Integrated High-throughput Transcriptomic Data Identifies Survivin as a Potential Breast Cancer Therapeutic Biomarker


如何引用文章

全文:

详细

Background:Breast cancer is the leading cause of cancer-related mortality among women worldwide. Advanced stages are usually obstinate with chemotherapy, resulting in a poor prognosis; however, they are treatable if diagnosed early.

Objective:Identifying biomarkers that can detect cancer early or have therapeutic significance is imperative.

Methods:Herein, a comprehensive bioinformatics-based transcriptomics study of breast cancer for identifying differentially expressed genes (DEGs), followed by a screening of potential compounds by molecular docking, was performed. Genome-wide mRNA expression data of breast cancer patients (n=248) and controls (n=65) were retrieved from the GEO database for meta-analysis. Statistically significant DEGs were used for enrichment analysis based on ingenuity pathway analysis and protein-protein network analysis.

Results:A total of 3096 unique DEGs (965 up-regulated and 2131 down-regulated) were mapped as biologically relevant. The most upregulated genes were COL10A1, COL11A1, TOP2A, BIRC5 (survivin), MMP11, S100P, RARA, and the most downregulated genes were ADIPOQ, LEP, CFD, PCK1 and HBA2. Transcriptomic and molecular pathway analyses identified BIRC5/survivin as a significant DEG. Kinetochore metaphase signaling is recognized as a prominent dysregulated canonical pathway. Protein-protein interaction study revealed that KIF2C, KIF20A, KIF23, CDCA8, AURKA, AURKB, INCENP, CDK1, BUB1 and CENPA are BIRC5-associated proteins. Molecular docking was performed to exhibit binding interactions with multiple natural ligands.

Conclusion:BIRC5 is a promising predictive marker and a potential therapeutic target in breast cancer. Further large-scale studies are required to correlate the significance of BIRC5 in breast cancer, leading to a step toward the clinical translation of novel diagnostic and therapeutic options.

作者简介

Zeenat Mirza

King Fahd Medical Research Center, King Abdulaziz University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. WHO Cancer. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on: Dec 19 2021).
  2. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  3. American Cancer Society, I. Breast Cancer. 2021. Available from: https://www.cancer.org/cancer/breast- cancer.html# (Accessed on: 19 December 2021).
  4. DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(6), 438-451. doi: 10.3322/caac.21583 PMID: 31577379
  5. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  6. Wiseman, B.S.; Werb, Z. Stromal effects on mammary gland development and breast cancer. Science, 2002, 296(5570), 1046-1049. doi: 10.1126/science.1067431 PMID: 12004111
  7. Viale, G. The current state of breast cancer classification. Ann. Oncol., 2012, 23(Suppl. 10), x207-x210. doi: 10.1093/annonc/mds326 PMID: 22987963
  8. Nkondjock, A.; Ghadirian, P. Risk factors and risk reduction of breast cancer. Med. Sci., 2005, 21(2), 175-180. doi: 10.1051/medsci/2005212175 PMID: 15691489
  9. Sørlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; Demeter, J.; Perou, C.M.; Lønning, P.E.; Brown, P.O.; Børresen-Dale, A.L.; Botstein, D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8418-8423. doi: 10.1073/pnas.0932692100 PMID: 12829800
  10. Hedenfalk, I.; Duggan, D.; Chen, Y.; Radmacher, M.; Bittner, M.; Simon, R.; Meltzer, P.; Gusterson, B.; Esteller, M.; Raffeld, M.; Yakhini, Z.; Ben-Dor, A.; Dougherty, E.; Kononen, J.; Bubendorf, L.; Fehrle, W.; Pittaluga, S.; Gruvberger, S.; Loman, N.; Johannsson, O.; Olsson, H.; Wilfond, B.; Sauter, G.; Kallioniemi, O-P.; Borg, Å.; Trent, J. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med., 2001, 344(8), 539-548. doi: 10.1056/NEJM200102223440801 PMID: 11207349
  11. Chang, J.C.; Wooten, E.C.; Tsimelzon, A.; Hilsenbeck, S.G.; Gutierrez, M.C.; Elledge, R.; Mohsin, S.; Osborne, C.K.; Chamness, G.C.; Allred, D.C.; O’Connell, P. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet, 2003, 362(9381), 362-369. doi: 10.1016/S0140-6736(03)14023-8 PMID: 12907009
  12. Hartmann, A.; Blaszyk, H.; Saitoh, S.; Tsushima, K.; Tamura, Y.; Cunningham, J.M.; McGovern, R.M.; Schroeder, J.J.; Sommer, S.S.; Kovach, J.S. High frequency of p53 gene mutations in primary breast cancers in Japanese women, a low-incidence population. Br. J. Cancer, 1996, 73(8), 896-901. doi: 10.1038/bjc.1996.179 PMID: 8611423
  13. Lai, F.M.; Chen, P.; Ku, H.C.; Lee, M.S.; Chang, S.C.; Chang, T.M.; Liou, S.H. A case-control study of parity, age at first full-term pregnancy, breast feeding and breast cancer in Taiwanese women. Proc. Natl. Sci. Counc. Repub. China B, 1996, 20(3), 71-77. PMID: 8956522
  14. Kulkoyluoglu-Cotul, E.; Arca, A.; Madak-Erdogan, Z. Crosstalk between estrogen signaling and breast cancer metabolism. Trends Endocrinol. Metab., 2019, 30(1), 25-38. doi: 10.1016/j.tem.2018.10.006 PMID: 30471920
  15. Truong, T.H.; Lange, C.A. Deciphering steroid receptor crosstalk in hormone-driven cancers. Endocrinology, 2018, 159(12), 3897-3907. doi: 10.1210/en.2018-00831 PMID: 30307542
  16. Lukong, K.E. Understanding breast cancer-the long and winding road. BBA Clin., 2017, 7, 64-77. doi: 10.1016/j.bbacli.2017.01.001 PMID: 28194329
  17. Takeuchi, H.; Morton, D.L.; Elashoff, D.; Hoon, D.S.B. Survivin expression by metastatic melanoma predicts poor disease outcome in patients receiving adjuvant polyvalent vaccine. Int. J. Cancer, 2005, 117(6), 1032-1038. doi: 10.1002/ijc.21267 PMID: 15986442
  18. Carrasco, R.A.; Stamm, N.B.; Marcusson, E.; Sandusky, G.; Iversen, P.; Patel, B.K.R. Antisense inhibition of survivin expression as a cancer therapeutic. Mol. Cancer Ther., 2011, 10(2), 221-232. doi: 10.1158/1535-7163.MCT-10-0756 PMID: 21216939
  19. Altieri, D.C. Targeted therapy by disabling crossroad signaling networks: The survivin paradigm. Mol. Cancer Ther., 2006, 5(3), 478-482. doi: 10.1158/1535-7163.MCT-05-0436 PMID: 16546961
  20. Altieri, D.C. Survivin, cancer networks and pathway-directed drug discovery. Nat. Rev. Cancer, 2008, 8(1), 61-70. doi: 10.1038/nrc2293 PMID: 18075512
  21. Fukuda, S.; Pelus, L.M. Survivin, a cancer target with an emerging role in normal adult tissues. Mol. Cancer Ther., 2006, 5(5), 1087-1098. doi: 10.1158/1535-7163.MCT-05-0375 PMID: 16731740
  22. Church, D.N.; Talbot, D.C. Survivin in solid tumors: Rationale for development of inhibitors. Curr. Oncol. Rep., 2012, 14(2), 120-128. doi: 10.1007/s11912-012-0215-2 PMID: 22234703
  23. Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658. doi: 10.1016/j.neo.2017.05.002 PMID: 28732212
  24. Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; Bork, P.; von Mering, C. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 2009, 37(Database), D412-D416. doi: 10.1093/nar/gkn760 PMID: 18940858
  25. Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; von Mering, C.; Jensen, L.J. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res., 2013, 41(Database issue), D808-D815. PMID: 23203871
  26. Mishra, S.; Singh, S. Identification of inhibitors against metastasis protein "Survivin:" In silico discovery using virtual screening and molecular docking studies. Pharmacogn. Mag., 2018, 13(Suppl. 4), S742-S748. PMID: 29491627
  27. Alhopuro, P.; Karhu, A.; Winqvist, R.; Waltering, K.; Visakorpi, T.; Aaltonen, L.A. Somatic mutation analysis of MYH11in breast and prostate cancer. BMC Cancer, 2008, 8(1), 263. doi: 10.1186/1471-2407-8-263 PMID: 18796164
  28. IbolyaKiss; ÉvaKorpos; FerencDeák Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues. Neural Regen. Res., 2015, 10(6), 866-869. doi: 10.4103/1673-5374.158332 PMID: 26199591
  29. Noel, J.P.; Verdecia, M.A.; Huang, H.; Dutil, E.; Kaiser, D.A.; Hunter, T. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat. Struct. Biol., 2000, 7(7), 602-608. doi: 10.1038/76838 PMID: 10876248
  30. Jeyaprakash, A.A.; Klein, U.R.; Lindner, D.; Ebert, J.; Nigg, E.A.; Conti, E. Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell, 2007, 131(2), 271-285. doi: 10.1016/j.cell.2007.07.045 PMID: 17956729
  31. Klein, U.R.; Nigg, E.A.; Gruneberg, U. Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. Mol. Biol. Cell, 2006, 17(6), 2547-2558. doi: 10.1091/mbc.e05-12-1133 PMID: 16571674
  32. Dai, J.; Zhu, B.; Lin, W.; Gao, H.; Dai, H.; Zheng, L.; Shi, W.; Chen, W. Identification of prognostic significance of BIRC5 in breast cancer using integrative bioinformatics analysis. Biosci. Rep., 2020, 40(2), BSR20193678. doi: 10.1042/BSR20193678 PMID: 32043523
  33. Xu, L.; Yu, W.; Xiao, H.; Lin, K. BIRC5 is a prognostic biomarker associated with tumor immune cell infiltration. Sci. Rep., 2021, 11(1), 390. doi: 10.1038/s41598-020-79736-7 PMID: 33431968
  34. Altznauer, F.; Martinelli, S.; Yousefi, S.; Thürig, C.; Schmid, I.; Conway, E.M.; Schöni, M.H.; Vogt, P.; Mueller, C.; Fey, M.F.; Zangemeister-Wittke, U.; Simon, H.U. Inflammation-associated cell cycle-independent block of apoptosis by survivin in terminally differentiated neutrophils. J. Exp. Med., 2004, 199(10), 1343-1354. doi: 10.1084/jem.20032033 PMID: 15148334
  35. Wadegaonkar, V.P.; Wadegaonkar, P.A. Withanone as an inhibitor of survivin: A potential drug candidate for cancer therapy. J. Biotechnol., 2013, 168(2), 229-233. doi: 10.1016/j.jbiotec.2013.08.028 PMID: 23994265
  36. Gao, R.; Shah, N.; Lee, J.S.; Katiyar, S.P.; Li, L.; Oh, E.; Sundar, D.; Yun, C.O.; Wadhwa, R.; Kaul, S.C. Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K. Mol. Cancer Ther., 2014, 13(12), 2930-2940. doi: 10.1158/1535-7163.MCT-14-0324 PMID: 25236891
  37. Zhang, X.; Zhuang, T.; Liang, Z.; Li, L.; Xue, M.; Liu, J.; Liang, H. Breast cancer suppression by aplysin is associated with inhibition of PI3K/AKT/FOXO3a pathway. Oncotarget, 2017, 8(38), 63923-63934. doi: 10.18632/oncotarget.19209 PMID: 28969041
  38. Liu, J.; Ma, L.; Wu, N.; Liu, G.; Zheng, L.; Lin, X. Aplysin sensitizes cancer cells to TRAIL by suppressing P38 MAPK/survivin pathway. Mar. Drugs, 2014, 12(9), 5072-5088. doi: 10.3390/md12095072 PMID: 25257790
  39. Ashwaq, A.A.; Al-Qubaisi, M.; Rasedee, A.; Abdul, A.; Taufiq-Yap, Y.; Yeap, S. Inducing G2/M cell cycle arrest and apoptosis through generation reactive oxygen species (ROS)-mediated mitochondria pathway in HT-29 cells by dentatin (DEN) and Dentatin Incorporated in Hydroxypropyl-β-Cyclodextrin (DEN-HPβCD). Int. J. Mol. Sci., 2016, 17(10), 1653. doi: 10.3390/ijms17101653 PMID: 27763535
  40. Ling, X.; Wu, W.; Fan, C.; Xu, C.; Liao, J.; Rich, L.J.; Huang, R.Y.; Repasky, E.A.; Wang, X.; Li, F. An ABCG2 non-substrate anticancer agent FL118 targets drug-resistant cancer stem-like cells and overcomes treatment resistance of human pancreatic cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 240. doi: 10.1186/s13046-018-0899-8 PMID: 30285798
  41. Abdelhamed, S.; Yokoyama, S.; Refaat, A.; Ogura, K.; Yagita, H.; Awale, S.; Saiki, I. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res., 2014, 34(4), 1893-1899. PMID: 24692724
  42. Siegelin, M.D.; Reuss, D.E.; Habel, A.; Rami, A.; von Deimling, A. Quercetin promotes degradation of survivin and thereby enhances death-receptor mediated apoptosis in glioma cells. Neurooncol., 2009, 11(2), 122-131. doi: 10.1215/15228517-2008-085 PMID: 18971417
  43. Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, O.; Doganlar, Z.B.; Bilir, A.; Oktem, G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother., 2018, 107, 793-805. doi: 10.1016/j.biopha.2018.08.061 PMID: 30142541
  44. Plescia, J.; Salz, W.; Xia, F.; Pennati, M.; Zaffaroni, N.; Daidone, M.G.; Meli, M.; Dohi, T.; Fortugno, P.; Nefedova, Y.; Gabrilovich, D.I.; Colombo, G.; Altieri, D.C. Rational design of shepherdin, a novel anticancer agent. Cancer Cell, 2005, 7(5), 457-468. doi: 10.1016/j.ccr.2005.03.035 PMID: 15894266
  45. Liu, H.T.; Ho, Y.S. Anticancer effect of curcumin on breast cancer and stem cells. Food Sci. Hum. Wellness, 2018, 7(2), 134-137. doi: 10.1016/j.fshw.2018.06.001
  46. Zeng, Y.; Weng, G.; Fan, J.; Li, Z.; Wu, J.; Li, Y.; Zheng, R.; Xia, P.; Guo, K. Curcumin reduces the expression of survivin, leading to enhancement of arsenic trioxide-induced apoptosis in myelodysplastic syndrome and leukemia stem-like cells. Oncol. Rep., 2016, 36(3), 1233-1242. doi: 10.3892/or.2016.4944 PMID: 27430728
  47. Poumpouridou, N.; Kroupis, C. Hereditary breast cancer: Beyond BRCA genetic analysis; PALB2 emerges. Clin. Chem. Lab. Med., 2011, 50(3), 423-434. PMID: 22505525
  48. Yamanaka, K.; Nakata, M.; Kaneko, N.; Fushiki, H.; Kita, A.; Nakahara, T.; Koutoku, H.; Sasamata, M. YM155, a selective survivin suppressant, inhibits tumor spread and prolongs survival in a spontaneous metastatic model of human triple negative breast cancer. Int. J. Oncol., 2011, 39(3), 569-575. doi: 10.3892/ijo.2011.1077 PMID: 21674125
  49. Kaneko, N.; Yamanaka, K.; Kita, A.; Tabata, K.; Akabane, T.; Mori, M. Synergistic antitumor activities of sepantronium bromide (YM155), a survivin suppressant, in combination with microtubule-targeting agents in triple-negative breast cancer cells. Biol. Pharm. Bull., 2013, 36(12), 1921-1927. doi: 10.1248/bpb.b13-00515 PMID: 24432379
  50. Sun, Y.; Giacalone, N.J.; Lu, B. Terameprocol (tetra-O-methyl nordihydroguaiaretic acid), an inhibitor of Sp1-mediated survivin transcription, induces radiosensitization in non-small cell lung carcinoma. J. Thorac. Oncol., 2011, 6(1), 8-14. doi: 10.1097/JTO.0b013e3181fa646a PMID: 21107289
  51. Lu, X.; Lu, X.; Wang, Z.C.; Iglehart, J.D.; Zhang, X.; Richardson, A.L. Predicting features of breast cancer with gene expression patterns. Breast Cancer Res. Treat., 2008, 108(2), 191-201. doi: 10.1007/s10549-007-9596-6 PMID: 18297396
  52. Liu, R.; Wang, X.; Chen, G.Y.; Dalerba, P.; Gurney, A.; Hoey, T.; Sherlock, G.; Lewicki, J.; Shedden, K.; Clarke, M.F. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med., 2007, 356(3), 217-226. doi: 10.1056/NEJMoa063994 PMID: 17229949
  53. Tripathi, A.; King, C.; de la Morenas, A.; Perry, V.K.; Burke, B.; Antoine, G.A.; Hirsch, E.F.; Kavanah, M.; Mendez, J.; Stone, M.; Gerry, N.P.; Lenburg, M.E.; Rosenberg, C.L. Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients. Int. J. Cancer, 2008, 122(7), 1557-1566. doi: 10.1002/ijc.23267 PMID: 18058819
  54. Casey, T.; Bond, J.; Tighe, S.; Hunter, T.; Lintault, L.; Patel, O.; Eneman, J.; Crocker, A.; White, J.; Tessitore, J.; Stanley, M.; Harlow, S.; Weaver, D.; Muss, H.; Plaut, K. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res. Treat., 2009, 114(1), 47-62. doi: 10.1007/s10549-008-9982-8 PMID: 18373191
  55. Pedraza, V.; Gomez-Capilla, J.A.; Escaramis, G.; Gomez, C.; Torné, P.; Rivera, J.M.; Gil, A.; Araque, P.; Olea, N.; Estivill, X.; Fárez-Vidal, M.E. Gene expression signatures in breast cancer distinguish phenotype characteristics, histologic subtypes, and tumor invasiveness. Cancer, 2010, 116(2), 486-496. doi: 10.1002/cncr.24805 PMID: 20029976
  56. Emery, L.A.; Tripathi, A.; King, C.; Kavanah, M.; Mendez, J.; Stone, M.D.; de las Morenas, A.; Sebastiani, P.; Rosenberg, C.L. Early dysregulation of cell adhesion and extracellular matrix pathways in breast cancer progression. Am. J. Pathol., 2009, 175(3), 1292-1302. doi: 10.2353/ajpath.2009.090115 PMID: 19700746

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024