci., 2011, 34(11), 599-609. doi: 10.1016/j.tins.2011.08.005 PMID: 21963090
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature, 2014, 510(7503), 92-101. doi: 10.1038/nature13479 PMID: 24899309
- Park, C.K.; Xu, Z.Z.; Liu, T.; Lü, N.; Serhan, C.N.; Ji, R.R. Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: Distinct roles of resolvin D1, D2, and E1. J. Neurosci., 2011, 31(50), 18433-18438. doi: 10.1523/JNEUROSCI.4192-11.2011 PMID: 22171045
- Bang, S.; Yoo, S.; Yang, T.J.; Cho, H.; Kim, Y.G.; Hwang, S.W. Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception. Br. J. Pharmacol., 2010, 161(3), 707-720. doi: 10.1111/j.1476-5381.2010.00909.x PMID: 20880407
- Katoonizadeh, A.; Poustchi, H.; Malekzadeh, R. Hepatic progenitor cells in liver regeneration: Current advances and clinical perspectives. Liver Int., 2014, 34(10), 1464-1472. doi: 10.1111/liv.12573 PMID: 24750779
- Carbone, M.; Neuberger, J.M. Autoimmune liver disease, autoimmunity and liver transplantation. J. Hepatol., 2014, 60(1), 210-223. doi: 10.1016/j.jhep.2013.09.020 PMID: 24084655
- Rognant, N. Acute kidney injury in patients with chronic liver disease. World J. Hepatol., 2015, 7(7), 993-1000. doi: 10.4254/wjh.v7.i7.993 PMID: 25954481
- Sun, L.; Wang, Y.; Wang, L.; Yao, B.; Chen, T.; Li, Q.; Liu, Z.; Liu, R.; Niu, Y.; Song, T.; Liu, Q.; Tu, K. Resolvin D1 prevents epithelial-mesenchymal transition and reduces the stemness features of hepatocellular carcinoma by inhibiting paracrine of cancer-associated fibroblast-derived COMP. J. Exp. Clin. Cancer Res., 2019, 38(1), 170. doi: 10.1186/s13046-019-1163-6 PMID: 30999932
- Park, H.J.; Carr, J.R.; Wang, Z.; Nogueira, V.; Hay, N.; Tyner, A.L.; Lau, L.F.; Costa, R.H.; Raychaudhuri, P. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J., 2009, 28(19), 2908-2918. doi: 10.1038/emboj.2009.239 PMID: 19696738
- Maris, J.M. Recent advances in neuroblastoma. N. Engl. J. Med., 2010, 362(23), 2202-2211. doi: 10.1056/NEJMra0804577 PMID: 20558371
- Brodeur, G.M. Neuroblastoma: Biological insights into a clinical enigma. Nat. Rev. Cancer, 2003, 3(3), 203-216. doi: 10.1038/nrc1014 PMID: 12612655
- Ogo, A.; Miyake, S.; Kubota, H.; Higashida, M.; Matsumoto, H.; Teramoto, F.; Hirai, T. Synergistic effect of eicosapentaenoic acid on antiproliferative action of anticancer drugs in a cancer cell line model. Ann. Nutr. Metab., 2017, 71(3-4), 247-252. doi: 10.1159/000484618 PMID: 29136623
- Wang, J.; Luo, T.; Li, S.; Zhao, J. The powerful applications of polyunsaturated fatty acids in improving the therapeutic efficacy of anticancer drugs. Expert Opin. Drug Deliv., 2012, 9(1), 1-7. doi: 10.1517/17425247.2011.618183 PMID: 22171694
- Yin, P.; Wei, Y.; Wang, X.; Zhu, M.; Feng, J. Roles of specialized pro-resolving lipid mediators in cerebral ischemia reperfusion injury. Front Neurol., 2018, 9, 617. doi: 10.3389/fneur.2018.00617 PMID: 30131754
- Dalli, J.; Serhan, C.N. Specific lipid mediator signatures of human phagocytes: Microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood, 2012, 120(15), e60-e72. doi: 10.1182/blood-2012-04-423525 PMID: 22904297
- Hallisey, V.; Barksdale, C.A.; Chang, J.; Sulciner, M.L.; Bielenberg, D.R.; Schmidt, B.A.; Keiran, N.; Haung, S.; Serhan, C.N.; Keiran, M.W.; Panigrahy, D. Brain cancer: Failure of resolution of inflammation? FASEB J., 2019, 33(1), 250-254. doi: 10.1016/j.pharmthera.2020.107670 PMID: 32891711
- Tajbakhsh, A.; Gheibi Hayat, S.M.; Movahedpour, A.; Savardashtaki, A.; Loveless, R.; Barreto, G.E.; Teng, Y.; Sahebkar, A. The complex roles of efferocytosis in cancer development, metastasis, and treatment. Biomed. Pharmacother., 2021, 140, 111776. doi: 10.1016/j.biopha.2021.111776
- Amant, F.; Moerman, P.; Neven, P.; Timmerman, D.; Van Limbergen, E.; Vergote, I. Endometrial cancer. Lancet, 2005, 366(9484), 491-505. doi: 10.1016/S0140-6736(05)67063-8 PMID: 16084259
- Armitage, E.G.; Barbas, C. Metabolomics in cancer biomarker discovery: Current trends and future perspectives. J. Pharm. Biomed. Anal., 2014, 87, 1-11. doi: 10.1016/j.jpba.2013.08.041
- Li, D.; Xie, K.; Wolff, R.; Abbruzzese, J.L. Pancreatic cancer. Lancet, 2004, 363(9414), 1049-1057. doi: 10.1016/S0140-6736(04)15841-8 PMID: 15051286
- Hidalgo, M. Pancreatic cancer. N. Engl. J. Med., 2010, 362(17), 1605-1617. doi: 10.1056/NEJMra0901557 PMID: 20427809
- Jakubowska, K.; Guzińska-Ustymowicz, K.; Famulski, W.; Cepowicz, D.; Jagodzińska, D.; Pryczynicz, A. Reduced expression of caspase-8 and cleaved caspase-3 in pancreatic ductal adenocarcinoma cells. Oncol. Lett., 2016, 11(3), 1879-1884. doi: 10.3892/ol.2016.4125 PMID: 26998093
- Taylor, P.R.; Carugati, A.; Fadok, V.A.; Cook, H.T.; Andrews, M.; Carroll, M.C.; Savill, J.S.; Henson, P.M.; Botto, M.; Walport, M.J. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med., 2000, 192(3), 359-366. doi: 10.1084/jem.192.3.359 PMID: 10934224
- Gunjal, P.M.; Schneider, G.; Ismail, A.A.; Kakar, S.S.; Kucia, M.; Ratajczak, M.Z. Evidence for induction of a tumor metastasis-receptive microenvironment for ovarian cancer cells in bone marrow and other organs as an unwanted and underestimated side effect of chemotherapy/radiotherapy. J. Ovarian Res., 2015, 8, 20. doi: 10.1186/s13048-015-0141-7 PMID: 25887079
- Chaurio, R.; Janko, C.; Schorn, C.; Maueröder, C.; Bilyy, R.; Gaipl, U.; Schett, G.; Berens, C.; Frey, B.; Munoz, L.E. UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice. Autoimmunity, 2013, 46(5), 317-322. doi: 10.3109/08916934.2012.754433 PMID: 23194071
- Pearson, R.M.; Casey, L.M.; Hughes, K.R.; Miller, S.D.; Shea, L.D. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv. Drug Deliv. Rev., 2017, 114, 240-255. doi: 10.1016/j.addr.2017.04.005 PMID: 28414079
- Greene, E.R.; Huang, S.; Serhan, C.N.; Panigrahy, D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat., 2011, 96(1-4), 27-36. doi: 10.1016/j.prostaglandins.2011.08.004 PMID: 21864702
- Rothwell, P.M.; Wilson, M.; Price, J.F.; Belch, J.F.F.; Meade, T.W.; Mehta, Z. Effect of daily aspirin on risk of cancer metastasis: A study of incident cancers during randomised controlled trials. Lancet, 2012, 379(9826), 1591-1601. doi: 10.1016/S0140-6736(12)60209-8 PMID: 22440947
- Fullerton, J.N.; Gilroy, D.W. Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov., 2016, 15(8), 551-567. doi: 10.1038/nrd.2016.39 PMID: 27020098
- Birge, R.B.; Boeltz, S.; Kumar, S.; Carlson, J.; Wanderley, J.; Calianese, D.; Barcinski, M.; Brekken, R.A.; Huang, X.; Hutchins, J.T.; Freimark, B.; Empig, C.; Mercer, J.; Schroit, A.J.; Schett, G.; Herrmann, M. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ., 2016, 23(6), 962-978. doi: 10.1038/cdd.2016.11 PMID: 26915293
- Jing, J.; Yang, I.V.; Hui, L.; Patel, J.A.; Evans, C.M.; Prikeris, R.; Kobzik, L.; OConnor, B.P.; Schwartz, D.A. Role of macrophage receptor with collagenous structure in innate immune tolerance. J. Immunol., 2013, 190(12), 6360-6367. doi: 10.4049/jimmunol.1202942 PMID: 23667110
- Jacinto, R.; Hartung, T.; McCall, C.; Li, L. Lipopolysaccharide- and lipoteichoic acid-induced tolerance and cross-tolerance: Distinct alterations in IL-1 receptor-associated kinase. J. Immunol., 2002, 168(12), 6136-6141. doi: 10.4049/jimmunol.168.12.6136 PMID: 12055225
- Getts, D.R.; McCarthy, D.P.; Miller, S.D. Exploiting apoptosis for therapeutic tolerance induction. J. Immunol., 2013, 191(11), 5341-5346. doi: 10.4049/jimmunol.1302070 PMID: 24244028
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev., 2010, 236, 219-242. doi: 10.1111/j.1600-065X.2010.00923.x
- Zhang, Q.; Zhu, B.; Li, Y. Resolution of cancer-promoting inflammation: a new approach for anticancer therapy. Front Immunol., 2017, 8, 71. doi: 10.3389/fimmu.2017.00071 PMID: 28210259
- Mickle, A.D.; Shepherd, A.J.; Mohapatra, D.P. Sensory TRP channels: The key transducers of nociception and pain. Prog. Mol. Biol. Transl. Sci., 2015, 131, 73-118. doi: 10.3389/fimmu.2017.00071 PMID: 28210259
- Caraceni, A.; Portenoy, R.K. An international survey of cancer pain characteristics and syndromes. Pain, 1999, 82(3), 263-274. doi: 10.1016/S0304-3959(99)00073-1 PMID: 10488677
- Lara-Solares, A.; Ahumada Olea, M.; Basantes Pinos, A.Á.; Bistre Cohén, S.; Bonilla Sierra, P.; Duarte Juárez, E.R.; Símon Escudero, O.A.; Santacruz Escudero, J.G.; Flores Cantisani, J.A. Latin-American guidelines for cancer pain management. Pain Manag., 2017, 7(4), 287-298. doi: 10.2217/pmt-2017-0006 PMID: 28326952
- Falk, S.; Dickenson, A.H. Pain and nociception: Mechanisms of cancer-induced bone pain. J. Clin. Oncol., 2014, 32(16), 1647-1654. doi: 10.1200/JCO.2013.51.7219 PMID: 24799469
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer, 2013, 13(11), 759-771. doi: 10.1038/nrc3611 PMID: 24154716
- Shinko, D.; Diakos, C.I.; Clarke, S.J.; Charles, K.A. Cancer-related systemic inflammation: The challenges and therapeutic opportunities for personalized medicine. Clin. Pharmacol. Ther., 2017, 102(4), 599-610. doi: 10.1002/cpt.789 PMID: 28699186
- Freitas, R.; Campos, M.M. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients, 2019, 11(5), 945. doi: 10.3390/nu11050945 PMID: 31035457
- Luo, X.; Gu, Y.; Tao, X.; Serhan, C.N.; Ji, R.R. Resolvin D5 inhibits neuropathic and inflammatory pain in male but not female mice: distinct actions of D-series resolvins in chemotherapy-induced peripheral neuropathy. Front. Pharmacol., 2019, 10, 745. doi: 10.3389/fphar.2019.00745 PMID: 31333464
- Choi, G.; Hwang, S.W. Modulation of the activities of neuronal ion channels by fatty acid-derived pro-resolvents. Front Physiol., 2016, 7, 523. doi: 10.3389/fphys.2016.00523
- Kantarci, A.; Kansal, S.; Hasturk, H.; Stephens, D.; Van Dyke, T.E. Resolvin E1 reduces tumor growth in a xenograft model of lung cancer. Am. J. Pathol., 2022, 192(10), 1470-1484. doi: 10.1016/j.ajpath.2022.07.004 PMID: 35944728
- Choi, M.K.; Kim, J.; Park, H.M.; Lim, C.M.; Pham, T.H.; Shin, H.Y.; Kim, S.E.; Oh, D.K.; Yoon, D.Y. The DPA-derivative 11S, 17S-dihydroxy 7,9,13,15,19 (Z,E,Z,E,Z)- docosapentaenoic acid inhibits IL-6 production by inhibiting ROS production and ERK/NF-κB pathway in keratinocytes HaCaT stimulated with a fine dust PM(10). Ecotoxicol Environ Saf., 2022, 232, 113252. doi: 10.1016/j.ecoenv.2022.113252 PMID: 35104780
- Blogowski, W.; Dolegowska, K.; Deskur, A.; Dolegowska, B.; Starzynska, T. Lipoxins and resolvins in patients with pancreatic cancer: A preliminary report. Front Oncol., 2021, 11, 757073. doi: 10.3389/fonc.2021.757073 PMID: 35087747
- Bilodeau, J.F.; Gevariya, N.; Larose, J.; Robitaille, K.; Roy, J.; Oger, C.; Galano, J.M.; Bergeron, A.; Durand, T.; Fradet, Y.; Julien, P.; Fradet, V. Long chain omega-3 fatty acids and their oxidized metabolites are associated with reduced prostate tumor growth. Prostaglandins Leukot Essent Fatty Acids., 2021, 164, 102215. doi: 10.1016/j.plefa.2020.102215 PMID: 35087747
- Khasabova, I.A.; Golovko, M.Y.; Golovko, S.A.; Simone, D.A.; Khasabov, S.G. Intrathecal administration of Resolvin D1 and E1 decreases hyperalgesia in mice with bone cancer pain: Involvement of endocannabinoid signaling. Prostaglandins Other Lipid Mediat., 2020. doi: 10.1016/j.prostaglandins.2020.106479 PMID: 32745525
Supplementary files
