Perspective and Prospects on Persistent Luminescent Nanoparticles for Biological Imaging and Tumor Therapy
- Authors: Sun M.1, Chen M.2, Wang J.2
-
Affiliations:
- Department of Clinical Laboratory Medicine, Southwest Hospital,, Army Medical University
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University
- Issue: Vol 31, No 8 (2024)
- Pages: 938-951
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjsvd.com/0929-8673/article/view/645190
- DOI: https://doi.org/10.2174/0929867330666230210093411
- ID: 645190
Cite item
Full Text
Abstract
Persistent luminescent nanoparticles (PLNPs) are photoluminescent materials that can still emit luminescence after the cessation of the excitation light source. In recent years, due to their unique optical properties, the PLNPs have attracted extensive attention in the biomedical field. Since the PLNPs effectively eliminate autofluorescence interference from biological tissues, many researchers have contributed a lot of work in the fields of biological imaging and tumor therapy. This article mainly introduces the synthesis methods of the PLNPs and their progress in the application of biological imaging and tumor therapy, as well as the challenges and development prospects.
About the authors
Minghui Sun
Department of Clinical Laboratory Medicine, Southwest Hospital,, Army Medical University
Email: info@benthamscience.net
Ming Chen
Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University
Author for correspondence.
Email: info@benthamscience.net
Jun Wang
Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Meng, X.; Yang, F.; Dong, H.; Dou, L.; Zhang, X. Recent advances in optical imaging of biomarkers in vivo. Nano Today, 2021, 38, 101156. doi: 10.1016/j.nantod.2021.101156
- Kenry; Duan, Y.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater., 2018, 30(47), 1802394. doi: 10.1002/adma.201802394
- Miao, Q.; Pu, K. Organic semiconducting agents for deep-tissue molecular imaging: Second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater., 2018, 30(49), 1801778. doi: 10.1002/adma.201801778 PMID: 30058244
- Zhu, S.; Tian, R.; Antaris, A.L.; Chen, X.; Dai, H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater., 2019, 31(24), 1900321. doi: 10.1002/adma.201900321 PMID: 31025403
- Huang, J.; Pu, K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew. Chem. Int. Ed., 2020, 59(29), 11717-11731. doi: 10.1002/anie.202001783 PMID: 32134156
- Wu, Y.; Ali, M.R.K.; Chen, K.; Fang, N.; El-Sayed, M.A. Gold nanoparticles in biological optical imaging. Nano Today, 2019, 24, 120-140. doi: 10.1016/j.nantod.2018.12.006
- Zhang, C.; Gao, X.; Chen, W.; He, M.; Yu, Y.; Gao, G.; Sun, T. Advances of gold nanoclusters for bioimaging. iScience, 2022, 25(10), 105022. doi: 10.1016/j.isci.2022.105022 PMID: 36147954
- Zhu, H.; Zhou, Y.; Wang, Y.; Xu, S.; James, T.D.; Wang, L. Stepwise-enhanced tumor targeting of near-infrared emissive Au nanoclusters with high quantum yields and long-term stability. Anal. Chem., 2022, 94(38), 13189-13196. doi: 10.1021/acs.analchem.2c02717 PMID: 36106565
- Baghdasaryan, A.; Wang, F.; Ren, F.; Ma, Z.; Li, J.; Zhou, X.; Grigoryan, L.; Xu, C.; Dai, H. Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR-II fluorescence imaging in preclinical cancer models. Nat. Commun., 2022, 13(1), 5613. doi: 10.1038/s41467-022-33341-6 PMID: 34983933
- McHugh, K.J.; Jing, L.; Behrens, A.M.; Jayawardena, S.; Tang, W.; Gao, M.; Langer, R.; Jaklenec, A. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater., 2018, 30(18), 1706356. doi: 10.1002/adma.201706356 PMID: 29468747
- Li, J.; Rao, J.; Pu, K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials, 2018, 155, 217-235. doi: 10.1016/j.biomaterials.2017.11.025 PMID: 29190479
- Bai, X.; Wang, K.; Chen, L.; Zhou, J.; Wang, J. Semiconducting polymer dots as fluorescent probes for in vitro biosensing. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(33), 6248-6262. doi: 10.1039/D2TB01385A PMID: 35971822
- Guo, L.; Wong, M.S. Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes. Adv. Mater., 2014, 26(31), 5400-5428. doi: 10.1002/adma.201400084 PMID: 24981591
- Zhu, X.; Wang, X.; Zhang, H.; Zhang, F. Luminescence lifetime imaging based on lanthanide nanoparticles. Angew. Chem. Int. Ed., 2022, 61(42), e202209378. doi: 10.1002/anie.202209378 PMID: 35918764
- Li, C.; Ye, J.; Yang, X.; Liu, S.; Zhang, Z.; Wang, J.; Zhang, K.; Xu, J.; Fu, Y.; Yang, P. Fe/Mn bimetal-doped ZIF-8-coated luminescent nanoparticles with up/downconversion dual-mode emission for tumor self-enhanced NIR-II imaging and catalytic therapy. ACS Nano, 2022, 16(11), 18143-18156. doi: 10.1021/acsnano.2c05152 PMID: 36260703
- Jin, Y.; Bae, J.; Kim, T.Y.; Hwang, H.; Kim, T.; Yu, M.; Oh, H.; Hashiya, K.; Bando, T.; Sugiyama, H.; Jo, K. Twelve colors of streptavidin-fluorescent proteins (SA-FPs): a versatile tool to visualize genetic information in single-molecule DNA. Anal. Chem., 2022, 94(48), 16927-16935. doi: 10.1021/acs.analchem.2c04344 PMID: 36377840
- Liang, G.T.; Lai, C.; Yue, Z.; Zhang, H.; Li, D.; Chen, Z.; Lu, X.; Tao, L.; Subach, F.V.; Piatkevich, K.D. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front. Bioeng. Biotechnol., 2022, 10, 1039317. doi: 10.3389/fbioe.2022.1039317 PMID: 36324888
- Chen, M.; Feng, Z.; Fan, X.; Sun, J.; Geng, W.; Wu, T.; Sheng, J.; Qian, J.; Xu, Z. Long-term monitoring of intravital biological processes using fluorescent protein-assisted NIR-II imaging. Nat. Commun., 2022, 13(1), 6643-6643. doi: 10.1038/s41467-022-34274-w PMID: 36333308
- Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E.P.; Zboril, R.; Rogach, A.L. Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9(5), 590-603. doi: 10.1016/j.nantod.2014.09.004
- Zhou, B.; Guo, Z.; Lin, Z.; Zhang, L.; Jiang, B.P.; Shen, X.C. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg. Chem. Front., 2019, 6(5), 1116-1128. doi: 10.1039/C9QI00201D
- Patel, K.D.; Singh, R.K.; Kim, H.W. Carbon-based nanomaterials as an emerging platform for theranostics. Mater. Horiz., 2019, 6(3), 434-469. doi: 10.1039/C8MH00966J
- Huang, K.; Le, N.; Wang, J.S.; Huang, L.; Zeng, L.; Xu, W.-C.; Li, Z.; Li, Y.; Han, G. Designing next generation of persistent luminescence: Recent advances in uniform persistent luminescence nanoparticles. 2022, 34(14), 2107962. doi: 10.1002/adma.202107962
- Algar, W.R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K.D.; Darwish, G.H.; Peveler, W.J.; Xiao, Z.; Tsai, H.Y.; Gupta, R.; Lix, K.; Tran, M.V.; Kim, H. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev., 2021, 121(15), 9243-9358. doi: 10.1021/acs.chemrev.0c01176 PMID: 34282906
- Jiang, Y.; Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev., 2021, 121(21), 13086-13131. doi: 10.1021/acs.chemrev.1c00506 PMID: 34558282
- Li, Y.; Gecevicius, M.; Qiu, J. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev., 2016, 45(8), 2090-2136. doi: 10.1039/C5CS00582E PMID: 26839022
- Liu, H.; Li, Z.; Shen, R.; Li, Z.; Yang, Y.; Yuan, Q. Point-of-care pathogen testing using photonic crystals and machine vision for diagnosis of urinary tract infections. Nano Lett., 2021, 21(7), 2854-2860. doi: 10.1021/acs.nanolett.0c04942 PMID: 33769062
- Zhao, Y.; Zheng, F.; Shi, L.; Liu, H.; Ke, W. Autoluminescence-free prostate-specific antigen detection by persistent luminous nanorods and Au@Ag@SiO2 nanoparticles. ACS Appl. Mater. Interfaces, 2019, 11(43), 40669-40676. doi: 10.1021/acsami.9b14901 PMID: 31599571
- Wu, B.Y.; Yan, X.P. Bioconjugated persistent luminescence nanoparticles for Föster resonance energy transfer immunoassay of prostate specific antigen in serum and cell extracts without in situ excitation. Chem. Commun. (Camb.), 2015, 51(18), 3903-3906. doi: 10.1039/C5CC00286A PMID: 25656741
- Feng, F.; Chen, X.; Li, G.; Liang, S.; Hong, Z.; Wang, H.F. Afterglow resonance energy transfer inhibition for fibroblast activation protein-α assay. ACS Sens., 2018, 3(9), 1846-1854. doi: 10.1021/acssensors.8b00680 PMID: 30188115
- Li, J.; Yang, C.; Wang, W.L.; Yan, X.P. Functionalized gold and persistent luminescence nanoparticle-based ratiometric absorption and TR-FRET nanoplatform for high- throughput sequential detection of L-cysteine and insulin. Nanoscale, 2018, 10(31), 14931-14937. doi: 10.1039/C8NR04414G PMID: 30046773
- Wang, Y.; Li, Z.; Lin, Q.; Wei, Y.; Wang, J.; Li, Y.; Yang, R.; Yuan, Q. Highly sensitive detection of bladder cancer-related miRNA in urine using time-gated luminescent biochip. ACS Sens., 2019, 4(8), 2124-2130. doi: 10.1021/acssensors.9b00927 PMID: 31313911
- Wang, X.; Wang, Y.; Chen, S.; Fu, P.; Lin, Y.; Ye, S.; Long, Y.; Gao, G.; Zheng, J. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens. Bioelectron., 2022, 198, 113849. doi: 10.1016/j.bios.2021.113849 PMID: 34861528
- Feng, Y.; Zhang, L.; Liu, R.; Lv, Y. Modulating near-infrared persistent luminescence of core-shell nanoplatform for imaging of glutathione in tumor mouse model. Biosens. Bioelectron., 2019, 144, 111671. doi: 10.1016/j.bios.2019.111671 PMID: 31513961
- Li, J.; Huang, X.; Zhao, X.; Chen, L.J.; Yan, X.P. pH- pH-responsive torpedo-like persistent luminescence nanoparticles for autofluorescence-free biosensing and high-level information encryption. Angew. Chem. Int. Ed., 2021, 60(5), 2398-2405. doi: 10.1002/anie.202011553 PMID: 33073905
- Pan, Z.; Lu, Y.Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater., 2012, 11(1), 58-63. doi: 10.1038/nmat3173 PMID: 22101812
- Zhao, F.; Song, Z.; Zhao, J.; Liu, Q. Double perovskite Cs2 AgInCl6 :Cr3+ : Broadband and near-infrared luminescent materials. Inorg. Chem. Front., 2019, 6(12), 3621-3628. doi: 10.1039/C9QI00905A
- Lim, J.H.; Kim, B.N.; Kim, Y.; Kang, S.; Xie, R.J.; Chong, I.S.; Morita, K.; Yoshida, H.; Hiraga, K. Non-rare earth white emission phosphor: Ti-doped MgAl2O4. Appl. Phys. Lett., 2013, 102(3), 031104. doi: 10.1063/1.4788929
- Jin, L.; Zhang, H.; Pan, R.; Xu, P.; Han, J.; Zhang, X.; Yuan, Q.; Zhang, Z.; Wang, X.; Wang, Y.; Song, B. Observation of the long afterglow in AlN helices. Nano Lett., 2015, 15(10), 6575-6581. doi: 10.1021/acs.nanolett.5b02300 PMID: 26372072
- Wu, S.; Li, Y.; Ding, W.; Xu, L.; Ma, Y.; Zhang, L. Recent advances of persistent luminescence nanoparticles in bioapplications. Nano-Micro Lett., 2020, 12(1), 70. doi: 10.1007/s40820-020-0404-8 PMID: 34138268
- Luo, H.; Bos, A.J.J.; Dobrowolska, A.; Dorenbos, P. Low-temperature VUV photoluminescence and thermoluminescence of UV excited afterglow phosphor Sr3 Alx Si1−xO5 : Ce3+, Ln 3+ (Ln = Er, Nd, Sm, Dy and Tm). Phys. Chem. Chem. Phys., 2015, 17(23), 15419-15427. doi: 10.1039/C5CP01710F PMID: 26007307
- Xia, Z.; Li, Q.; Li, G.; Xiong, M.; Liao, L. Crystal growth of Ca3SiO4Br2: New photoluminescence bromosilicate host. J. Cryst. Growth, 2011, 318(1), 958-961. doi: 10.1016/j.jcrysgro.2010.10.058
- Abdukayum, A.; Chen, J.T.; Zhao, Q.; Yan, X.P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc., 2013, 135(38), 14125-14133. doi: 10.1021/ja404243v PMID: 23988232
- le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J.P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA, 2007, 104(22), 9266-9271. doi: 10.1073/pnas.0702427104 PMID: 17517614
- Wang, J.; Ma, Q.; Hu, X.X.; Liu, H.; Zheng, W.; Chen, X.; Yuan, Q.; Tan, W. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano, 2017, 11(8), 8010-8017. doi: 10.1021/acsnano.7b02643 PMID: 28771315
- Li, Z.; Zhang, Y.; Wu, X.; Huang, L.; Li, D.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm "luminous pearls" with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc., 2015, 137(16), 5304-5307. doi: 10.1021/jacs.5b00872 PMID: 25836338
- Li, J.L.; Shi, J.P.; Wang, C.C.; Li, P.H.; Yu, Z.F.; Zhang, H.W. Five-nanometer ZnSn2O4: Cr,Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm. Nanoscale, 2017, 9(25), 8631-8638. doi: 10.1039/C7NR02468A PMID: 28608898
- Shi, J.; Sun, X.; Zhu, J.; Li, J.; Zhang, H. One-step synthesis of amino-functionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging. Nanoscale, 2016, 8(18), 9798-9804. doi: 10.1039/C6NR00590J PMID: 27120221
- Wang, J.; Ma, Q.; Zheng, W.; Liu, H.; Yin, C.; Wang, F.; Chen, X.; Yuan, Q.; Tan, W. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano, 2017, 11(8), 8185-8191. doi: 10.1021/acsnano.7b03128 PMID: 28665583
- Zhou, Z.; Zheng, W.; Kong, J.; Liu, Y.; Huang, P.; Zhou, S.; Chen, Z.; Shi, J.; Chen, X. Rechargeable and LED-activated ZnGa2O4: Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale, 2017, 9(20), 6846-6853. doi: 10.1039/C7NR01209H PMID: 28497817
- Srivastava, B.B.; Kuang, A.; Mao, Y. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. (Camb.), 2015, 51(34), 7372-7375. doi: 10.1039/C5CC00377F PMID: 25823608
- Li, Z.; Wang, Q.; Wang, Y.; Ma, Q.; Wang, J.; Li, Z.; Li, Y.; Lv, X.; Wei, W.; Chen, L.; Yuan, Q. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res., 2018, 11(12), 6167-6176. doi: 10.1007/s12274-018-2133-6
- Wang, J.; Ma, Q.; Liu, H.; Wang, Y.; Shen, H.; Hu, X.; Ma, C.; Yuan, Q.; Tan, W. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem., 2017, 89(23), 12764-12770. doi: 10.1021/acs.analchem.7b03003 PMID: 29111687
- Chen, W.; Song, Y.; Zhang, W.; Deng, R.; Zhuang, Y.; Xie, R.J. Time-gated imaging of latent fingerprints with level 3 details achieved by persistent luminescent fluoride nanoparticles. ACS Appl. Mater. Interfaces, 2022, 14(24), 28230-28238. doi: 10.1021/acsami.2c06097 PMID: 35687348
- Huang, K.; Li, Z.; Li, Y.; Yu, N.; Gao, X.; Huang, L.; Lim, S.F.; Han, G. Three-dimensional colloidal controlled growth of core-shell heterostructured persistent luminescence nanocrystals. Nano Lett., 2021, 21(12), 4903-4910. doi: 10.1021/acs.nanolett.0c04940 PMID: 34100617
- Huang, K.; Dou, X.; Zhang, Y.; Gao, X.; Lin, J.; Qu, J.; Li, Y.; Huang, P.; Han, G. Enhancing light and X-Ray charging in persistent luminescence nanocrystals for orthogonal afterglow anti-counterfeiting. Adv. Funct. Mater., 2021, 31(22), 2009920. doi: 10.1002/adfm.202009920
- Chen, Z.Z.; Wang, L.C.; Manoharan, D.; Lee, C.L.; Wu, L.C.; Huang, W.T.; Huang, E.Y.; Su, C.H.; Sheu, H.S.; Yeh, C.S. Low dose of X-ray-excited long-lasting luminescent concave nanocubes in highly passive targeting deep- seated hepatic tumors. Adv. Mater., 2019, 31(49), 1905087. doi: 10.1002/adma.201905087 PMID: 31625638
- Wang, J.; Li, Q.; Zhao, H.; Yue, W.; Zhang, K.; Jiang, X.; Li, K. Facile and controllable synthesis of the renal-clearable "luminous pearls" for in vivo afterglow/magnetic resonance imaging. ACS Nano, 2022, 16(1), 462-472. doi: 10.1021/acsnano.1c07243 PMID: 34919374
- Zou, R.; Gao, Y.; Zhang, Y.; Jiao, J.; Wong, K.L.; Wang, J. 68Ga-labeled magnetic-NIR persistent luminescent hybrid mesoporous nanoparticles for multimodal imaging-guided chemotherapy and photodynamic therapy. ACS Appl. Mater. Interfaces, 2021, 13(8), 9667-9680. doi: 10.1021/acsami.0c21623 PMID: 33617721
- Wang, J.; Li, J.; Yu, J.; Zhang, H.; Zhang, B. Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies. ACS Nano, 2018, 12(5), 4246-4258. doi: 10.1021/acsnano.7b07606 PMID: 29676899
- Shi, J.; Sun, X.; Zheng, S.; Li, J.; Fu, X.; Zhang, H. A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy. Biomaterials, 2018, 152, 15-23. doi: 10.1016/j.biomaterials.2017.10.032 PMID: 29078137
- Shi, J.; Sun, X.; Li, J.; Man, H.; Shen, J.; Yu, Y.; Zhang, H. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials, 2015, 37, 260-270. doi: 10.1016/j.biomaterials.2014.10.033 PMID: 25453956
- Zou, R.; Gong, S.; Shi, J.; Jiao, J.; Wong, K.L.; Zhang, H.; Wang, J.; Su, Q. Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd2O3 coreshell nanoprobes for in vivo imaging. Chem. Mater., 2017, 29(9), 3938-3946. doi: 10.1021/acs.chemmater.7b00087
- Shi, J.; Fu, H.; Sun, X.; Shen, J.; Zhang, H. Magnetic, long persistent luminescent and mesoporous nanoparticles as trackable transport drug carriers. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(4), 635-641. doi: 10.1039/C4TB01721H PMID: 32262346
- Shi, J.; Sun, M.; Sun, X.; Zhang, H. Near-infrared persistent luminescence hollow mesoporous nanospheres for drug delivery and in vivo renewable imaging. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(48), 7845-7851. doi: 10.1039/C6TB02674E PMID: 32263774
- Yu, Z.; Liu, B.; Pan, W.; Zhang, T.; Tong, L.; Li, N.; Tang, B. A simple approach for glutathione functionalized persistent luminescence nanoparticles as versatile platforms for multiple in vivo applications. Chem. Commun. (Camb.), 2018, 54(28), 3504-3507. doi: 10.1039/C8CC00743H PMID: 29564449
- Bessière, A.; Lecointre, A.; Priolkar, K.R.; Gourier, D. Role of crystal defects in red long-lasting phosphorescence of CaMgSi2O6:Mn diopsides. J. Mater. Chem., 2012, 22(36), 19039-19046. doi: 10.1039/c2jm32953k
- Fu, X.; Liu, C.; Shi, J.; Man, H.; Xu, J.; Zhang, H. Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging. Opt. Mater., 2014, 36(11), 1792-1797. doi: 10.1016/j.optmat.2014.04.018
- Wang, J.; Ma, Q.; Wang, Y.; Shen, H.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale, 2017, 9(19), 6204-6218. doi: 10.1039/C7NR01488K PMID: 28466913
- Maldiney, T.; Viana, B.; Bessière, A.; Gourier, D.; Bessodes, M.; Scherman, D.; Richard, C. In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt. Mater., 2013, 35(10), 1852-1858. doi: 10.1016/j.optmat.2013.03.028
- Wang, Y.; Yang, C.X.; Yan, X.P. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale, 2017, 9(26), 9049-9055. doi: 10.1039/C7NR02038D PMID: 28639659
- Zou, R.; Huang, J.; Shi, J.; Huang, L.; Zhang, X.; Wong, K.L.; Zhang, H.; Jin, D.; Wang, J.; Su, Q. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res., 2017, 10(6), 2070-2082. doi: 10.1007/s12274-016-1396-z
- Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S.K.; Viana, B.; Bos, A.J.J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; Scherman, D.; Richard, C. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater., 2014, 13(4), 418-426. doi: 10.1038/nmat3908 PMID: 24651431
- Zhao, H.; Liu, C.; Gu, Z.; Dong, L.; Li, F.; Yao, C.; Yang, D. Persistent luminescent nanoparticles containing hydrogels for targeted, sustained, and autofluorescence-free tumor metastasis imaging. Nano Lett., 2020, 20(1), 252-260. doi: 10.1021/acs.nanolett.9b03755 PMID: 31793303
- Li, Z.; Huang, L.; Zhang, Y.; Zhao, Y.; Yang, H.; Han, G. Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res., 2017, 10(5), 1840-1846. doi: 10.1007/s12274-017-1548-9
- Song, L.; Lin, X.H.; Song, X.R.; Chen, S.; Chen, X.F.; Li, J.; Yang, H.H. Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale, 2017, 9(8), 2718-2722. doi: 10.1039/C6NR09553D PMID: 28198899
- Xue, Z.; Li, X.; Li, Y.; Jiang, M.; Liu, H.; Zeng, S.; Hao, J. X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging. ACS Appl. Mater. Interfaces, 2017, 9(27), 22132-22142. doi: 10.1021/acsami.7b03802 PMID: 28603963
- Lin, X.H.; Song, L.; Chen, S.; Chen, X.F.; Wei, J.J.; Li, J.; Huang, G.; Yang, H.H. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging. ACS Appl. Mater. Interfaces, 2017, 9(47), 41181-41187. doi: 10.1021/acsami.7b13920 PMID: 29111643
- Zheng, S.; Shi, J.; Fu, X.; Wang, C.; Sun, X.; Chen, C.; Zhuang, Y.; Zou, X.; Li, Y.; Zhang, H. X-ray recharged long afterglow luminescent nanoparticles MgGeO3:Mn2+, Yb3+, Li+ in the first and second biological windows for long-term bioimaging. Nanoscale, 2020, 12(26), 14037-14046. doi: 10.1039/C9NR10622G PMID: 32579636
- Pei, P.; Chen, Y.; Sun, C.; Fan, Y.; Yang, Y.; Liu, X.; Lu, L.; Zhao, M.; Zhang, H.; Zhao, D.; Liu, X.; Zhang, F. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol., 2021, 16(9), 1011-1018. doi: 10.1038/s41565-021-00922-3 PMID: 34112994
- Abdukayum, A.; Yang, C.X.; Zhao, Q.; Chen, J.T.; Dong, L.X.; Yan, X.P. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal. Chem., 2014, 86(9), 4096-4101. doi: 10.1021/ac500644x PMID: 24702120
- Maldiney, T.; Doan, B.T.; Alloyeau, D.; Bessodes, M.; Scherman, D.; Richard, C. Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging. Adv. Funct. Mater., 2015, 25(2), 331-338. doi: 10.1002/adfm.201401612
- Lu, Y.C.; Yang, C.X.; Yan, X.P. Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging. Nanoscale, 2015, 7(42), 17929-17937. doi: 10.1039/C5NR05623C PMID: 26462601
- Liu, J.M.; Liu, Y.Y.; Zhang, D.D.; Fang, G.Z.; Wang, S. Synthesis of GdAlO3:Mn4+, Ge4+@Au coreshell nanoprobes with plasmon-enhanced near-infrared persistent luminescence for in vivo trimodality bioimaging. ACS Appl. Mater. Interfaces, 2016, 8(44), 29939-29949. doi: 10.1021/acsami.6b09580 PMID: 27759378
- Zhao, H.; Shu, G.; Zhu, J.; Fu, Y.; Gu, Z.; Yang, D. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials, 2019, 217, 119332. doi: 10.1016/j.biomaterials.2019.119332 PMID: 31284124
- Feng, Y.; Liu, R.; Zhang, L.; Li, Z.; Su, Y.; Lv, Y. Raspberry-like mesoporous Zn1.07Ga2.34Si0.98O6.56: Cr0.01 nanocarriers for enhanced near-infrared afterglow imaging and combined cancer chemotherapy. ACS Appl. Mater. Interfaces, 2019, 11(48), 44978-44988. doi: 10.1021/acsami.9b18124 PMID: 31722170
- Wang, Z.H.; Liu, J.M.; Zhao, N.; Li, C.Y.; Lv, S.W.; Hu, Y.; Lv, H.; Wang, D.; Wang, S. Cancer cell macrophage membrane camouflaged persistent luminescent nanoparticles for imaging-guided photothermal therapy of colorectal cancer. ACS Appl. Nano Mater., 2020, 3(7), 7105-7118. doi: 10.1021/acsanm.0c01433
- Chen, L.J.; Sun, S.K.; Wang, Y.; Yang, C.X.; Wu, S.Q.; Yan, X.P. Activatable multifunctional persistent luminescence nanoparticle/copper sulfide nanoprobe for in vivo luminescence imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces, 2016, 8(48), 32667-32674. doi: 10.1021/acsami.6b10702 PMID: 27934189
- Yang, J.; Zhao, Y.; Meng, Y.; Zhu, H.; Yan, D.; Liu, C.; Xu, C.; Zhang, H.; Xu, L.; Li, Y.; Liu, Y. Irradiation-free photodynamic therapy in vivo induced by enhanced deep red afterglow within NIR-I bio-window. Chem. Eng. J., 2020, 387, 124067. doi: 10.1016/j.cej.2020.124067
- Wang, R.; Shi, J.; Song, L.; Zheng, S.; Liu, X.; Hong, M.; Zhang, Y. Sustained antitumor immunity based on persistent luminescence nanoparticles for cancer immunotherapy. Adv. Funct. Mater., 2021, 31(52), 2106884. doi: 10.1002/adfm.202106884
- Wu, S.; Qiao, Z.; Li, Y.; Hu, S.; Ma, Y.; Wei, S.; Zhang, L. Persistent luminescence nanoplatform with fenton-like catalytic activity for tumor multimodal imaging and photoenhanced combination therapy. ACS Appl. Mater. Interfaces, 2020, 12(23), 25572-25580. doi: 10.1021/acsami.0c04438 PMID: 32412741
- Li, Y.; Teng, X.; Wang, Y.; Yang, C.; Yan, X.; Li, J. Neutrophil delivered hollow titania covered persistent luminescent nanosensitizer for ultrosound augmented chemo/immuno glioblastoma therapy. Adv. Sci. (Weinh.), 2021, 8(17), 2004381. doi: 10.1002/advs.202004381 PMID: 34196474
Supplementary files
