Perillyl Alcohol Promotes Relaxation in Human Umbilical Artery
- Authors: de Sena Bastos C.1, Pereira-de-Morais L.2, de Alencar Silva A.2, de Menezes Dantas D.1, Batista P.1, Gomes M.2, de Araújo Delmondes G.3, de Menezes I.1, da Silva R.1, Barbosa R.1
-
Affiliations:
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri
- Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri
- Nursing Collegiate, Petrolina Campus, Federal University of The San Francisco Vale
- Issue: Vol 31, No 42 (2024)
- Pages: 7072-7082
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjsvd.com/0929-8673/article/view/645159
- DOI: https://doi.org/10.2174/0109298673269428231204064101
- ID: 645159
Cite item
Full Text
Abstract
Background:Perillyl alcohol (POH) is a monoterpenoid found in plant essential oils and has been shown to relax murine vessels, but its effect on human vessels remains poorly studied.
Objective:The study aimed to characterize the effect of POH on human umbilical arteries (HUA).
Methods:Rings of HUA were obtained from uncomplicated patients and suspended in an organ bath for isometric recording. The vasorelaxant effect of POH in HUA was evaluated on basal tone and electromechanical or pharmacomechanical contractions, and possible mechanisms of action were also investigated.
Results:POH (1-1000 µM) altered the basal tone of HUA and completely relaxed HUA rings precontracted with KCl (60 mM) or 5-HT (10 µM), obtaining greater potency in the pharmacomechanical pathway (EC50 110.1 µM), suggesting a complex interference in the mobilization of extra- and intracellular Ca2+. POH (1000 µM) inhibited contractions induced by BaCl2 (0.1-30 mM) in a similar way to nifedipine (10 µM), indicating a possible blockade of L-type VOCC. In the presence of potassium channel blockers, tetraethylammonium (1 mM), 4-aminopyridine (1 mM), or glibenclamide (10 µM), an increase in the EC50 value of the POH was observed, suggesting a modulation of the activity of BKCa, KV, and KATP channels.
Conclusion:The data from this study suggest that POH modulates Ca2+ and K+ ion channels to induce a relaxant response in HUA.
About the authors
Carla de Sena Bastos
Biological Chemistry Department, Pimenta Campus, Regional University of Cariri
Email: info@benthamscience.net
Luis Pereira-de-Morais
Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri
Author for correspondence.
Email: info@benthamscience.net
Andressa de Alencar Silva
Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri
Email: info@benthamscience.net
Débora de Menezes Dantas
Biological Chemistry Department, Pimenta Campus, Regional University of Cariri
Email: info@benthamscience.net
Paulo Batista
Biological Chemistry Department, Pimenta Campus, Regional University of Cariri
Email: info@benthamscience.net
Maria Gomes
Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri
Email: info@benthamscience.net
Gyllyandeson de Araújo Delmondes
Nursing Collegiate, Petrolina Campus, Federal University of The San Francisco Vale
Email: info@benthamscience.net
Irwin de Menezes
Biological Chemistry Department, Pimenta Campus, Regional University of Cariri
Email: info@benthamscience.net
Renata da Silva
Biological Chemistry Department, Pimenta Campus, Regional University of Cariri
Email: info@benthamscience.net
Roseli Barbosa
Biological Chemistry Department, Pimenta Campus, Regional University of Cariri
Email: info@benthamscience.net
References
- Bhatia, S.P.; McGinty, D.; Letizia, C.S.; Api, A.M. Fragrance material review on carveol. Food Chem. Toxicol., 2008, 46(11), S85-S87. doi: 10.1016/j.fct.2008.06.032 PMID: 18640224
- Garcia, D.G.; Amorim, L.M.F.; de Castro Faria, M.V.; Freire, A.S.; Santelli, R.E.; Da Fonseca, C.O.; Quirico-Santos, T.; Burth, P. The anticancer drug perillyl alcohol is a Na/K-ATPase inhibitor. Mol. Cell. Biochem., 2010, 345(1-2), 29-34. doi: 10.1007/s11010-010-0556-9 PMID: 20689980
- Gomes, A.C.; Mello, A.L.; Ribeiro, M.G.; Garcia, D.G.; Da Fonseca, C.O.; Salazar, M.D.A.; Schönthal, A.H.; Quirico-Santos, T. Perillyl alcohol, a pleiotropic natural compound suitable for brain tumor therapy, targets free radicals. Arch. Immunol. Ther. Exp., 2017, 65(4), 285-297. doi: 10.1007/s00005-017-0459-5 PMID: 28314870
- Bejeshk, M.A.; Beik, A.; Aminizadeh, A.H.; Salimi, F.; Bagheri, F.; Sahebazzamani, M.; Najafipour, H.; Rajizadeh, M.A. Perillyl alcohol (PA) mitigates inflammatory, oxidative, and histopathological consequences of allergic asthma in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(6), 1235-1245. doi: 10.1007/s00210-023-02398-5 PMID: 36707429
- Khan, A.Q.; Nafees, S.; Sultana, S. Perillyl alcohol protects against ethanol induced acute liver injury in Wistar rats by inhibiting oxidative stress, NFκ-B activation and proinflammatory cytokine production. Toxicology, 2011, 279(1-3), 108-114. doi: 10.1016/j.tox.2010.09.017 PMID: 20923693
- Sousa, M.; Afonso, A.C.; Teixeira, L.S.; Borges, A.; Saavedra, M.J.; Simões, L.C.; Simões, M. Hydrocinnamic acid and perillyl alcohol potentiate the action of antibiotics against Escherichia coli. Antibiotics, 2023, 12(2), 360. doi: 10.3390/antibiotics12020360 PMID: 36830271
- Greay, S.J.; Hammer, K.A. Recent developments in the bioactivity of mono- and diterpenes: Anticancer and antimicrobial activity. Phytochem. Rev., 2015, 14(1), 1-6. doi: 10.1007/s11101-011-9212-6
- Ripple, G.H.; Gould, M.N.; Stewart, J.A.; Tutsch, K.D.; Arzoomanian, R.Z.; Alberti, D.; Feierabend, C.; Pomplun, M.; Wilding, G.; Bailey, H.H. Phase I clinical trial of perillyl alcohol administered daily. Clin. Cancer Res., 1998, 4(5), 1159-1164. PMID: 9607573
- Hudes, G.R.; Szarka, C.E.; Adams, A.; Ranganathan, S.; McCauley, R.A.; Weiner, L.M.; Langer, C.J.; Litwin, S.; Yeslow, G.; Halberr, T.; Qian, M.; Gallo, J.M. Phase I pharmacokinetic trial of perillyl alcohol (NSC 641066) in patients with refractory solid malignancies. Clin. Cancer Res., 2000, 6(8), 3071-3080. PMID: 10955786
- Ripple, G.H.; Gould, M.N.; Arzoomanian, R.Z.; Alberti, D.; Feierabend, C.; Simon, K.; Binger, K.; Tutsch, K.D.; Pomplun, M.; Wahamaki, A.; Marnocha, R.; Wilding, G.; Bailey, H.H. Phase I clinical and pharmacokinetic study of perillyl alcohol administered four times a day. Clin. Cancer Res., 2000, 6(2), 390-396. PMID: 10690515
- Azzoli, C.G.; Miller, V.A.; Ng, K.K.; Krug, L.M.; Spriggs, D.R.; Tong, W.P.; Riedel, E.R.; Kris, M.G. A phase I trial of perillyl alcohol in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2003, 51(6), 493-498. doi: 10.1007/s00280-003-0599-7 PMID: 12695855
- Morgan-Meadows, S.; Dubey, S.; Gould, M.; Tutsch, K.; Marnocha, R.; Arzoomanin, R.; Alberti, D.; Binger, K.; Feierabend, C.; Volkman, J.; Ellingen, S.; Black, S.; Pomplun, M.; Wilding, G.; Bailey, H. Phase I trial of perillyl alcohol administered four times daily continuously. Cancer Chemother. Pharmacol., 2003, 52(5), 361-366. doi: 10.1007/s00280-003-0684-y PMID: 12904896
- Bailey, H.; Wilding, G.; Tutsch, K.; Arzoomanian, R.; Alberti, D.; Feierabend, C.; Simon, K.; Marnocha, R.; Holstein, S.; Stewart, J.; Lewis, K.; Hohl, R. A phase I trial of perillyl alcohol administered four times daily for 14 days out of 28 days. Cancer Chemother. Pharmacol., 2004, 54(4), 368-376. doi: 10.1007/s00280-004-0788-z PMID: 15205914
- Schönthal, A.H.; Peereboom, D.M.; Wagle, N.; Lai, R.; Mathew, A.J.; Hurth, K.M.; Simmon, V.F.; Howard, S.P.; Taylor, L.P.; Chow, F.; da Fonseca, C.O.; Chen, T.C. Phase I trial of intranasal NEO100, highly purified perillyl alcohol, in adult patients with recurrent glioblastoma. Neurooncol. Adv., 2021, 3(1), vdab005. doi: 10.1093/noajnl/vdab005 PMID: 33604574
- Bailey, H.H.; Levy, D.; Harris, L.S.; Schink, J.C.; Foss, F.; Beatty, P.; Wadler, S. A phase II trial of daily perillyl alcohol in patients with advanced ovarian cancer: Eastern Cooperative Oncology Group Study E2E96. Gynecol. Oncol., 2002, 85(3), 464-468. doi: 10.1006/gyno.2002.6647 PMID: 12051875
- Meadows, S.M.; Mulkerin, D.; Berlin, J.; Bailey, H.; Kolesar, J.; Warren, D.; Thomas, J.P. Phase II trial of perillyl alcohol in patients with metastatic colorectal cancer. Int. J. Gastrointest. Cancer, 2002, 32(2-3), 125-128. doi: 10.1385/IJGC:32:2-3:125 PMID: 12794248
- Liu, G.; Oettel, K.; Bailey, H.; Ummersen, L.V.; Tutsch, K.; Staab, M.J.; Horvath, D.; Alberti, D.; Arzoomanian, R.; Rezazadeh, H.; McGovern, J.; Robinson, E.; DeMets, D.; Wilding, G. Phase II trial of perillyl alcohol (NSC 641066) administered daily in patients with metastatic androgen independent prostate cancer. Invest. New Drugs, 2003, 21(3), 367-372. doi: 10.1023/A:1025437115182 PMID: 14578686
- Bailey, H.H.; Attia, S.; Love, R.R.; Fass, T.; Chappell, R.; Tutsch, K.; Harris, L.; Jumonville, A.; Hansen, R.; Shapiro, G.R.; Stewart, J.A. Phase II trial of daily oral perillyl alcohol (NSC 641066) in treatment-refractory metastatic breast cancer. Cancer Chemother. Pharmacol., 2008, 62(1), 149-157. doi: 10.1007/s00280-007-0585-6 PMID: 17885756
- da Fonseca, C.O.; Schwartsmann, G.; Fischer, J.; Nagel, J.; Futuro, D.; Quirico-Santos, T.; Gattass, C.R. Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surg. Neurol., 2008, 70(3), 259-266. doi: 10.1016/j.surneu.2007.07.040 PMID: 18295834
- Kennedy, S.; Wadsworth, R.M.; Wainwright, C.L. Effect of antiproliferative agents on vascular function in normal and in vitro balloon-injured porcine coronary arteries. Eur. J. Pharmacol., 2003, 481(1), 101-107. doi: 10.1016/j.ejphar.2003.09.010 PMID: 14637181
- Cardoso-Teixeira, A.; Ferreira-da-Silva, F.; Peixoto-Neves, D.; Oliveira-Abreu, K.; Pereira-Gonçalves, Á.; Coelho-de-Souza, A.; Leal-Cardoso, J. Hydroxyl group and vasorelaxant effects of perillyl alcohol, carveol, limonene on aorta smooth muscle of rats. Molecules, 2018, 23(6), 1430. doi: 10.3390/molecules23061430 PMID: 29899230
- de Menezes Dantas, D.; Pereira-de-Morais, L.; de Alencar Silva, A.; da Silva, R.E.R.; Dias, F.J.; de Sousa Amorim, T.; Cruz-Martins, N.; Melo Coutinho, H.D.; Barbosa, R. Pharmacological screening of species from the Lippia genus, content in terpenes and phenylpropanoids, and their vasorelaxing effects on human umbilical artery. Curr. Pharm. Des., 2023, 29(7), 535-542. doi: 10.2174/1381612829666221124101321
- Pereira-de-Morais, L.; Silva, A.A.; Bastos, C.M.S.; Calixto, G.L.; Araújo, I.M.; Araújo, M.C.; Barbosa, R.; Leal-Cardoso, J.H. The preeclampsia condition alters external potassium-evoked contraction of human umbilical vessels. Placenta, 2023, 138, 68-74. doi: 10.1016/j.placenta.2023.05.005 PMID: 37209614
- Houlihan, D.D.; Dennedy, M.C.; Ravikumar, N.; Morrison, J.J. Anti-hypertensive therapy and the feto-placental circulation: Effects on umbilical artery resistance. J. Perinat. Med., 2004, 32(4), 315-319. doi: 10.1515/JPM.2004.058 PMID: 15346815
- Evaristo Rodrigues da Silva, R.; de Alencar Silva, A.; Pereira-de-Morais, L.; de Sousa Almeida, N.; Iriti, M.; Kerntopf, M.R.; Menezes, I.R.A.; Coutinho, H.D.M.; Barbosa, R. Relaxant effect of monoterpene (−)-carveol on isolated human umbilical cord arteries and the involvement of ion channels. Molecules, 2020, 25(11), 2681. doi: 10.3390/molecules25112681 PMID: 32527034
- Dantas, D.M.; Silva, A.A.; Pereira-de-Morais, L.; Bastos, C.M.S.; Calixto, G.L.; Kerntopf, M.R.; Menezes, I.R.A.; Weinreich, D.; Barbosa, R. Characterization of the vasodilator effect of eugenol in isolated human umbilical cord arteries. Chem. Biol. Interact., 2022, 359, 109890. doi: 10.1016/j.cbi.2022.109890 PMID: 35318036
- Đukanović, Đ.; Bojić, M.G.; Marinković, S.; Trailović, S.; Stojiljković, M.P.; krbić, R. Vasorelaxant effect of monoterpene carvacrol on isolated human umbilical artery. Can. J. Physiol. Pharmacol., 2022, 100(8), 755-762. doi: 10.1139/cjpp-2021-0736 PMID: 35507953
- Batista, P.R.; Silva, A.A.; de Sena Bastos, C.M.; Rodrigues da Silva, R.E.; Calixto, G.L.; de Morais, L.P.; Delmondes, G.A.; Kerntopf, M.R.; de Menezes, I.R.A.; Barbosa, R. Vasodilation promoted by (E,E)-farnesol involving ion channels in human umbilical arteries. Heliyon, 2023, 9(6), e17328. doi: 10.1016/j.heliyon.2023.e17328 PMID: 37441374
- Leonardi, A.; Hieble, J.P.; Guarneri, L.; Naselsky, D.P.; Poggesi, E.; Sironi, G.; Sulpizio, A.C.; Testa, R. Pharmacological characterization of the uroselective alpha-1 antagonist Rec 15/2739 (SB 216469): Role of the alpha-1L adrenoceptor in tissue selectivity, part I. J. Pharmacol. Exp. Ther., 1997, 281(3), 1272-1283. PMID: 9190863
- Lo, Y.C.; Wang, C.C.; Shen, K.P.; Wu, B.N.; Yu, K.L.; Chen, I.J. Urgosedin inhibits hypotension, hypoglycemia, and pro-inflammatory mediators induced by lipopolysaccharide. J. Cardiovasc. Pharmacol., 2004, 44(3), 363-371. doi: 10.1097/01.fjc.0000137155.63604.7a PMID: 15475835
- Silva, R.M.; Oliveira, F.A.; Cunha, K.M.A.; Maia, J.L.; Maciel, M.A.M.; Pinto, A.C.; Nascimento, N.R.F.; Santos, F.A.; Rao, V.S.N. Cardiovascular effects of trans-dehydrocrotonin, a diterpene from Croton cajucara in rats. Vascul. Pharmacol., 2005, 43(1), 11-18. doi: 10.1016/j.vph.2005.02.015 PMID: 15975531
- Tufan, H.; Ayan-Polat, B.; Tecder-Ünal, M.; Polat, G.; Kayhan, Z.; Öğüş, E. Contractile responses of the human umbilical artery to KCl and serotonin in Ca-free medium and the effects of levcromakalim. Life Sci., 2003, 72(12), 1321-1329. doi: 10.1016/S0024-3205(02)02382-2 PMID: 12527030
- Yildiz, O.; Nacitarhan, C.; Seyrek, M. Potassium channels in the vasodilating action of levosimendan on the human umbilical artery. J. Soc. Gynecol. Investig., 2006, 13(4), 312-315. doi: 10.1016/j.jsgi.2006.02.005 PMID: 16697949
- Perusquía, M.; Navarrete, E.; González, L.; Villalón, C.M. The modulatory role of androgens and progestins in the induction of vasorelaxation in human umbilical artery. Life Sci., 2007, 81(12), 993-1002. doi: 10.1016/j.lfs.2007.07.024 PMID: 17804019
- Hehir, M.P.; Moynihan, A.T.; Glavey, S.V.; Morrison, J.J. Umbilical artery tone in maternal obesity. Reprod. Biol. Endocrinol., 2009, 7(1), 6. doi: 10.1186/1477-7827-7-6 PMID: 19161625
- Mohammed, R.; Provitera, L.; Cavallaro, G.; Lattuada, D.; Ercoli, G.; Mosca, F.; Villamor, E. Vasomotor effects of hydrogen sulfide in human umbilical vessels. J. Physiol. Pharmacol., 2017, 68(5), 737-747. PMID: 29375049
- Britto-Júnior, J.; Jacintho, F.F.; Figueiredo Murari, G.M.; Campos, R.; Moreno, R.A.; Antunes, E.; Mónica, F.Z.; De Nucci, G. Electrical field stimulation induces endothelium-dependent contraction of human umbilical cord vessels. Life Sci., 2020, 243, 117257. doi: 10.1016/j.lfs.2020.117257 PMID: 31917992
- Borges, A.S.; Bastos, C.M.S.; Dantas, D.M.; Milfont, C.G.B.; Brito, G.M.H.; Pereira-de-Morais, L.; Delmondes, G.A.; da Silva, R.E.R.; Kennedy-Feitosa, E.; Maia, F.P.A.; Lima, C.M.G.; Bin Emran, T.; Coutinho, H.D.M.; Menezes, I.R.A.; Kerntopf, M.R.; Caruso, G.; Barbosa, R. Effect of Lippia alba (Mill.) N.E. Brown essential oil on the human umbilical artery. Plants, 2022, 11(21), 3002. doi: 10.3390/plants11213002 PMID: 36365458
- Lorigo, M.; Quintaneiro, C.; Lemos, M.; Martinez-de-Oliveira, J.; Breitenfeld, L.; Cairrao, E. UV-B filter octylmethoxycinnamate induces vasorelaxation by Ca2+ channel inhibition and guanylyl cyclase activation in human umbilical arteries. Int. J. Mol. Sci., 2019, 20(6), 1376. doi: 10.3390/ijms20061376 PMID: 30893788
- Lorigo, M.; Quintaneiro, C.; Maia, C.J.; Breitenfeld, L.; Cairrao, E. UV-B filter octylmethoxycinnamate impaired the main vasorelaxant mechanism of human umbilical artery. Chemosphere, 2021, 277, 130302. doi: 10.1016/j.chemosphere.2021.130302 PMID: 33789217
- Cairrão, E.; Álvarez, E.; Santos-Silva, A.J.; Verde, I. Potassium channels are involved in testosterone-induced vasorelaxation of human umbilical artery. Naunyn Schmiedebergs Arch. Pharmacol., 2008, 376(5), 375-383. doi: 10.1007/s00210-007-0213-3 PMID: 18026936
- Cairrão, E.; Santos-Silva, A.J.; Verde, I. PKG is involved in testosterone-induced vasorelaxation of human umbilical artery. Eur. J. Pharmacol., 2010, 640(1-3), 94-101. doi: 10.1016/j.ejphar.2010.04.025 PMID: 20444426
- Lorigo, M.; Mangana, C.; Cairrao, E. Disrupting effects of the emerging contaminant octylmethoxycinnamate (OMC) on human umbilical artery relaxation. Environ. Pollut., 2023, 335, 122302. doi: 10.1016/j.envpol.2023.122302 PMID: 37536478
- Sakariassen, K.S.; Femia, E.A.; Daray, F.M.; Podda, G.M.; Razzari, C.; Pugliano, M.; Errasti, A.E.; Armesto, A.R.; Nowak, W.; Alberts, P.; Meyer, J.P.; Sorensen, A.S.; Cattaneo, M.; Rothlin, R.P. EV-077 in vitro inhibits platelet aggregation in type-2 diabetics on aspirin. Thromb. Res., 2012, 130(5), 746-752. doi: 10.1016/j.thromres.2012.08.309 PMID: 22959706
- Leung, S.W.S.; Quan, A.; Lao, T.T.; Man, R.Y.K. Efficacy of different vasodilators on human umbilical arterial smooth muscle under normal and reduced oxygen conditions. Early Hum. Dev., 2006, 82(7), 457-462. doi: 10.1016/j.earlhumdev.2005.11.009 PMID: 16443336
- Provitera, L.; Cavallaro, G.; Griggio, A.; Raffaeli, G.; Amodeo, I.; Gulden, S.; Lattuada, D.; Ercoli, G.; Lonati, C.; Tomaselli, A.; Mosca, F.; Villamor, E. Cyclic nucleotide-dependent relaxation in human umbilical vessels. J. Physiol. Pharmacol., 2019, 70(4), 619-630. doi: 10.26402/jpp.2019.4.13 PMID: 31741459
- Nirupama, R.; Divyashree, S.; Janhavi, P.; Muthukumar, S.P.; Ravindra, P.V. Preeclampsia: Pathophysiology and management. J. Gynecol. Obstet. Hum. Reprod., 2021, 50(2), 101975. doi: 10.1016/j.jogoh.2020.101975 PMID: 33171282
- Agalakova, N.I.; Grigorova, Y.N.; Ershov, I.A.; Reznik, V.A.; Mikhailova, E.V.; Nadei, O.V.; Samuilovskaya, L.; Romanova, L.A.; Adair, C.D.; Romanova, I.V.; Bagrov, A.Y. Canrenone restores vasorelaxation impaired by Marinobufagenin in human umbilical preeclampsia. Int. J. Mol. Sci., 2022, 23(6), 3336. doi: 10.3390/ijms23063336 PMID: 35328757
- Karadas, B.; Acar-Sahan, S.; Kantarci, S.; Uysal, N.; Horoz, E.; Kaya-Temiz, T. Comparison of relaxant effects of nifedipine and NS11021 on isolated umbilical arteries of healthy and preeclamptic pregnant women. Eur. J. Obstet. Gynecol. Reprod. Biol., 2023, 280, 168-173. doi: 10.1016/j.ejogrb.2022.12.009 PMID: 36508854
- Dantas, D.M.; Silva-Júnior, C.P.; Barbosa, R.; Pereira-De-Morais, L. Implementation of an alternative method to replace the use of animals in studies with smooth muscle. Ciênc. Anim., 2019, 29, 148-154.
- Lorigo, M.; Cairrao, E. Regulation mechanisms of endocrine disruptors on vasodilation and vasoconstriction: Insights from ex vivo models. Biocell, 2022, 46(6), 1383-1389. doi: 10.32604/biocell.2022.018895
- Protić, D.; Radunović, N.; Spremović-Rađenović, S.; ivanović, V.; Heinle, H.; Petrović, A.; Gojković-Bukarica, L. The role of potassium channels in the vasodilatation induced by resveratrol and naringenin in isolated human umbilical vein. Drug Dev. Res., 2015, 76(1), 17-23. doi: 10.1002/ddr.21236 PMID: 25619904
- Silva de Sá, M.F.; Meirelles, R.S.; Franco, J.G., Jr; Rodrigues, R. Constriction of human umbilical artery induced by local anesthetics. Gynecol. Obstet. Invest., 1981, 12(3), 123-131. doi: 10.1159/000299594 PMID: 7239348
- Tuvemo, T.; WilldeckLund, G. Smooth muscle effects of lidocaine, prilocaine, bupivacaine and etiodocaine on the human umbilical artery. Acta Anaesthesiol. Scand., 1982, 26(2), 104-107. doi: 10.1111/j.1399-6576.1982.tb01734.x PMID: 7102231
- Norén, H.; Källfelt, B.; Lindblom, B. Influence of bupivacaine and morphine on human umbilical arteries and veins in vitro. Acta Obstet. Gynecol. Scand., 1990, 69(1), 87-91. doi: 10.3109/00016349009021045 PMID: 2346085
- Bariskaner, H.; Tuncer, S.; Taner, A.; Dogan, N. Effects of bupivacaine and ropivacaine on the isolated human umbilical artery. Int. J. Obstet. Anesth., 2003, 12(4), 261-265. doi: 10.1016/S0959-289X(03)00072-4 PMID: 15321454
- Martín, P.; Enrique, N.; Palomo, A.R.R.; Rebolledo, A.; Milesi, V. Bupivacaine inhibits large conductance, voltage- and Ca2+ - activated K + channels in human umbilical artery smooth muscle cells. Channels, 2012, 6(3), 174-180. doi: 10.4161/chan.20362 PMID: 22688134
- Bertrand, C.; Duperron, L.; St-Louis, J. Umbilical and placental vessels: Modifications of their mechanical properties in preeclampsia. Am. J. Obstet. Gynecol., 1993, 168(5), 1537-1546. doi: 10.1016/S0002-9378(11)90795-9 PMID: 8498440
- García-Huidobro, D.N.; García-Huidobro, T.M.; Huidobro-Toro, J.P.G. Vasomotion in human umbilical and placental veins: Role of gap junctions and intracellular calcium reservoirs in their synchronous propagation. Placenta, 2007, 28(4), 328-338. doi: 10.1016/j.placenta.2006.04.004 PMID: 16797694
- Milesi, V.; Raingo, J.; Rebolledo, A.; Grassi de Gende, A.O. Potassium channels in human umbilical artery cells. J. Soc. Gynecol. Investig., 2003, 10(6), 339-346. doi: 10.1016/S1071-5576(03)00117-5 PMID: 12969776
- Santos-Silva, A.J.; Cairrao, E.; Verde, I. Study of the mechanisms regulating human umbilical artery contractility. Health, 2010, 2(4), 321-331. doi: 10.4236/health.2010.24049
- Putney, J.W., Jr Capacitative calcium entry revisited. Cell Calcium, 1990, 11(10), 611-624. doi: 10.1016/0143-4160(90)90016-N PMID: 1965707
- Meldrum, E.; Parker, P.J.; Carozzi, A. The PtdIns-PLC superfamily and signal transduction. Biochim. Biophys. Acta Mol. Cell Res., 1991, 1092(1), 49-71. doi: 10.1016/0167-4889(91)90177-Y PMID: 1849017
- Jiang, H.; Stephens, N.L. Calcium and smooth muscle contraction. Mol. Cell. Biochem., 1994, 135(1), 1-9. doi: 10.1007/BF00925956 PMID: 7816050
- Xie, H.; Triggle, C.R. Endothelium-independent relaxations to acetylcholine and A23187 in the human umbilical artery. J. Vasc. Res., 1994, 31(2), 92-105. doi: 10.1159/000159035 PMID: 8117864
- Fei, J.Q.; Zhou, H.B.; Shen, Y.L.; Chen, X.Z.; Wang, L.L. A comparison study on the responses of umbilical arteries and thoracic aorts to the adrenergic receptor agonists. Cell Biol. Int., 2008, 32(3), S55. doi: 10.1016/j.cellbi.2008.01.234
- Massaro, F.C.; Brooks, P.R.; Wallace, H.M.; Nsengiyumva, V.; Narokai, L.; Russell, F.D. Effect of Australian propolis from stingless bees (Tetragonula carbonaria) on pre-contracted human and porcine isolated arteries. PLoS One, 2013, 8(11), e81297. doi: 10.1371/journal.pone.0081297 PMID: 24260567
- Lorigo, M.; Mariana, M.; Feiteiro, J.; Cairrao, E. How is the human umbilical artery regulated? J. Obstet. Gynaecol. Res., 2018, 44(7), 1193-1201. doi: 10.1111/jog.13667 PMID: 29727040
- Speroni, F.; Rebolledo, A.; Salemme, S.; Roldán-Palomo, R.; Rimorini, L.; Añón, M.C.; Spinillo, A.; Tanzi, F.; Milesi, V. Genistein effects on Ca2+ handling in human umbilical artery: Inhibition of sarcoplasmic reticulum Ca2+ release and of voltage-operated Ca2+ channels. J. Physiol. Biochem., 2009, 65(2), 113-124. doi: 10.1007/BF03179062 PMID: 19886390
- Radenković, M.; Grbović, L.; Radunović, N.; Momčilov, P. Pharmacological evaluation of bradykinin effect on human umbilical artery in normal, hypertensive and diabetic pregnancy. Pharmacol. Rep., 2007, 59(1), 64-73. PMID: 17377208
- Martín, P.; Rebolledo, A.; Palomo, A.R.R.; Moncada, M.; Piccinini, L.; Milesi, V. Diversity of potassium channels in human umbilical artery smooth muscle cells: A review of their roles in human umbilical artery contraction. Reprod. Sci., 2014, 21(4), 432-441. doi: 10.1177/1933719113504468 PMID: 24084522
- Lorigo, M.; Oliveira, N.; Cairrão, E. Clinical importance of the human umbilical artery potassium channels. Cells, 2020, 9(9), 1956. doi: 10.3390/cells9091956 PMID: 32854241
- Nacka-Aleksić, M.; Pirković, A.; Vilotić, A.; Bojić-Trbojević, .; Jovanović Krivokuća, M.; Giampieri, F.; Battino, M.; Dekanski, D. The role of dietary polyphenols in pregnancy and pregnancy-related disorders. Nutrients, 2022, 14(24), 5246. doi: 10.3390/nu14245246 PMID: 36558404
- Chen, T.C.; da Fonseca, C.O.; Levin, D.; Schönthal, A.H. The monoterpenoid perillyl alcohol: Anticancer agent and medium to overcome biological barriers. Pharmaceutics, 2021, 13(12), 2167. doi: 10.3390/pharmaceutics13122167 PMID: 34959448
- Baptista, M.; Lorigo, M.; Cairrao, E. Protein interaction network for identifying vascular response of metformin (oral antidiabetic). Bio. Med. Informatics, 2022, 2(2), 217-233. doi: 10.3390/biomedinformatics2020014
Supplementary files
