Perillyl Alcohol Promotes Relaxation in Human Umbilical Artery


Cite item

Full Text

Abstract

Background:Perillyl alcohol (POH) is a monoterpenoid found in plant essential oils and has been shown to relax murine vessels, but its effect on human vessels remains poorly studied.

Objective:The study aimed to characterize the effect of POH on human umbilical arteries (HUA).

Methods:Rings of HUA were obtained from uncomplicated patients and suspended in an organ bath for isometric recording. The vasorelaxant effect of POH in HUA was evaluated on basal tone and electromechanical or pharmacomechanical contractions, and possible mechanisms of action were also investigated.

Results:POH (1-1000 µM) altered the basal tone of HUA and completely relaxed HUA rings precontracted with KCl (60 mM) or 5-HT (10 µM), obtaining greater potency in the pharmacomechanical pathway (EC50 110.1 µM), suggesting a complex interference in the mobilization of extra- and intracellular Ca2+. POH (1000 µM) inhibited contractions induced by BaCl2 (0.1-30 mM) in a similar way to nifedipine (10 µM), indicating a possible blockade of L-type VOCC. In the presence of potassium channel blockers, tetraethylammonium (1 mM), 4-aminopyridine (1 mM), or glibenclamide (10 µM), an increase in the EC50 value of the POH was observed, suggesting a modulation of the activity of BKCa, KV, and KATP channels.

Conclusion:The data from this study suggest that POH modulates Ca2+ and K+ ion channels to induce a relaxant response in HUA.

About the authors

Carla de Sena Bastos

Biological Chemistry Department, Pimenta Campus, Regional University of Cariri

Email: info@benthamscience.net

Luis Pereira-de-Morais

Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri

Author for correspondence.
Email: info@benthamscience.net

Andressa de Alencar Silva

Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri

Email: info@benthamscience.net

Débora de Menezes Dantas

Biological Chemistry Department, Pimenta Campus, Regional University of Cariri

Email: info@benthamscience.net

Paulo Batista

Biological Chemistry Department, Pimenta Campus, Regional University of Cariri

Email: info@benthamscience.net

Maria Gomes

Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri

Email: info@benthamscience.net

Gyllyandeson de Araújo Delmondes

Nursing Collegiate, Petrolina Campus, Federal University of The San Francisco Vale

Email: info@benthamscience.net

Irwin de Menezes

Biological Chemistry Department, Pimenta Campus, Regional University of Cariri

Email: info@benthamscience.net

Renata da Silva

Biological Chemistry Department, Pimenta Campus, Regional University of Cariri

Email: info@benthamscience.net

Roseli Barbosa

Biological Chemistry Department, Pimenta Campus, Regional University of Cariri

Email: info@benthamscience.net

References

  1. Bhatia, S.P.; McGinty, D.; Letizia, C.S.; Api, A.M. Fragrance material review on carveol. Food Chem. Toxicol., 2008, 46(11), S85-S87. doi: 10.1016/j.fct.2008.06.032 PMID: 18640224
  2. Garcia, D.G.; Amorim, L.M.F.; de Castro Faria, M.V.; Freire, A.S.; Santelli, R.E.; Da Fonseca, C.O.; Quirico-Santos, T.; Burth, P. The anticancer drug perillyl alcohol is a Na/K-ATPase inhibitor. Mol. Cell. Biochem., 2010, 345(1-2), 29-34. doi: 10.1007/s11010-010-0556-9 PMID: 20689980
  3. Gomes, A.C.; Mello, A.L.; Ribeiro, M.G.; Garcia, D.G.; Da Fonseca, C.O.; Salazar, M.D.A.; Schönthal, A.H.; Quirico-Santos, T. Perillyl alcohol, a pleiotropic natural compound suitable for brain tumor therapy, targets free radicals. Arch. Immunol. Ther. Exp., 2017, 65(4), 285-297. doi: 10.1007/s00005-017-0459-5 PMID: 28314870
  4. Bejeshk, M.A.; Beik, A.; Aminizadeh, A.H.; Salimi, F.; Bagheri, F.; Sahebazzamani, M.; Najafipour, H.; Rajizadeh, M.A. Perillyl alcohol (PA) mitigates inflammatory, oxidative, and histopathological consequences of allergic asthma in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(6), 1235-1245. doi: 10.1007/s00210-023-02398-5 PMID: 36707429
  5. Khan, A.Q.; Nafees, S.; Sultana, S. Perillyl alcohol protects against ethanol induced acute liver injury in Wistar rats by inhibiting oxidative stress, NFκ-B activation and proinflammatory cytokine production. Toxicology, 2011, 279(1-3), 108-114. doi: 10.1016/j.tox.2010.09.017 PMID: 20923693
  6. Sousa, M.; Afonso, A.C.; Teixeira, L.S.; Borges, A.; Saavedra, M.J.; Simões, L.C.; Simões, M. Hydrocinnamic acid and perillyl alcohol potentiate the action of antibiotics against Escherichia coli. Antibiotics, 2023, 12(2), 360. doi: 10.3390/antibiotics12020360 PMID: 36830271
  7. Greay, S.J.; Hammer, K.A. Recent developments in the bioactivity of mono- and diterpenes: Anticancer and antimicrobial activity. Phytochem. Rev., 2015, 14(1), 1-6. doi: 10.1007/s11101-011-9212-6
  8. Ripple, G.H.; Gould, M.N.; Stewart, J.A.; Tutsch, K.D.; Arzoomanian, R.Z.; Alberti, D.; Feierabend, C.; Pomplun, M.; Wilding, G.; Bailey, H.H. Phase I clinical trial of perillyl alcohol administered daily. Clin. Cancer Res., 1998, 4(5), 1159-1164. PMID: 9607573
  9. Hudes, G.R.; Szarka, C.E.; Adams, A.; Ranganathan, S.; McCauley, R.A.; Weiner, L.M.; Langer, C.J.; Litwin, S.; Yeslow, G.; Halberr, T.; Qian, M.; Gallo, J.M. Phase I pharmacokinetic trial of perillyl alcohol (NSC 641066) in patients with refractory solid malignancies. Clin. Cancer Res., 2000, 6(8), 3071-3080. PMID: 10955786
  10. Ripple, G.H.; Gould, M.N.; Arzoomanian, R.Z.; Alberti, D.; Feierabend, C.; Simon, K.; Binger, K.; Tutsch, K.D.; Pomplun, M.; Wahamaki, A.; Marnocha, R.; Wilding, G.; Bailey, H.H. Phase I clinical and pharmacokinetic study of perillyl alcohol administered four times a day. Clin. Cancer Res., 2000, 6(2), 390-396. PMID: 10690515
  11. Azzoli, C.G.; Miller, V.A.; Ng, K.K.; Krug, L.M.; Spriggs, D.R.; Tong, W.P.; Riedel, E.R.; Kris, M.G. A phase I trial of perillyl alcohol in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2003, 51(6), 493-498. doi: 10.1007/s00280-003-0599-7 PMID: 12695855
  12. Morgan-Meadows, S.; Dubey, S.; Gould, M.; Tutsch, K.; Marnocha, R.; Arzoomanin, R.; Alberti, D.; Binger, K.; Feierabend, C.; Volkman, J.; Ellingen, S.; Black, S.; Pomplun, M.; Wilding, G.; Bailey, H. Phase I trial of perillyl alcohol administered four times daily continuously. Cancer Chemother. Pharmacol., 2003, 52(5), 361-366. doi: 10.1007/s00280-003-0684-y PMID: 12904896
  13. Bailey, H.; Wilding, G.; Tutsch, K.; Arzoomanian, R.; Alberti, D.; Feierabend, C.; Simon, K.; Marnocha, R.; Holstein, S.; Stewart, J.; Lewis, K.; Hohl, R. A phase I trial of perillyl alcohol administered four times daily for 14 days out of 28 days. Cancer Chemother. Pharmacol., 2004, 54(4), 368-376. doi: 10.1007/s00280-004-0788-z PMID: 15205914
  14. Schönthal, A.H.; Peereboom, D.M.; Wagle, N.; Lai, R.; Mathew, A.J.; Hurth, K.M.; Simmon, V.F.; Howard, S.P.; Taylor, L.P.; Chow, F.; da Fonseca, C.O.; Chen, T.C. Phase I trial of intranasal NEO100, highly purified perillyl alcohol, in adult patients with recurrent glioblastoma. Neurooncol. Adv., 2021, 3(1), vdab005. doi: 10.1093/noajnl/vdab005 PMID: 33604574
  15. Bailey, H.H.; Levy, D.; Harris, L.S.; Schink, J.C.; Foss, F.; Beatty, P.; Wadler, S. A phase II trial of daily perillyl alcohol in patients with advanced ovarian cancer: Eastern Cooperative Oncology Group Study E2E96. Gynecol. Oncol., 2002, 85(3), 464-468. doi: 10.1006/gyno.2002.6647 PMID: 12051875
  16. Meadows, S.M.; Mulkerin, D.; Berlin, J.; Bailey, H.; Kolesar, J.; Warren, D.; Thomas, J.P. Phase II trial of perillyl alcohol in patients with metastatic colorectal cancer. Int. J. Gastrointest. Cancer, 2002, 32(2-3), 125-128. doi: 10.1385/IJGC:32:2-3:125 PMID: 12794248
  17. Liu, G.; Oettel, K.; Bailey, H.; Ummersen, L.V.; Tutsch, K.; Staab, M.J.; Horvath, D.; Alberti, D.; Arzoomanian, R.; Rezazadeh, H.; McGovern, J.; Robinson, E.; DeMets, D.; Wilding, G. Phase II trial of perillyl alcohol (NSC 641066) administered daily in patients with metastatic androgen independent prostate cancer. Invest. New Drugs, 2003, 21(3), 367-372. doi: 10.1023/A:1025437115182 PMID: 14578686
  18. Bailey, H.H.; Attia, S.; Love, R.R.; Fass, T.; Chappell, R.; Tutsch, K.; Harris, L.; Jumonville, A.; Hansen, R.; Shapiro, G.R.; Stewart, J.A. Phase II trial of daily oral perillyl alcohol (NSC 641066) in treatment-refractory metastatic breast cancer. Cancer Chemother. Pharmacol., 2008, 62(1), 149-157. doi: 10.1007/s00280-007-0585-6 PMID: 17885756
  19. da Fonseca, C.O.; Schwartsmann, G.; Fischer, J.; Nagel, J.; Futuro, D.; Quirico-Santos, T.; Gattass, C.R. Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surg. Neurol., 2008, 70(3), 259-266. doi: 10.1016/j.surneu.2007.07.040 PMID: 18295834
  20. Kennedy, S.; Wadsworth, R.M.; Wainwright, C.L. Effect of antiproliferative agents on vascular function in normal and in vitro balloon-injured porcine coronary arteries. Eur. J. Pharmacol., 2003, 481(1), 101-107. doi: 10.1016/j.ejphar.2003.09.010 PMID: 14637181
  21. Cardoso-Teixeira, A.; Ferreira-da-Silva, F.; Peixoto-Neves, D.; Oliveira-Abreu, K.; Pereira-Gonçalves, Á.; Coelho-de-Souza, A.; Leal-Cardoso, J. Hydroxyl group and vasorelaxant effects of perillyl alcohol, carveol, limonene on aorta smooth muscle of rats. Molecules, 2018, 23(6), 1430. doi: 10.3390/molecules23061430 PMID: 29899230
  22. de Menezes Dantas, D.; Pereira-de-Morais, L.; de Alencar Silva, A.; da Silva, R.E.R.; Dias, F.J.; de Sousa Amorim, T.; Cruz-Martins, N.; Melo Coutinho, H.D.; Barbosa, R. Pharmacological screening of species from the Lippia genus, content in terpenes and phenylpropanoids, and their vasorelaxing effects on human umbilical artery. Curr. Pharm. Des., 2023, 29(7), 535-542. doi: 10.2174/1381612829666221124101321
  23. Pereira-de-Morais, L.; Silva, A.A.; Bastos, C.M.S.; Calixto, G.L.; Araújo, I.M.; Araújo, M.C.; Barbosa, R.; Leal-Cardoso, J.H. The preeclampsia condition alters external potassium-evoked contraction of human umbilical vessels. Placenta, 2023, 138, 68-74. doi: 10.1016/j.placenta.2023.05.005 PMID: 37209614
  24. Houlihan, D.D.; Dennedy, M.C.; Ravikumar, N.; Morrison, J.J. Anti-hypertensive therapy and the feto-placental circulation: Effects on umbilical artery resistance. J. Perinat. Med., 2004, 32(4), 315-319. doi: 10.1515/JPM.2004.058 PMID: 15346815
  25. Evaristo Rodrigues da Silva, R.; de Alencar Silva, A.; Pereira-de-Morais, L.; de Sousa Almeida, N.; Iriti, M.; Kerntopf, M.R.; Menezes, I.R.A.; Coutinho, H.D.M.; Barbosa, R. Relaxant effect of monoterpene (−)-carveol on isolated human umbilical cord arteries and the involvement of ion channels. Molecules, 2020, 25(11), 2681. doi: 10.3390/molecules25112681 PMID: 32527034
  26. Dantas, D.M.; Silva, A.A.; Pereira-de-Morais, L.; Bastos, C.M.S.; Calixto, G.L.; Kerntopf, M.R.; Menezes, I.R.A.; Weinreich, D.; Barbosa, R. Characterization of the vasodilator effect of eugenol in isolated human umbilical cord arteries. Chem. Biol. Interact., 2022, 359, 109890. doi: 10.1016/j.cbi.2022.109890 PMID: 35318036
  27. Đukanović, Đ.; Bojić, M.G.; Marinković, S.; Trailović, S.; Stojiljković, M.P.; Škrbić, R. Vasorelaxant effect of monoterpene carvacrol on isolated human umbilical artery. Can. J. Physiol. Pharmacol., 2022, 100(8), 755-762. doi: 10.1139/cjpp-2021-0736 PMID: 35507953
  28. Batista, P.R.; Silva, A.A.; de Sena Bastos, C.M.; Rodrigues da Silva, R.E.; Calixto, G.L.; de Morais, L.P.; Delmondes, G.A.; Kerntopf, M.R.; de Menezes, I.R.A.; Barbosa, R. Vasodilation promoted by (E,E)-farnesol involving ion channels in human umbilical arteries. Heliyon, 2023, 9(6), e17328. doi: 10.1016/j.heliyon.2023.e17328 PMID: 37441374
  29. Leonardi, A.; Hieble, J.P.; Guarneri, L.; Naselsky, D.P.; Poggesi, E.; Sironi, G.; Sulpizio, A.C.; Testa, R. Pharmacological characterization of the uroselective alpha-1 antagonist Rec 15/2739 (SB 216469): Role of the alpha-1L adrenoceptor in tissue selectivity, part I. J. Pharmacol. Exp. Ther., 1997, 281(3), 1272-1283. PMID: 9190863
  30. Lo, Y.C.; Wang, C.C.; Shen, K.P.; Wu, B.N.; Yu, K.L.; Chen, I.J. Urgosedin inhibits hypotension, hypoglycemia, and pro-inflammatory mediators induced by lipopolysaccharide. J. Cardiovasc. Pharmacol., 2004, 44(3), 363-371. doi: 10.1097/01.fjc.0000137155.63604.7a PMID: 15475835
  31. Silva, R.M.; Oliveira, F.A.; Cunha, K.M.A.; Maia, J.L.; Maciel, M.A.M.; Pinto, A.C.; Nascimento, N.R.F.; Santos, F.A.; Rao, V.S.N. Cardiovascular effects of trans-dehydrocrotonin, a diterpene from Croton cajucara in rats. Vascul. Pharmacol., 2005, 43(1), 11-18. doi: 10.1016/j.vph.2005.02.015 PMID: 15975531
  32. Tufan, H.; Ayan-Polat, B.; Tecder-Ünal, M.; Polat, G.; Kayhan, Z.; Öğüş, E. Contractile responses of the human umbilical artery to KCl and serotonin in Ca-free medium and the effects of levcromakalim. Life Sci., 2003, 72(12), 1321-1329. doi: 10.1016/S0024-3205(02)02382-2 PMID: 12527030
  33. Yildiz, O.; Nacitarhan, C.; Seyrek, M. Potassium channels in the vasodilating action of levosimendan on the human umbilical artery. J. Soc. Gynecol. Investig., 2006, 13(4), 312-315. doi: 10.1016/j.jsgi.2006.02.005 PMID: 16697949
  34. Perusquía, M.; Navarrete, E.; González, L.; Villalón, C.M. The modulatory role of androgens and progestins in the induction of vasorelaxation in human umbilical artery. Life Sci., 2007, 81(12), 993-1002. doi: 10.1016/j.lfs.2007.07.024 PMID: 17804019
  35. Hehir, M.P.; Moynihan, A.T.; Glavey, S.V.; Morrison, J.J. Umbilical artery tone in maternal obesity. Reprod. Biol. Endocrinol., 2009, 7(1), 6. doi: 10.1186/1477-7827-7-6 PMID: 19161625
  36. Mohammed, R.; Provitera, L.; Cavallaro, G.; Lattuada, D.; Ercoli, G.; Mosca, F.; Villamor, E. Vasomotor effects of hydrogen sulfide in human umbilical vessels. J. Physiol. Pharmacol., 2017, 68(5), 737-747. PMID: 29375049
  37. Britto-Júnior, J.; Jacintho, F.F.; Figueiredo Murari, G.M.; Campos, R.; Moreno, R.A.; Antunes, E.; Mónica, F.Z.; De Nucci, G. Electrical field stimulation induces endothelium-dependent contraction of human umbilical cord vessels. Life Sci., 2020, 243, 117257. doi: 10.1016/j.lfs.2020.117257 PMID: 31917992
  38. Borges, A.S.; Bastos, C.M.S.; Dantas, D.M.; Milfont, C.G.B.; Brito, G.M.H.; Pereira-de-Morais, L.; Delmondes, G.A.; da Silva, R.E.R.; Kennedy-Feitosa, E.; Maia, F.P.A.; Lima, C.M.G.; Bin Emran, T.; Coutinho, H.D.M.; Menezes, I.R.A.; Kerntopf, M.R.; Caruso, G.; Barbosa, R. Effect of Lippia alba (Mill.) N.E. Brown essential oil on the human umbilical artery. Plants, 2022, 11(21), 3002. doi: 10.3390/plants11213002 PMID: 36365458
  39. Lorigo, M.; Quintaneiro, C.; Lemos, M.; Martinez-de-Oliveira, J.; Breitenfeld, L.; Cairrao, E. UV-B filter octylmethoxycinnamate induces vasorelaxation by Ca2+ channel inhibition and guanylyl cyclase activation in human umbilical arteries. Int. J. Mol. Sci., 2019, 20(6), 1376. doi: 10.3390/ijms20061376 PMID: 30893788
  40. Lorigo, M.; Quintaneiro, C.; Maia, C.J.; Breitenfeld, L.; Cairrao, E. UV-B filter octylmethoxycinnamate impaired the main vasorelaxant mechanism of human umbilical artery. Chemosphere, 2021, 277, 130302. doi: 10.1016/j.chemosphere.2021.130302 PMID: 33789217
  41. Cairrão, E.; Álvarez, E.; Santos-Silva, A.J.; Verde, I. Potassium channels are involved in testosterone-induced vasorelaxation of human umbilical artery. Naunyn Schmiedebergs Arch. Pharmacol., 2008, 376(5), 375-383. doi: 10.1007/s00210-007-0213-3 PMID: 18026936
  42. Cairrão, E.; Santos-Silva, A.J.; Verde, I. PKG is involved in testosterone-induced vasorelaxation of human umbilical artery. Eur. J. Pharmacol., 2010, 640(1-3), 94-101. doi: 10.1016/j.ejphar.2010.04.025 PMID: 20444426
  43. Lorigo, M.; Mangana, C.; Cairrao, E. Disrupting effects of the emerging contaminant octylmethoxycinnamate (OMC) on human umbilical artery relaxation. Environ. Pollut., 2023, 335, 122302. doi: 10.1016/j.envpol.2023.122302 PMID: 37536478
  44. Sakariassen, K.S.; Femia, E.A.; Daray, F.M.; Podda, G.M.; Razzari, C.; Pugliano, M.; Errasti, A.E.; Armesto, A.R.; Nowak, W.; Alberts, P.; Meyer, J.P.; Sorensen, A.S.; Cattaneo, M.; Rothlin, R.P. EV-077 in vitro inhibits platelet aggregation in type-2 diabetics on aspirin. Thromb. Res., 2012, 130(5), 746-752. doi: 10.1016/j.thromres.2012.08.309 PMID: 22959706
  45. Leung, S.W.S.; Quan, A.; Lao, T.T.; Man, R.Y.K. Efficacy of different vasodilators on human umbilical arterial smooth muscle under normal and reduced oxygen conditions. Early Hum. Dev., 2006, 82(7), 457-462. doi: 10.1016/j.earlhumdev.2005.11.009 PMID: 16443336
  46. Provitera, L.; Cavallaro, G.; Griggio, A.; Raffaeli, G.; Amodeo, I.; Gulden, S.; Lattuada, D.; Ercoli, G.; Lonati, C.; Tomaselli, A.; Mosca, F.; Villamor, E. Cyclic nucleotide-dependent relaxation in human umbilical vessels. J. Physiol. Pharmacol., 2019, 70(4), 619-630. doi: 10.26402/jpp.2019.4.13 PMID: 31741459
  47. Nirupama, R.; Divyashree, S.; Janhavi, P.; Muthukumar, S.P.; Ravindra, P.V. Preeclampsia: Pathophysiology and management. J. Gynecol. Obstet. Hum. Reprod., 2021, 50(2), 101975. doi: 10.1016/j.jogoh.2020.101975 PMID: 33171282
  48. Agalakova, N.I.; Grigorova, Y.N.; Ershov, I.A.; Reznik, V.A.; Mikhailova, E.V.; Nadei, O.V.; Samuilovskaya, L.; Romanova, L.A.; Adair, C.D.; Romanova, I.V.; Bagrov, A.Y. Canrenone restores vasorelaxation impaired by Marinobufagenin in human umbilical preeclampsia. Int. J. Mol. Sci., 2022, 23(6), 3336. doi: 10.3390/ijms23063336 PMID: 35328757
  49. Karadas, B.; Acar-Sahan, S.; Kantarci, S.; Uysal, N.; Horoz, E.; Kaya-Temiz, T. Comparison of relaxant effects of nifedipine and NS11021 on isolated umbilical arteries of healthy and preeclamptic pregnant women. Eur. J. Obstet. Gynecol. Reprod. Biol., 2023, 280, 168-173. doi: 10.1016/j.ejogrb.2022.12.009 PMID: 36508854
  50. Dantas, D.M.; Silva-Júnior, C.P.; Barbosa, R.; Pereira-De-Morais, L. Implementation of an alternative method to replace the use of animals in studies with smooth muscle. Ciênc. Anim., 2019, 29, 148-154.
  51. Lorigo, M.; Cairrao, E. Regulation mechanisms of endocrine disruptors on vasodilation and vasoconstriction: Insights from ex vivo models. Biocell, 2022, 46(6), 1383-1389. doi: 10.32604/biocell.2022.018895
  52. Protić, D.; Radunović, N.; Spremović-Rađenović, S.; Živanović, V.; Heinle, H.; Petrović, A.; Gojković-Bukarica, L. The role of potassium channels in the vasodilatation induced by resveratrol and naringenin in isolated human umbilical vein. Drug Dev. Res., 2015, 76(1), 17-23. doi: 10.1002/ddr.21236 PMID: 25619904
  53. Silva de Sá, M.F.; Meirelles, R.S.; Franco, J.G., Jr; Rodrigues, R. Constriction of human umbilical artery induced by local anesthetics. Gynecol. Obstet. Invest., 1981, 12(3), 123-131. doi: 10.1159/000299594 PMID: 7239348
  54. Tuvemo, T.; WilldeckLund, G. Smooth muscle effects of lidocaine, prilocaine, bupivacaine and etiodocaine on the human umbilical artery. Acta Anaesthesiol. Scand., 1982, 26(2), 104-107. doi: 10.1111/j.1399-6576.1982.tb01734.x PMID: 7102231
  55. Norén, H.; Källfelt, B.; Lindblom, B. Influence of bupivacaine and morphine on human umbilical arteries and veins in vitro. Acta Obstet. Gynecol. Scand., 1990, 69(1), 87-91. doi: 10.3109/00016349009021045 PMID: 2346085
  56. Bariskaner, H.; Tuncer, S.; Taner, A.; Dogan, N. Effects of bupivacaine and ropivacaine on the isolated human umbilical artery. Int. J. Obstet. Anesth., 2003, 12(4), 261-265. doi: 10.1016/S0959-289X(03)00072-4 PMID: 15321454
  57. Martín, P.; Enrique, N.; Palomo, A.R.R.; Rebolledo, A.; Milesi, V. Bupivacaine inhibits large conductance, voltage- and Ca2+ - activated K + channels in human umbilical artery smooth muscle cells. Channels, 2012, 6(3), 174-180. doi: 10.4161/chan.20362 PMID: 22688134
  58. Bertrand, C.; Duperron, L.; St-Louis, J. Umbilical and placental vessels: Modifications of their mechanical properties in preeclampsia. Am. J. Obstet. Gynecol., 1993, 168(5), 1537-1546. doi: 10.1016/S0002-9378(11)90795-9 PMID: 8498440
  59. García-Huidobro, D.N.; García-Huidobro, T.M.; Huidobro-Toro, J.P.G. Vasomotion in human umbilical and placental veins: Role of gap junctions and intracellular calcium reservoirs in their synchronous propagation. Placenta, 2007, 28(4), 328-338. doi: 10.1016/j.placenta.2006.04.004 PMID: 16797694
  60. Milesi, V.; Raingo, J.; Rebolledo, A.; Grassi de Gende, A.O. Potassium channels in human umbilical artery cells. J. Soc. Gynecol. Investig., 2003, 10(6), 339-346. doi: 10.1016/S1071-5576(03)00117-5 PMID: 12969776
  61. Santos-Silva, A.J.; Cairrao, E.; Verde, I. Study of the mechanisms regulating human umbilical artery contractility. Health, 2010, 2(4), 321-331. doi: 10.4236/health.2010.24049
  62. Putney, J.W., Jr Capacitative calcium entry revisited. Cell Calcium, 1990, 11(10), 611-624. doi: 10.1016/0143-4160(90)90016-N PMID: 1965707
  63. Meldrum, E.; Parker, P.J.; Carozzi, A. The PtdIns-PLC superfamily and signal transduction. Biochim. Biophys. Acta Mol. Cell Res., 1991, 1092(1), 49-71. doi: 10.1016/0167-4889(91)90177-Y PMID: 1849017
  64. Jiang, H.; Stephens, N.L. Calcium and smooth muscle contraction. Mol. Cell. Biochem., 1994, 135(1), 1-9. doi: 10.1007/BF00925956 PMID: 7816050
  65. Xie, H.; Triggle, C.R. Endothelium-independent relaxations to acetylcholine and A23187 in the human umbilical artery. J. Vasc. Res., 1994, 31(2), 92-105. doi: 10.1159/000159035 PMID: 8117864
  66. Fei, J.Q.; Zhou, H.B.; Shen, Y.L.; Chen, X.Z.; Wang, L.L. A comparison study on the responses of umbilical arteries and thoracic aorts to the adrenergic receptor agonists. Cell Biol. Int., 2008, 32(3), S55. doi: 10.1016/j.cellbi.2008.01.234
  67. Massaro, F.C.; Brooks, P.R.; Wallace, H.M.; Nsengiyumva, V.; Narokai, L.; Russell, F.D. Effect of Australian propolis from stingless bees (Tetragonula carbonaria) on pre-contracted human and porcine isolated arteries. PLoS One, 2013, 8(11), e81297. doi: 10.1371/journal.pone.0081297 PMID: 24260567
  68. Lorigo, M.; Mariana, M.; Feiteiro, J.; Cairrao, E. How is the human umbilical artery regulated? J. Obstet. Gynaecol. Res., 2018, 44(7), 1193-1201. doi: 10.1111/jog.13667 PMID: 29727040
  69. Speroni, F.; Rebolledo, A.; Salemme, S.; Roldán-Palomo, R.; Rimorini, L.; Añón, M.C.; Spinillo, A.; Tanzi, F.; Milesi, V. Genistein effects on Ca2+ handling in human umbilical artery: Inhibition of sarcoplasmic reticulum Ca2+ release and of voltage-operated Ca2+ channels. J. Physiol. Biochem., 2009, 65(2), 113-124. doi: 10.1007/BF03179062 PMID: 19886390
  70. Radenković, M.; Grbović, L.; Radunović, N.; Momčilov, P. Pharmacological evaluation of bradykinin effect on human umbilical artery in normal, hypertensive and diabetic pregnancy. Pharmacol. Rep., 2007, 59(1), 64-73. PMID: 17377208
  71. Martín, P.; Rebolledo, A.; Palomo, A.R.R.; Moncada, M.; Piccinini, L.; Milesi, V. Diversity of potassium channels in human umbilical artery smooth muscle cells: A review of their roles in human umbilical artery contraction. Reprod. Sci., 2014, 21(4), 432-441. doi: 10.1177/1933719113504468 PMID: 24084522
  72. Lorigo, M.; Oliveira, N.; Cairrão, E. Clinical importance of the human umbilical artery potassium channels. Cells, 2020, 9(9), 1956. doi: 10.3390/cells9091956 PMID: 32854241
  73. Nacka-Aleksić, M.; Pirković, A.; Vilotić, A.; Bojić-Trbojević, Ž.; Jovanović Krivokuća, M.; Giampieri, F.; Battino, M.; Dekanski, D. The role of dietary polyphenols in pregnancy and pregnancy-related disorders. Nutrients, 2022, 14(24), 5246. doi: 10.3390/nu14245246 PMID: 36558404
  74. Chen, T.C.; da Fonseca, C.O.; Levin, D.; Schönthal, A.H. The monoterpenoid perillyl alcohol: Anticancer agent and medium to overcome biological barriers. Pharmaceutics, 2021, 13(12), 2167. doi: 10.3390/pharmaceutics13122167 PMID: 34959448
  75. Baptista, M.; Lorigo, M.; Cairrao, E. Protein interaction network for identifying vascular response of metformin (oral antidiabetic). Bio. Med. Informatics, 2022, 2(2), 217-233. doi: 10.3390/biomedinformatics2020014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers