Circulating Levels of 5-HT and BDNF in Adults with Autism Spectrum Conditions: An Investigation in a Sample of Subjects with Autism Spectrum Disorder, their First-degree Relatives and Controls
- Authors: Carpita B.1, Stagnari R.1, Palego L.2, Baroni D.2, Massimetti G.1, Nardi B.1, Cremone I.1, Betti L.2, Giannaccini G.2, Dell'Osso L.1
-
Affiliations:
- Department of clinical and experimental medicine, University of Pisa
- Department of pharmacy, University of Pisa
- Issue: Vol 31, No 6 (2024)
- Pages: 776-790
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjsvd.com/0929-8673/article/view/645177
- DOI: https://doi.org/10.2174/0929867330666230131115031
- ID: 645177
Cite item
Full Text
Abstract
Background:Several studies investigated circulating levels of serotonin (5- HT) and brain-derived neurotrophic factor (BDNF) in children with Autism spectrum disorder (ASD). More limited literature focused on ASD adults or on populations with subthreshold autism spectrum manifestations, such as relatives of ASD probands. This study aimed to investigate 5-HT and BDNF levels in adults with autism spectrum conditions. Correlations between levels of biochemical variables and ASD symptoms were also evaluated.
Methods:a sample of ASD adults, their first-degree relatives (Broad autism phenotype, BAP group), and controls were recruited and assessed with psychometric scales. Blood samples were collected from all participants. 5-HT and BDNF levels were measured by means of ELISA kits.
Results:ASD adults showed significantly lower platelet-poor plasma (PPP) 5-HT levels than BAP and control groups. No significant difference was found among groups for PPP BDNF levels and intra-platelet 5-HT levels. 5-HT levels were reported to be specifically correlated with some autism symptoms.
Conclusion:This work highlighted the presence in ASD adults of reduced PPP 5-HT levels than in other groups, without significant differences with respect to BDNF levels, supporting the hypothesis that biochemical correlates of ASD in adults may be different from those typically reported in children.
Keywords
About the authors
Barbara Carpita
Department of clinical and experimental medicine, University of Pisa
Author for correspondence.
Email: info@benthamscience.net
Rossella Stagnari
Department of clinical and experimental medicine, University of Pisa
Email: info@benthamscience.net
Lionella Palego
Department of pharmacy, University of Pisa
Email: info@benthamscience.net
Dario Baroni
Department of pharmacy, University of Pisa
Email: info@benthamscience.net
Gabriele Massimetti
Department of clinical and experimental medicine, University of Pisa
Email: info@benthamscience.net
Benedetta Nardi
Department of clinical and experimental medicine, University of Pisa
Email: info@benthamscience.net
Ivan Cremone
Department of clinical and experimental medicine, University of Pisa
Email: info@benthamscience.net
Laura Betti
Department of pharmacy, University of Pisa
Email: info@benthamscience.net
Gino Giannaccini
Department of pharmacy, University of Pisa
Email: info@benthamscience.net
Liliana Dell'Osso
Department of clinical and experimental medicine, University of Pisa
Email: info@benthamscience.net
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed; American Psychiatric Association: Washington, DC, 2013.
- DellOsso, L.; Lorenzi, P.; Carpita, B. Autistic traits and illness trajectories. Clin. Pract. Epidemiol. Ment. Health, 2019, 15(1), 94-98. doi: 10.2174/1745017901915010094 PMID: 31819756
- DellOsso, L.; Lorenzi, P.; Carpita, B. The neurodevelopmental continuum towards a neurodevelopmental gradient hypothesis. J. Psychopathol., 2019, 25(4), 179-182.
- Losh, M.; Childress, D.; Lam, K.; Piven, J. Defining key features of the broad autism phenotype: A comparison across parents of multiple- and single-incidence autism families. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(4), 424-433. doi: 10.1002/ajmg.b.30612 PMID: 17948871
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord., 2001, 31(1), 5-17. doi: 10.1023/A:1005653411471 PMID: 11439754
- Carpita, B.; Carmassi, C.; Calderoni, S.; Muti, D.; Muscarella, A.; Massimetti, G.; Cremone, I.M.; Gesi, C.; Conti, E.; Muratori, F.; DellOsso, L. The broad autism phenotype in real-life: Clinical and functional correlates of autism spectrum symptoms and rumination among parents of patients with autism spectrum disorder. CNS Spectr., 2020, 25(6), 765-773. doi: 10.1017/S1092852919001615 PMID: 31747980
- Bailey, A.; Palferman, S.; Heavey, L.; Le Couteur, A. Autism: The phenotype in relatives. J. Autism Dev. Disord., 1998, 28(5), 369-392. doi: 10.1023/A:1026048320785 PMID: 9813774
- DellOsso, L.; Carpita, B.; Bertelloni, C.A.; Diadema, E.; Barberi, F.M.; Gesi, C.; Carmassi, C. Subthreshold autism spectrum in bipolar disorder: Prevalence and clinical correlates. Psychiatry Res., 2019, 281, 112605. doi: 10.1016/j.psychres.2019.112605 PMID: 31629303
- DellOsso, L.; Cremone, I.M.; Carpita, B.; DellOste, V.; Muti, D.; Massimetti, G.; Barlati, S.; Vita, A.; Fagiolini, A.; Carmassi, C.; Gesi, C. Rumination, posttraumatic stress disorder, and mood symptoms in borderline personality disorder. Neuropsychiatr. Dis. Treat., 2019, 15, 1231-1238. doi: 10.2147/NDT.S198616 PMID: 31190829
- Carpita, B.; Muti, D.; Muscarella, A.; DellOste, V.; Diadema, E.; Massimetti, G.; Signorelli, M.S.; Fusar Poli, L.; Gesi, C.; Aguglia, E.; Politi, P.; Carmassi, C.; DellOsso, L. Sex differences in the relationship between PTSD spectrum symptoms and autistic traits in a sample of university students. Clin. Pract. Epidemiol. Ment. Health, 2019, 15(1), 110-119. doi: 10.2174/1745017901915010110 PMID: 31819759
- Billeci, L.; Calderoni, S.; Conti, E.; Gesi, C.; Carmassi, C.; DellOsso, L.; Cioni, G.; Muratori, F.; Guzzetta, A. The Broad Autism (Endo)Phenotype: Neurostructural and neurofunctional correlates in parents of individuals with autism spectrum disorders. Front. Neurosci., 2016, 10, 346. doi: 10.3389/fnins.2016.00346 PMID: 27499732
- Brondino, N.; Fusar-Poli, L.; Rocchetti, M.; Bertoglio, F.; Bloise, N.; Visai, L.; Politi, P. BDNF levels are associated with autistic traits in the general population. Psychoneuroendocrinology, 2018, 89, 131-133. doi: 10.1016/j.psyneuen.2018.01.008 PMID: 29414026
- Carpita, B.; Marazziti, D.; Palego, L.; Giannaccini, G.; Betti, L.; DellOsso, L. Microbiota, immune system and autism spectrum disorders: An integrative model towards novel treatment options. Curr. Med. Chem., 2020, 27(31), 5119-5136. doi: 10.2174/0929867326666190328151539 PMID: 31448708
- Harrington, R.A.; Lee, L.C.; Crum, R.M.; Zimmerman, A.W.; Hertz-Picciotto, I. Serotonin hypothesis of autism: Implications for selective serotonin reuptake inhibitor use during pregnancy. Autism Res., 2013, 6(3), 149-168. doi: 10.1002/aur.1288 PMID: 23495208
- Gabriele, S.; Sacco, R.; Persico, A.M. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol., 2014, 24(6), 919-929. doi: 10.1016/j.euroneuro.2014.02.004 PMID: 24613076
- Mulder, E.J.; Anderson, G.M.; Kema, I.P.; de Bildt, A.; van Lang, N.D.J.; den Boer, J.A.; Minderaa, R.B. Platelet serotonin levels in pervasive developmental disorders and mental retardation: Diagnostic group differences, within-group distribution, and behavioral correlates. J. Am. Acad. Child Adolesc. Psychiatry, 2004, 43(4), 491-499. doi: 10.1097/00004583-200404000-00016 PMID: 15187810
- Muller, C.L.; Anacker, A.M.J.; Veenstra-VanderWeele, J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience, 2016, 321, 24-41. doi: 10.1016/j.neuroscience.2015.11.010 PMID: 26577932
- Kolevzon, A.; Newcorn, J.H.; Kryzak, L.; Chaplin, W.; Watner, D.; Hollander, E.; Smith, C.J.; Cook, E.H., Jr; Silverman, J.M. Relationship between whole blood serotonin and repetitive behaviors in autism. Psychiatry Res., 2010, 175(3), 274-276. doi: 10.1016/j.psychres.2009.02.008 PMID: 20044143
- Sacco, R.; Curatolo, P.; Manzi, B.; Militerni, R.; Bravaccio, C.; Frolli, A.; Lenti, C.; Saccani, M.; Elia, M.; Reichelt, K.L.; Pascucci, T.; Puglisi-Allegra, S.; Persico, A.M. Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Res., 2010, 3(5), 237-252. doi: 10.1002/aur.151 PMID: 20878720
- Hollander, E.; Soorya, L.; Chaplin, W.; Anagnostou, E.; Taylor, B.P.; Ferretti, C.J.; Wasserman, S.; Swanson, E.; Settipani, C. A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders. Am. J. Psychiatry, 2012, 169(3), 292-299. doi: 10.1176/appi.ajp.2011.10050764 PMID: 22193531
- Meyza, K.Z.; Defensor, E.B.; Jensen, A.L.; Corley, M.J.; Pearson, B.L.; Pobbe, R.L.H.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J. The BTBR T+tf/J mouse model for autism spectrum disordersin search of biomarkers. Behav. Brain Res., 2013, 251, 25-34. doi: 10.1016/j.bbr.2012.07.021 PMID: 22958973
- Gould, G.G.; Burke, T.F.; Osorio, M.D.; Smolik, C.M.; Zhang, W.Q.; Onaivi, E.S.; Gu, T.T.; DeSilva, M.N.; Hensler, J.G. Enhanced novelty-induced corticosterone spike and upregulated serotonin 5-HT1A and cannabinoid CB1 receptors in adolescent BTBR mice. Psychoneuroendocrinology, 2014, 39, 158-169. doi: 10.1016/j.psyneuen.2013.09.003 PMID: 24126181
- Murphy, D.L.; Lesch, K.P. Targeting the murine serotonin transporter: insights into human neurobiology. Nat. Rev. Neurosci., 2008, 9(2), 85-96. doi: 10.1038/nrn2284 PMID: 18209729
- Lam, K.S.L.; Aman, M.G.; Arnold, L.E. Neurochemical correlates of autistic disorder: A review of the literature. Res. Dev. Disabil., 2006, 27(3), 254-289. doi: 10.1016/j.ridd.2005.03.003 PMID: 16002261
- Goldberg, J.; Anderson, G.M.; Zwaigenbaum, L.; Hall, G.B.C.; Nahmias, C.; Thompson, A.; Szatmari, P. Cortical serotonin type-2 receptor density in parents of children with autism spectrum disorders. J. Autism Dev. Disord., 2009, 39(1), 97-104. doi: 10.1007/s10803-008-0604-4 PMID: 18592367
- Eissa, N.; Al-Houqani, M.; Sadeq, A.; Ojha, S.K.; Sasse, A.; Sadek, B. Current enlightenment about etiology and pharmacological treatment of autism spectrum disorder. Front. Neurosci., 2018, 12, 304. doi: 10.3389/fnins.2018.00304 PMID: 29867317
- Hranilovic, D.; Bujas-Petkovic, Z.; Vragovic, R.; Vuk, T.; Hock, K.; Jernej, B. Hyperserotonemia in adults with autistic disorder. J. Autism Dev. Disord., 2007, 37(10), 1934-1940. doi: 10.1007/s10803-006-0324-6 PMID: 17165147
- Padmakumar, M.; Van Raes, E.; Van Geet, C.; Freson, K. Blood platelet research in autism spectrum disorders: In search of biomarkers. Res. Pract. Thromb. Haemost., 2019, 3(4), 566-577. doi: 10.1002/rth2.12239 PMID: 31624776
- Hranilović, D.; Bujas-Petković, Z.; Tomičić, M.; Bordukalo-Nikić, T.; Blaević, S.; Čičin-ain, L. Hyperserotonemia in autism: activity of 5HT-associated platelet proteins. J. Neural Transm. (Vienna), 2009, 116(4), 493-501. doi: 10.1007/s00702-009-0192-2 PMID: 19221690
- Minderaa, R.B.; Anderson, G.M.; Volkmar, F.R.; Harcherick, D.; Akkerhuis, G.W.; Cohen, D.J. Whole blood serotonin and tryptophan in autism: Temporal stability and the effects of medication. J. Autism Dev. Disord., 1989, 19(1), 129-136. doi: 10.1007/BF02212724 PMID: 2708296
- Piven, J.; Tsai, G.; Nehme, E.; Coyle, J.T.; Chase, G.A.; Folstein, S.E. Platelet serotonin, a possible marker for familial autism. J. Autism Dev. Disord., 1991, 21(1), 51-59. doi: 10.1007/BF02206997 PMID: 2037549
- McBride, P.A.; Anderson, G.M.; Hertzig, M.; Snow, M.; Thompson, S.M.; Khait, V.D.; Shapiro, T.; Cohen, D.J. Effects of diagnosis, race, and puberty on platelet serotonin levels in autism and mental retardation. J. Am. Acad. Child Adolesc. Psychiatry, 1998, 37(7), 767-776. doi: 10.1097/00004583-199807000-00017 PMID: 9666633
- Pagan, C.; Delorme, R.; Callebert, J.; Goubran-Botros, H.; Amsellem, F.; Drouot, X.; Boudebesse, C.; Le Dudal, K.; Ngo-Nguyen, N.; Laouamri, H.; Gillberg, C.; Leboyer, M.; Bourgeron, T.; Launay, J-M. The serotonin-N-acetylserotoninmelatonin pathway as a biomarker for autism spectrum disorders. Transl. Psychiatry, 2014, 4(11), e479. doi: 10.1038/tp.2014.120 PMID: 25386956
- Croonenberghs, J.; Delmeire, L.; Verkerk, R.; Lin, A.H.; Meskal, A.; Neels, H.; Van der Planken, M.; Scharpe, S.; Deboutte, D.; Pison, G.; Maes, M. Peripheral markers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder. Neuropsychopharmacology, 2000, 22(3), 275-283. doi: 10.1016/S0893-133X(99)00131-1 PMID: 10693155
- Vered, Y.; Golubchik, P.; Mozes, T.; Strous, R.; Nechmad, A.; Mester, R.; Weizman, A.; Spivak, B. The platelet-poor plasma 5-HT response to carbohydrate rich meal administration in adult autistic patients compared with normal controls. Hum. Psychopharmacol., 2003, 18(5), 395-399. doi: 10.1002/hup.489 PMID: 12858328
- Spivak, B.; Golubchik, P.; Mozes, T.; Vered, Y.; Nechmad, A.; Weizman, A.; Strous, R.D. Low platelet-poor plasma levels of serotonin in adult autistic patients. Neuropsychobiology, 2004, 50(2), 157-160. doi: 10.1159/000079108 PMID: 15292671
- Shuffrey, L.C.; Guter, S.J.; Delaney, S.; Jacob, S.; Anderson, G.M.; Sutcliffe, J.S.; Cook, E.H.; Veenstra-VanderWeele, J. Is there sexual dimorphism of hyperserotonemia in autism spectrum disorder? Autism Res., 2017, 10(8), 1417-1423. doi: 10.1002/aur.1791 PMID: 28401654
- Cook, E.H., Jr; Leventhal, B.L.; Heller, W.; Metz, J.; Wainwright, M.; Freedman, D.X. Autistic children and their first-degree relatives: relationships between serotonin and norepinephrine levels and intelligence. J. Neuropsychiatry Clin. Neurosci., 1990, 2(3), 268-274. doi: 10.1176/jnp.2.3.268 PMID: 2136085
- Leventhal, B.L.; Cook, E.H., Jr; Morford, M.; Ravitz, A.; Freedman, D.X. Relationships of whole blood serotonin and plasma norepinephrine within families. J. Autism Dev. Disord., 1990, 20(4), 499-511. doi: 10.1007/BF02216055 PMID: 2279970
- Leboyer, M.; Philippe, A.; Bouvard, M.; Guilloud-Bataille, M.; Bondoux, D.; Tabuteau, F.; Feingold, J.; Mouren-Simeoni, M.C.; Launay, J.M. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives. Biol. Psychiatry, 1999, 45(2), 158-163. doi: 10.1016/S0006-3223(97)00532-5 PMID: 9951562
- Bijl, N.; Thys, C.; Wittevrongel, C.; De la Marche, W.; Devriendt, K.; Peeters, H.; Van Geet, C.; Freson, K. Platelet studies in autism spectrum disorder patients and first-degree relatives. Mol. Autism, 2015, 6(1), 57. doi: 10.1186/s13229-015-0051-y PMID: 26500752
- Kuperman, S.; Beeghly, J.H.L.; Burns, T.L.; Tsai, L. Serotonin relationships of autistic probands and their first-degree relatives. J. Am. Acad. Child Psychiatry, 1985, 24(2), 186-190. doi: 10.1016/S0002-7138(09)60446-5 PMID: 3989161
- Connors, S.L.; Matteson, K.J.; Sega, G.A.; Lozzio, C.B.; Carroll, R.C.; Zimmerman, A.W. Plasma serotonin in autism. Pediatr. Neurol., 2006, 35(3), 182-186. doi: 10.1016/j.pediatrneurol.2006.02.010 PMID: 16939857
- Martinowich, K.; Lu, B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology, 2008, 33(1), 73-83. doi: 10.1038/sj.npp.1301571 PMID: 17882234
- Balaratnasingam, S.; Janca, A. Brain derived neurotrophic factor: A novel neurotrophin involved in psychiatric and neurological disorders. Pharmacol. Ther., 2012, 134(1), 116-124. doi: 10.1016/j.pharmthera.2012.01.006 PMID: 22281237
- Francis, K.; Dougali, A.; Sideri, K.; Kroupis, C.; Vasdekis, V.; Dima, K.; Douzenis, A. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up. Acta Psychiatr. Scand., 2018, 137(5), 433-441. doi: 10.1111/acps.12872 PMID: 29532458
- Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B A A.; Penninx, B.W.J.H.; Elzinga, B.M. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol. Psychiatry, 2014, 19(7), 791-800. doi: 10.1038/mp.2013.105 PMID: 23958957
- Ahmed, A.O.; Mantini, A.M.; Fridberg, D.J.; Buckley, P.F. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: A meta-analysis. Psychiatry Res., 2015, 226(1), 1-13. doi: 10.1016/j.psychres.2014.12.069 PMID: 25681004
- Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A.; Soares, J.C.; Leite, C.M.G.S.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C.; Sales, P.M.G.; Quevedo, J.; Oertel-Knöchel, V.; Vieta, E.; González-Pinto, A.; Berk, M.; Carvalho, A.F. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med., 2015, 13(1), 289. doi: 10.1186/s12916-015-0529-7 PMID: 26621529
- Qin, X.Y.; Feng, J.C.; Cao, C.; Wu, H.T.; Loh, Y.P.; Cheng, Y. Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children. JAMA Pediatr., 2016, 170(11), 1079-1086. doi: 10.1001/jamapediatrics.2016.1626 PMID: 27654278
- Ormstad, H.; Bryn, V.; Verkerk, R.; Skjeldal, O.H.; Halvorsen, B.; Saugstad, O.D.; Isaksen, J.; Maes, M. Serumtryptophan, tryptophan catabolites and brain-derived neurotrophic factor in subgroups of youngsters with autism spectrum disorders. CNS Neurol. Disord. Drug Targets, 2018, 17(8), 626-639. doi: 10.2174/1871527317666180720163221 PMID: 30033880
- Armeanu, R.; Mokkonen, M.; Crespi, B. Meta-analysis of BDNF levels in autism. Cell. Mol. Neurobiol., 2017, 37(5), 949-954. doi: 10.1007/s10571-016-0415-7 PMID: 27501933
- Zheng, Z.; Zhang, L.; Zhu, T.; Huang, J.; Qu, Y.; Mu, D. Peripheral brain-derived neurotrophic factor in autism spectrum disorder: a systematic review and meta-analysis. Sci. Rep., 2016, 6(1), 31241. doi: 10.1038/srep31241 PMID: 27506602
- Saghazadeh, A.; Rezaei, N. Brain-derived neurotrophic factor levels in autism: A systematic review and meta-analysis. J. Autism Dev. Disord., 2017, 47(4), 1018-1029. doi: 10.1007/s10803-016-3024-x PMID: 28138831
- Zhang, Q.; Jiang, L.; kong, L.Y.; Lu, Y.J. Serum Brain-derived neurotrophic factor levels in Chinese children with autism spectrum disorders: A pilot study. Int. J. Dev. Neurosci., 2014, 37(1), 65-68. doi: 10.1016/j.ijdevneu.2014.06.013 PMID: 24984148
- Meng, W.D.; Sun, S.J.; Yang, J.; Chu, R.X.; Tu, W.; Liu, Q. Elevated serum brain-derived neurotrophic factor (BDNF) but not BDNF gene Val66Met polymorphism is associated with autism spectrum disorders. Mol. Neurobiol., 2017, 54(2), 1167-1172. doi: 10.1007/s12035-016-9721-9 PMID: 26820673
- Yeom, C.W.; Park, Y.J.; Choi, S.W.; Bhang, S.Y. Association of peripheral BDNF level with cognition, attention and behavior in preschool children. Child Adolesc. Psychiatry Ment. Health, 2016, 10(1), 10. doi: 10.1186/s13034-016-0097-4 PMID: 27200107
- First, M.B.; Williams, J.B.; Karg, R.S.; Spitzer, R.L. SCID-5-CV: Structured Clinical Interview for DSM-5 Disorders, Clinician Version; American Psychiatric Association: Arlington, VA, 2015.
- DellOsso, L.; Gesi, C.; Massimetti, E.; Cremone, I.M.; Barbuti, M.; Maccariello, G.; Moroni, I.; Barlati, S.; Castellini, G.; Luciano, M.; Bossini, L.; Rocchetti, M.; Signorelli, M.; Aguglia, E.; Fagiolini, A.; Politi, P.; Ricca, V.; Vita, A.; Carmassi, C.; Maj, M. Adult Autism Subthreshold Spectrum (AdAS Spectrum): Validation of a questionnaire investigating subthreshold autism spectrum. Compr. Psychiatry, 2017, 73, 61-83. doi: 10.1016/j.comppsych.2016.11.001 PMID: 27918948
- Eriksson, J.M.; Andersen, L.M.J.; Bejerot, S. RAADS-14 Screen: validity of a screening tool for autism spectrum disorder in an adult psychiatric population. Mol. Autism, 2013, 4(1), 49. doi: 10.1186/2040-2392-4-49 PMID: 24321513
- Nolen-Hoeksema, S.; Morrow, J. A prospective study of depression and posttraumatic stress symptoms after a natural disaster: The 1989 Loma Prieta earthquake. J. Pers. Soc. Psychol., 1991, 61(1), 115-121. doi: 10.1037/0022-3514.61.1.115 PMID: 1890582
- Palmieri, R.; Gapsarre, A.; Lanciano, T. A dispositional measure of depressive rumination: The Nolen-Hoeksema and Morrow RRS. Psychofenia: Research and Psychological Analysis, 2007, 17, 15-33.
- Mundt, J.C.; Marks, I.M.; Shear, M.K.; Greist, J.M. The work and social adjustment scale: A simple measure of impairment in functioning. Br. J. Psychiatry, 2002, 180(5), 461-464. doi: 10.1192/bjp.180.5.461 PMID: 11983645
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254. doi: 10.1016/0003-2697(76)90527-3 PMID: 942051
- Carpita, B.; Nardi, B.; Palego, L.; Cremone, I.M.; Massimetti, G.; Carmassi, C.; Betti, L.; Giannaccini, G.; DellOsso, L. Kynurenine pathway and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr., 2022, 1-12. doi: 10.1017/S1092852922000840 PMID: 35634735
- Anderson, G.M.; Hertzig, M.E.; McBride, P.A. Brief report: Platelet-poor plasma serotonin in autism. J. Autism Dev. Disord., 2012, 42(7), 1510-1514. doi: 10.1007/s10803-011-1371-1 PMID: 21979109
- Walsh, J.J.; Llorach, P.; Cardozo Pinto, D.F.; Wenderski, W.; Christoffel, D.J.; Salgado, J.S.; Heifets, B.D.; Crabtree, G.R.; Malenka, R.C. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology, 2021, 46(11), 2000-2010. doi: 10.1038/s41386-021-01091-6 PMID: 34239048
- Pittendreigh, C.; Solomons, K.; Maurer-Spurej, E. The influence of selective serotonin reuptake inhibitors on human platelet serotonin. Thromb. Haemost., 2004, 91(1), 119-128. doi: 10.1160/TH03-05-0330 PMID: 14691577
- Starlinger, P.; Pereyra, D.; Hackl, H.; Ortmayr, G.; Braunwarth, E.; Santol, J.; Najarnia, S.; Driedger, M.R.; Gregory, L.; Alva-Ruiz, R.; Glasgow, A.; Assinger, A.; Nagorney, D.M.; Habermann, E.B.; Staetttner, S.; Cleary, S.P.; Smoot, R.L.; Gruenberger, T. Consequences of perioperative serotonin reuptake inhibitor treatment during hepatic surgery. Hepatology, 2021, 73(5), 1956-1966. doi: 10.1002/hep.31601 PMID: 33078426
- Misiak, B.; Frydecka, D.; Łaczmański, Ł.; Ślęzak, R.; Kiejna, A. Effects of second-generation antipsychotics on selected markers of one-carbon metabolism and metabolic syndrome components in first-episode schizophrenia patients. Eur. J. Clin. Pharmacol., 2014, 70(12), 1433-1441. doi: 10.1007/s00228-014-1762-2 PMID: 25291992
- Savino, R.; Carotenuto, M.; Polito, A.N.; Di Noia, S.; Albenzio, M.; Scarinci, A.; Ambrosi, A.; Sessa, F.; Tartaglia, N.; Messina, G. Analyzing the potential biological determinants of autism spectrum disorder: From neuroinflammation to the kynurenine pathway. Brain Sci., 2020, 10(9), 631. doi: 10.3390/brainsci10090631 PMID: 32932826
- Zhuang, X.; Xu, H.; Fang, Z.; Xu, C.; Xue, C.; Hong, X. Platelet serotonin and serotonin transporter as peripheral surrogates in depression and anxiety patients. Eur. J. Pharmacol., 2018, 834, 213-220. doi: 10.1016/j.ejphar.2018.07.033 PMID: 30031795
- DeLong, G.R.; Teague, L.A.; Kamran, M.M.S. Effects of fluoxetine treatment in young children with idiopathic autism. Dev. Med. Child Neurol., 1998, 40(8), 551-562. doi: 10.1111/j.1469-8749.1998.tb15414.x PMID: 9746008
- Rappaport, L.M.; Russell, J.J.; Hedeker, D.; Pinard, G.; Bleau, P.; Moskowitz, D.S. Affect, interpersonal behaviour and interpersonal perception during open-label, uncontrolled paroxetine treatment of people with social anxiety disorder: a pilot study. J. Psychiatry Neurosci., 2018, 43(6), 407-415. doi: 10.1503/jpn.170141 PMID: 30375835
- Kiser, D.; SteemerS, B.; Branchi, I.; Homberg, J.R. The reciprocal interaction between serotonin and social behaviour. Neurosci. Biobehav. Rev., 2012, 36(2), 786-798. doi: 10.1016/j.neubiorev.2011.12.009 PMID: 22206901
- Beis, D.; Holzwarth, K.; Flinders, M.; Bader, M.; Wöhr, M.; Alenina, N. Brain serotonin deficiency leads to social communication deficits in mice. Biol. Lett., 2015, 11(3), 20150057. doi: 10.1098/rsbl.2015.0057 PMID: 25808003
- Andersson, M.; Tangen, Ä.; Farde, L.; Bölte, S.; Halldin, C.; Borg, J.; Lundberg, J. Serotonin transporter availability in adults with autisma positron emission tomography study. Mol. Psychiatry, 2021, 26(5), 1647-1658. doi: 10.1038/s41380-020-00868-3 PMID: 32848204
- Evers, E.; van der Veen, F.; Fekkes, D.; Jolles, J. Serotonin and cognitive flexibility: neuroimaging studies into the effect of acute tryptophan depletion in healthy volunteers. Curr. Med. Chem., 2007, 14(28), 2989-2995. doi: 10.2174/092986707782794032 PMID: 18220735
- Clarke, H.F.; Dalley, J.W.; Crofts, H.S.; Robbins, T.W.; Roberts, A.C. Cognitive inflexibility after prefrontal serotonin depletion. Science, 2004, 304(5672), 878-880. doi: 10.1126/science.1094987 PMID: 15131308
- Clarke, H.F.; Walker, S.C.; Crofts, H.S.; Dalley, J.W.; Robbins, T.W.; Roberts, A.C. Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J. Neurosci., 2005, 25(2), 532-538. doi: 10.1523/JNEUROSCI.3690-04.2005 PMID: 15647499
- Weinberg-Wolf, H.; Fagan, N.A.; Anderson, G.M.; Tringides, M.; Dal Monte, O.; Chang, S.W.C. The effects of 5-hydroxytryptophan on attention and central serotonin neurochemistry in the rhesus macaque. Neuropsychopharmacology, 2018, 43(7), 1589-1598. doi: 10.1038/s41386-017-0003-7 PMID: 29463909
- Waterhouse, B.D.; Moises, H.C.; Woodward, D.J. Interaction of serotonin with somatosensory cortical neuronal responses to afferent synaptic inputs and putative neurotransmitters. Brain Res. Bull., 1986, 17(4), 507-518. doi: 10.1016/0361-9230(86)90218-2 PMID: 2877719
- Siemann, J.K.; Muller, C.L.; Forsberg, C.G.; Blakely, R.D.; Veenstra-VanderWeele, J.; Wallace, M.T. An autism-associated serotonin transporter variant disrupts multisensory processing. Transl. Psychiatry, 2017, 7(3), e1067. doi: 10.1038/tp.2017.17 PMID: 28323282
- McDougle, C.J.; Kresch, L.E.; Posey, D.J. Repetitive thoughts and behavior in pervasive developmental disorders: Treatment with serotonin reuptake inhibitors. J. Autism Dev. Disord., 2000, 30(5), 427-435. doi: 10.1023/A:1005551523657 PMID: 11098879
Supplementary files
