Perspective and Prospects on Persistent Luminescent Nanoparticles for Biological Imaging and Tumor Therapy


Cite item

Full Text

Abstract

Persistent luminescent nanoparticles (PLNPs) are photoluminescent materials that can still emit luminescence after the cessation of the excitation light source. In recent years, due to their unique optical properties, the PLNPs have attracted extensive attention in the biomedical field. Since the PLNPs effectively eliminate autofluorescence interference from biological tissues, many researchers have contributed a lot of work in the fields of biological imaging and tumor therapy. This article mainly introduces the synthesis methods of the PLNPs and their progress in the application of biological imaging and tumor therapy, as well as the challenges and development prospects.

About the authors

Minghui Sun

Department of Clinical Laboratory Medicine, Southwest Hospital,, Army Medical University

Email: info@benthamscience.net

Ming Chen

Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University

Author for correspondence.
Email: info@benthamscience.net

Jun Wang

Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Meng, X.; Yang, F.; Dong, H.; Dou, L.; Zhang, X. Recent advances in optical imaging of biomarkers in vivo. Nano Today, 2021, 38, 101156. doi: 10.1016/j.nantod.2021.101156
  2. Kenry; Duan, Y.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater., 2018, 30(47), 1802394. doi: 10.1002/adma.201802394
  3. Miao, Q.; Pu, K. Organic semiconducting agents for deep-tissue molecular imaging: Second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater., 2018, 30(49), 1801778. doi: 10.1002/adma.201801778 PMID: 30058244
  4. Zhu, S.; Tian, R.; Antaris, A.L.; Chen, X.; Dai, H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater., 2019, 31(24), 1900321. doi: 10.1002/adma.201900321 PMID: 31025403
  5. Huang, J.; Pu, K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew. Chem. Int. Ed., 2020, 59(29), 11717-11731. doi: 10.1002/anie.202001783 PMID: 32134156
  6. Wu, Y.; Ali, M.R.K.; Chen, K.; Fang, N.; El-Sayed, M.A. Gold nanoparticles in biological optical imaging. Nano Today, 2019, 24, 120-140. doi: 10.1016/j.nantod.2018.12.006
  7. Zhang, C.; Gao, X.; Chen, W.; He, M.; Yu, Y.; Gao, G.; Sun, T. Advances of gold nanoclusters for bioimaging. iScience, 2022, 25(10), 105022. doi: 10.1016/j.isci.2022.105022 PMID: 36147954
  8. Zhu, H.; Zhou, Y.; Wang, Y.; Xu, S.; James, T.D.; Wang, L. Stepwise-enhanced tumor targeting of near-infrared emissive Au nanoclusters with high quantum yields and long-term stability. Anal. Chem., 2022, 94(38), 13189-13196. doi: 10.1021/acs.analchem.2c02717 PMID: 36106565
  9. Baghdasaryan, A.; Wang, F.; Ren, F.; Ma, Z.; Li, J.; Zhou, X.; Grigoryan, L.; Xu, C.; Dai, H. Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR-II fluorescence imaging in preclinical cancer models. Nat. Commun., 2022, 13(1), 5613. doi: 10.1038/s41467-022-33341-6 PMID: 34983933
  10. McHugh, K.J.; Jing, L.; Behrens, A.M.; Jayawardena, S.; Tang, W.; Gao, M.; Langer, R.; Jaklenec, A. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater., 2018, 30(18), 1706356. doi: 10.1002/adma.201706356 PMID: 29468747
  11. Li, J.; Rao, J.; Pu, K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials, 2018, 155, 217-235. doi: 10.1016/j.biomaterials.2017.11.025 PMID: 29190479
  12. Bai, X.; Wang, K.; Chen, L.; Zhou, J.; Wang, J. Semiconducting polymer dots as fluorescent probes for in vitro biosensing. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(33), 6248-6262. doi: 10.1039/D2TB01385A PMID: 35971822
  13. Guo, L.; Wong, M.S. Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes. Adv. Mater., 2014, 26(31), 5400-5428. doi: 10.1002/adma.201400084 PMID: 24981591
  14. Zhu, X.; Wang, X.; Zhang, H.; Zhang, F. Luminescence lifetime imaging based on lanthanide nanoparticles. Angew. Chem. Int. Ed., 2022, 61(42), e202209378. doi: 10.1002/anie.202209378 PMID: 35918764
  15. Li, C.; Ye, J.; Yang, X.; Liu, S.; Zhang, Z.; Wang, J.; Zhang, K.; Xu, J.; Fu, Y.; Yang, P. Fe/Mn bimetal-doped ZIF-8-coated luminescent nanoparticles with up/downconversion dual-mode emission for tumor self-enhanced NIR-II imaging and catalytic therapy. ACS Nano, 2022, 16(11), 18143-18156. doi: 10.1021/acsnano.2c05152 PMID: 36260703
  16. Jin, Y.; Bae, J.; Kim, T.Y.; Hwang, H.; Kim, T.; Yu, M.; Oh, H.; Hashiya, K.; Bando, T.; Sugiyama, H.; Jo, K. Twelve colors of streptavidin-fluorescent proteins (SA-FPs): a versatile tool to visualize genetic information in single-molecule DNA. Anal. Chem., 2022, 94(48), 16927-16935. doi: 10.1021/acs.analchem.2c04344 PMID: 36377840
  17. Liang, G.T.; Lai, C.; Yue, Z.; Zhang, H.; Li, D.; Chen, Z.; Lu, X.; Tao, L.; Subach, F.V.; Piatkevich, K.D. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front. Bioeng. Biotechnol., 2022, 10, 1039317. doi: 10.3389/fbioe.2022.1039317 PMID: 36324888
  18. Chen, M.; Feng, Z.; Fan, X.; Sun, J.; Geng, W.; Wu, T.; Sheng, J.; Qian, J.; Xu, Z. Long-term monitoring of intravital biological processes using fluorescent protein-assisted NIR-II imaging. Nat. Commun., 2022, 13(1), 6643-6643. doi: 10.1038/s41467-022-34274-w PMID: 36333308
  19. Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E.P.; Zboril, R.; Rogach, A.L. Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9(5), 590-603. doi: 10.1016/j.nantod.2014.09.004
  20. Zhou, B.; Guo, Z.; Lin, Z.; Zhang, L.; Jiang, B.P.; Shen, X.C. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg. Chem. Front., 2019, 6(5), 1116-1128. doi: 10.1039/C9QI00201D
  21. Patel, K.D.; Singh, R.K.; Kim, H.W. Carbon-based nanomaterials as an emerging platform for theranostics. Mater. Horiz., 2019, 6(3), 434-469. doi: 10.1039/C8MH00966J
  22. Huang, K.; Le, N.; Wang, J.S.; Huang, L.; Zeng, L.; Xu, W.-C.; Li, Z.; Li, Y.; Han, G. Designing next generation of persistent luminescence: Recent advances in uniform persistent luminescence nanoparticles. 2022, 34(14), 2107962. doi: 10.1002/adma.202107962
  23. Algar, W.R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K.D.; Darwish, G.H.; Peveler, W.J.; Xiao, Z.; Tsai, H.Y.; Gupta, R.; Lix, K.; Tran, M.V.; Kim, H. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev., 2021, 121(15), 9243-9358. doi: 10.1021/acs.chemrev.0c01176 PMID: 34282906
  24. Jiang, Y.; Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev., 2021, 121(21), 13086-13131. doi: 10.1021/acs.chemrev.1c00506 PMID: 34558282
  25. Li, Y.; Gecevicius, M.; Qiu, J. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev., 2016, 45(8), 2090-2136. doi: 10.1039/C5CS00582E PMID: 26839022
  26. Liu, H.; Li, Z.; Shen, R.; Li, Z.; Yang, Y.; Yuan, Q. Point-of-care pathogen testing using photonic crystals and machine vision for diagnosis of urinary tract infections. Nano Lett., 2021, 21(7), 2854-2860. doi: 10.1021/acs.nanolett.0c04942 PMID: 33769062
  27. Zhao, Y.; Zheng, F.; Shi, L.; Liu, H.; Ke, W. Autoluminescence-free prostate-specific antigen detection by persistent luminous nanorods and Au@Ag@SiO2 nanoparticles. ACS Appl. Mater. Interfaces, 2019, 11(43), 40669-40676. doi: 10.1021/acsami.9b14901 PMID: 31599571
  28. Wu, B.Y.; Yan, X.P. Bioconjugated persistent luminescence nanoparticles for Föster resonance energy transfer immunoassay of prostate specific antigen in serum and cell extracts without in situ excitation. Chem. Commun. (Camb.), 2015, 51(18), 3903-3906. doi: 10.1039/C5CC00286A PMID: 25656741
  29. Feng, F.; Chen, X.; Li, G.; Liang, S.; Hong, Z.; Wang, H.F. Afterglow resonance energy transfer inhibition for fibroblast activation protein-α assay. ACS Sens., 2018, 3(9), 1846-1854. doi: 10.1021/acssensors.8b00680 PMID: 30188115
  30. Li, J.; Yang, C.; Wang, W.L.; Yan, X.P. Functionalized gold and persistent luminescence nanoparticle-based ratiometric absorption and TR-FRET nanoplatform for high- throughput sequential detection of L-cysteine and insulin. Nanoscale, 2018, 10(31), 14931-14937. doi: 10.1039/C8NR04414G PMID: 30046773
  31. Wang, Y.; Li, Z.; Lin, Q.; Wei, Y.; Wang, J.; Li, Y.; Yang, R.; Yuan, Q. Highly sensitive detection of bladder cancer-related miRNA in urine using time-gated luminescent biochip. ACS Sens., 2019, 4(8), 2124-2130. doi: 10.1021/acssensors.9b00927 PMID: 31313911
  32. Wang, X.; Wang, Y.; Chen, S.; Fu, P.; Lin, Y.; Ye, S.; Long, Y.; Gao, G.; Zheng, J. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens. Bioelectron., 2022, 198, 113849. doi: 10.1016/j.bios.2021.113849 PMID: 34861528
  33. Feng, Y.; Zhang, L.; Liu, R.; Lv, Y. Modulating near-infrared persistent luminescence of core-shell nanoplatform for imaging of glutathione in tumor mouse model. Biosens. Bioelectron., 2019, 144, 111671. doi: 10.1016/j.bios.2019.111671 PMID: 31513961
  34. Li, J.; Huang, X.; Zhao, X.; Chen, L.J.; Yan, X.P. pH- pH-responsive torpedo-like persistent luminescence nanoparticles for autofluorescence-free biosensing and high-level information encryption. Angew. Chem. Int. Ed., 2021, 60(5), 2398-2405. doi: 10.1002/anie.202011553 PMID: 33073905
  35. Pan, Z.; Lu, Y.Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater., 2012, 11(1), 58-63. doi: 10.1038/nmat3173 PMID: 22101812
  36. Zhao, F.; Song, Z.; Zhao, J.; Liu, Q. Double perovskite Cs2 AgInCl6 :Cr3+ : Broadband and near-infrared luminescent materials. Inorg. Chem. Front., 2019, 6(12), 3621-3628. doi: 10.1039/C9QI00905A
  37. Lim, J.H.; Kim, B.N.; Kim, Y.; Kang, S.; Xie, R.J.; Chong, I.S.; Morita, K.; Yoshida, H.; Hiraga, K. Non-rare earth white emission phosphor: Ti-doped MgAl2O4. Appl. Phys. Lett., 2013, 102(3), 031104. doi: 10.1063/1.4788929
  38. Jin, L.; Zhang, H.; Pan, R.; Xu, P.; Han, J.; Zhang, X.; Yuan, Q.; Zhang, Z.; Wang, X.; Wang, Y.; Song, B. Observation of the long afterglow in AlN helices. Nano Lett., 2015, 15(10), 6575-6581. doi: 10.1021/acs.nanolett.5b02300 PMID: 26372072
  39. Wu, S.; Li, Y.; Ding, W.; Xu, L.; Ma, Y.; Zhang, L. Recent advances of persistent luminescence nanoparticles in bioapplications. Nano-Micro Lett., 2020, 12(1), 70. doi: 10.1007/s40820-020-0404-8 PMID: 34138268
  40. Luo, H.; Bos, A.J.J.; Dobrowolska, A.; Dorenbos, P. Low-temperature VUV photoluminescence and thermoluminescence of UV excited afterglow phosphor Sr3 Alx Si1−xO5 : Ce3+, Ln 3+ (Ln = Er, Nd, Sm, Dy and Tm). Phys. Chem. Chem. Phys., 2015, 17(23), 15419-15427. doi: 10.1039/C5CP01710F PMID: 26007307
  41. Xia, Z.; Li, Q.; Li, G.; Xiong, M.; Liao, L. Crystal growth of Ca3SiO4Br2: New photoluminescence bromosilicate host. J. Cryst. Growth, 2011, 318(1), 958-961. doi: 10.1016/j.jcrysgro.2010.10.058
  42. Abdukayum, A.; Chen, J.T.; Zhao, Q.; Yan, X.P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc., 2013, 135(38), 14125-14133. doi: 10.1021/ja404243v PMID: 23988232
  43. le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J.P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA, 2007, 104(22), 9266-9271. doi: 10.1073/pnas.0702427104 PMID: 17517614
  44. Wang, J.; Ma, Q.; Hu, X.X.; Liu, H.; Zheng, W.; Chen, X.; Yuan, Q.; Tan, W. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano, 2017, 11(8), 8010-8017. doi: 10.1021/acsnano.7b02643 PMID: 28771315
  45. Li, Z.; Zhang, Y.; Wu, X.; Huang, L.; Li, D.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm "luminous pearls" with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc., 2015, 137(16), 5304-5307. doi: 10.1021/jacs.5b00872 PMID: 25836338
  46. Li, J.L.; Shi, J.P.; Wang, C.C.; Li, P.H.; Yu, Z.F.; Zhang, H.W. Five-nanometer ZnSn2O4: Cr,Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm. Nanoscale, 2017, 9(25), 8631-8638. doi: 10.1039/C7NR02468A PMID: 28608898
  47. Shi, J.; Sun, X.; Zhu, J.; Li, J.; Zhang, H. One-step synthesis of amino-functionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging. Nanoscale, 2016, 8(18), 9798-9804. doi: 10.1039/C6NR00590J PMID: 27120221
  48. Wang, J.; Ma, Q.; Zheng, W.; Liu, H.; Yin, C.; Wang, F.; Chen, X.; Yuan, Q.; Tan, W. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano, 2017, 11(8), 8185-8191. doi: 10.1021/acsnano.7b03128 PMID: 28665583
  49. Zhou, Z.; Zheng, W.; Kong, J.; Liu, Y.; Huang, P.; Zhou, S.; Chen, Z.; Shi, J.; Chen, X. Rechargeable and LED-activated ZnGa2O4: Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale, 2017, 9(20), 6846-6853. doi: 10.1039/C7NR01209H PMID: 28497817
  50. Srivastava, B.B.; Kuang, A.; Mao, Y. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. (Camb.), 2015, 51(34), 7372-7375. doi: 10.1039/C5CC00377F PMID: 25823608
  51. Li, Z.; Wang, Q.; Wang, Y.; Ma, Q.; Wang, J.; Li, Z.; Li, Y.; Lv, X.; Wei, W.; Chen, L.; Yuan, Q. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res., 2018, 11(12), 6167-6176. doi: 10.1007/s12274-018-2133-6
  52. Wang, J.; Ma, Q.; Liu, H.; Wang, Y.; Shen, H.; Hu, X.; Ma, C.; Yuan, Q.; Tan, W. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem., 2017, 89(23), 12764-12770. doi: 10.1021/acs.analchem.7b03003 PMID: 29111687
  53. Chen, W.; Song, Y.; Zhang, W.; Deng, R.; Zhuang, Y.; Xie, R.J. Time-gated imaging of latent fingerprints with level 3 details achieved by persistent luminescent fluoride nanoparticles. ACS Appl. Mater. Interfaces, 2022, 14(24), 28230-28238. doi: 10.1021/acsami.2c06097 PMID: 35687348
  54. Huang, K.; Li, Z.; Li, Y.; Yu, N.; Gao, X.; Huang, L.; Lim, S.F.; Han, G. Three-dimensional colloidal controlled growth of core-shell heterostructured persistent luminescence nanocrystals. Nano Lett., 2021, 21(12), 4903-4910. doi: 10.1021/acs.nanolett.0c04940 PMID: 34100617
  55. Huang, K.; Dou, X.; Zhang, Y.; Gao, X.; Lin, J.; Qu, J.; Li, Y.; Huang, P.; Han, G. Enhancing light and X-Ray charging in persistent luminescence nanocrystals for orthogonal afterglow anti-counterfeiting. Adv. Funct. Mater., 2021, 31(22), 2009920. doi: 10.1002/adfm.202009920
  56. Chen, Z.Z.; Wang, L.C.; Manoharan, D.; Lee, C.L.; Wu, L.C.; Huang, W.T.; Huang, E.Y.; Su, C.H.; Sheu, H.S.; Yeh, C.S. Low dose of X-ray-excited long-lasting luminescent concave nanocubes in highly passive targeting deep- seated hepatic tumors. Adv. Mater., 2019, 31(49), 1905087. doi: 10.1002/adma.201905087 PMID: 31625638
  57. Wang, J.; Li, Q.; Zhao, H.; Yue, W.; Zhang, K.; Jiang, X.; Li, K. Facile and controllable synthesis of the renal-clearable "luminous pearls" for in vivo afterglow/magnetic resonance imaging. ACS Nano, 2022, 16(1), 462-472. doi: 10.1021/acsnano.1c07243 PMID: 34919374
  58. Zou, R.; Gao, Y.; Zhang, Y.; Jiao, J.; Wong, K.L.; Wang, J. 68Ga-labeled magnetic-NIR persistent luminescent hybrid mesoporous nanoparticles for multimodal imaging-guided chemotherapy and photodynamic therapy. ACS Appl. Mater. Interfaces, 2021, 13(8), 9667-9680. doi: 10.1021/acsami.0c21623 PMID: 33617721
  59. Wang, J.; Li, J.; Yu, J.; Zhang, H.; Zhang, B. Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies. ACS Nano, 2018, 12(5), 4246-4258. doi: 10.1021/acsnano.7b07606 PMID: 29676899
  60. Shi, J.; Sun, X.; Zheng, S.; Li, J.; Fu, X.; Zhang, H. A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy. Biomaterials, 2018, 152, 15-23. doi: 10.1016/j.biomaterials.2017.10.032 PMID: 29078137
  61. Shi, J.; Sun, X.; Li, J.; Man, H.; Shen, J.; Yu, Y.; Zhang, H. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials, 2015, 37, 260-270. doi: 10.1016/j.biomaterials.2014.10.033 PMID: 25453956
  62. Zou, R.; Gong, S.; Shi, J.; Jiao, J.; Wong, K.L.; Zhang, H.; Wang, J.; Su, Q. Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd2O3 core–shell nanoprobes for in vivo imaging. Chem. Mater., 2017, 29(9), 3938-3946. doi: 10.1021/acs.chemmater.7b00087
  63. Shi, J.; Fu, H.; Sun, X.; Shen, J.; Zhang, H. Magnetic, long persistent luminescent and mesoporous nanoparticles as trackable transport drug carriers. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(4), 635-641. doi: 10.1039/C4TB01721H PMID: 32262346
  64. Shi, J.; Sun, M.; Sun, X.; Zhang, H. Near-infrared persistent luminescence hollow mesoporous nanospheres for drug delivery and in vivo renewable imaging. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(48), 7845-7851. doi: 10.1039/C6TB02674E PMID: 32263774
  65. Yu, Z.; Liu, B.; Pan, W.; Zhang, T.; Tong, L.; Li, N.; Tang, B. A simple approach for glutathione functionalized persistent luminescence nanoparticles as versatile platforms for multiple in vivo applications. Chem. Commun. (Camb.), 2018, 54(28), 3504-3507. doi: 10.1039/C8CC00743H PMID: 29564449
  66. Bessière, A.; Lecointre, A.; Priolkar, K.R.; Gourier, D. Role of crystal defects in red long-lasting phosphorescence of CaMgSi2O6:Mn diopsides. J. Mater. Chem., 2012, 22(36), 19039-19046. doi: 10.1039/c2jm32953k
  67. Fu, X.; Liu, C.; Shi, J.; Man, H.; Xu, J.; Zhang, H. Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging. Opt. Mater., 2014, 36(11), 1792-1797. doi: 10.1016/j.optmat.2014.04.018
  68. Wang, J.; Ma, Q.; Wang, Y.; Shen, H.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale, 2017, 9(19), 6204-6218. doi: 10.1039/C7NR01488K PMID: 28466913
  69. Maldiney, T.; Viana, B.; Bessière, A.; Gourier, D.; Bessodes, M.; Scherman, D.; Richard, C. In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt. Mater., 2013, 35(10), 1852-1858. doi: 10.1016/j.optmat.2013.03.028
  70. Wang, Y.; Yang, C.X.; Yan, X.P. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale, 2017, 9(26), 9049-9055. doi: 10.1039/C7NR02038D PMID: 28639659
  71. Zou, R.; Huang, J.; Shi, J.; Huang, L.; Zhang, X.; Wong, K.L.; Zhang, H.; Jin, D.; Wang, J.; Su, Q. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res., 2017, 10(6), 2070-2082. doi: 10.1007/s12274-016-1396-z
  72. Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S.K.; Viana, B.; Bos, A.J.J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; Scherman, D.; Richard, C. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater., 2014, 13(4), 418-426. doi: 10.1038/nmat3908 PMID: 24651431
  73. Zhao, H.; Liu, C.; Gu, Z.; Dong, L.; Li, F.; Yao, C.; Yang, D. Persistent luminescent nanoparticles containing hydrogels for targeted, sustained, and autofluorescence-free tumor metastasis imaging. Nano Lett., 2020, 20(1), 252-260. doi: 10.1021/acs.nanolett.9b03755 PMID: 31793303
  74. Li, Z.; Huang, L.; Zhang, Y.; Zhao, Y.; Yang, H.; Han, G. Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res., 2017, 10(5), 1840-1846. doi: 10.1007/s12274-017-1548-9
  75. Song, L.; Lin, X.H.; Song, X.R.; Chen, S.; Chen, X.F.; Li, J.; Yang, H.H. Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale, 2017, 9(8), 2718-2722. doi: 10.1039/C6NR09553D PMID: 28198899
  76. Xue, Z.; Li, X.; Li, Y.; Jiang, M.; Liu, H.; Zeng, S.; Hao, J. X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging. ACS Appl. Mater. Interfaces, 2017, 9(27), 22132-22142. doi: 10.1021/acsami.7b03802 PMID: 28603963
  77. Lin, X.H.; Song, L.; Chen, S.; Chen, X.F.; Wei, J.J.; Li, J.; Huang, G.; Yang, H.H. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging. ACS Appl. Mater. Interfaces, 2017, 9(47), 41181-41187. doi: 10.1021/acsami.7b13920 PMID: 29111643
  78. Zheng, S.; Shi, J.; Fu, X.; Wang, C.; Sun, X.; Chen, C.; Zhuang, Y.; Zou, X.; Li, Y.; Zhang, H. X-ray recharged long afterglow luminescent nanoparticles MgGeO3:Mn2+, Yb3+, Li+ in the first and second biological windows for long-term bioimaging. Nanoscale, 2020, 12(26), 14037-14046. doi: 10.1039/C9NR10622G PMID: 32579636
  79. Pei, P.; Chen, Y.; Sun, C.; Fan, Y.; Yang, Y.; Liu, X.; Lu, L.; Zhao, M.; Zhang, H.; Zhao, D.; Liu, X.; Zhang, F. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol., 2021, 16(9), 1011-1018. doi: 10.1038/s41565-021-00922-3 PMID: 34112994
  80. Abdukayum, A.; Yang, C.X.; Zhao, Q.; Chen, J.T.; Dong, L.X.; Yan, X.P. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal. Chem., 2014, 86(9), 4096-4101. doi: 10.1021/ac500644x PMID: 24702120
  81. Maldiney, T.; Doan, B.T.; Alloyeau, D.; Bessodes, M.; Scherman, D.; Richard, C. Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging. Adv. Funct. Mater., 2015, 25(2), 331-338. doi: 10.1002/adfm.201401612
  82. Lu, Y.C.; Yang, C.X.; Yan, X.P. Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging. Nanoscale, 2015, 7(42), 17929-17937. doi: 10.1039/C5NR05623C PMID: 26462601
  83. Liu, J.M.; Liu, Y.Y.; Zhang, D.D.; Fang, G.Z.; Wang, S. Synthesis of GdAlO3:Mn4+, Ge4+@Au core–shell nanoprobes with plasmon-enhanced near-infrared persistent luminescence for in vivo trimodality bioimaging. ACS Appl. Mater. Interfaces, 2016, 8(44), 29939-29949. doi: 10.1021/acsami.6b09580 PMID: 27759378
  84. Zhao, H.; Shu, G.; Zhu, J.; Fu, Y.; Gu, Z.; Yang, D. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials, 2019, 217, 119332. doi: 10.1016/j.biomaterials.2019.119332 PMID: 31284124
  85. Feng, Y.; Liu, R.; Zhang, L.; Li, Z.; Su, Y.; Lv, Y. Raspberry-like mesoporous Zn1.07Ga2.34Si0.98O6.56: Cr0.01 nanocarriers for enhanced near-infrared afterglow imaging and combined cancer chemotherapy. ACS Appl. Mater. Interfaces, 2019, 11(48), 44978-44988. doi: 10.1021/acsami.9b18124 PMID: 31722170
  86. Wang, Z.H.; Liu, J.M.; Zhao, N.; Li, C.Y.; Lv, S.W.; Hu, Y.; Lv, H.; Wang, D.; Wang, S. Cancer cell macrophage membrane camouflaged persistent luminescent nanoparticles for imaging-guided photothermal therapy of colorectal cancer. ACS Appl. Nano Mater., 2020, 3(7), 7105-7118. doi: 10.1021/acsanm.0c01433
  87. Chen, L.J.; Sun, S.K.; Wang, Y.; Yang, C.X.; Wu, S.Q.; Yan, X.P. Activatable multifunctional persistent luminescence nanoparticle/copper sulfide nanoprobe for in vivo luminescence imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces, 2016, 8(48), 32667-32674. doi: 10.1021/acsami.6b10702 PMID: 27934189
  88. Yang, J.; Zhao, Y.; Meng, Y.; Zhu, H.; Yan, D.; Liu, C.; Xu, C.; Zhang, H.; Xu, L.; Li, Y.; Liu, Y. Irradiation-free photodynamic therapy in vivo induced by enhanced deep red afterglow within NIR-I bio-window. Chem. Eng. J., 2020, 387, 124067. doi: 10.1016/j.cej.2020.124067
  89. Wang, R.; Shi, J.; Song, L.; Zheng, S.; Liu, X.; Hong, M.; Zhang, Y. Sustained antitumor immunity based on persistent luminescence nanoparticles for cancer immunotherapy. Adv. Funct. Mater., 2021, 31(52), 2106884. doi: 10.1002/adfm.202106884
  90. Wu, S.; Qiao, Z.; Li, Y.; Hu, S.; Ma, Y.; Wei, S.; Zhang, L. Persistent luminescence nanoplatform with fenton-like catalytic activity for tumor multimodal imaging and photoenhanced combination therapy. ACS Appl. Mater. Interfaces, 2020, 12(23), 25572-25580. doi: 10.1021/acsami.0c04438 PMID: 32412741
  91. Li, Y.; Teng, X.; Wang, Y.; Yang, C.; Yan, X.; Li, J. Neutrophil delivered hollow titania covered persistent luminescent nanosensitizer for ultrosound augmented chemo/immuno glioblastoma therapy. Adv. Sci. (Weinh.), 2021, 8(17), 2004381. doi: 10.1002/advs.202004381 PMID: 34196474

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers