Identifying Hub Genes for Glaucoma based on Bulk RNA Sequencing Data and Multi-machine Learning Models


Cite item

Full Text

Abstract

Aims:The aims of this study were to determine hub genes in glaucoma through multiple machine learning algorithms.

Background:Glaucoma has afflicted many patients for many years, with excessive pressure in the eye continuously damaging the nervous system and leading to severe blindness. An effective molecular diagnostic method is currently lacking.

Objective:The present study attempted to reveal the molecular mechanism and gene regulatory network of hub genes in glaucoma, followed by an attempt to reveal the drug-gene-disease network regulated by hub genes.

Methods:A microarray sequencing dataset (GSE9944) was obtained through the Gene Expression Omnibus database. The differentially expressed genes in Glaucoma were identified. Based on these genes, we constructed three machine learning models for feature training, Random Forest model (RF), Least absolute shrinkage and selection operator regression model (LASSO), and Support Vector Machines model (SVM). Meanwhile, Weighted Gene Co-Expression Network Analysis (WGCNA) was performed for GSE9944 expression profiles to identify Glaucoma-related genes. The overlapping genes in the four groups were considered as hub genes of Glaucoma. Based on these genes, we also constructed a molecular diagnostic model of Glaucoma. In this study, we also performed molecular docking analysis to explore the gene-drug network targeting hub genes. In addition, we evaluated the immune cell infiltration landscape in Glaucoma samples and normal samples by applying CIBERSORT method.

Results:8 hub genes were determined: ATP6V0D1, PLEC, SLC25A1, HRSP12, PKN1, RHOD, TMEM158 and GSN. The diagnostic model showed excellent diagnostic performance (area under the curve=1). GSN might positively regulate T cell CD4 naïve as well as negatively regulate T cell regulation (Tregs). In addition, we constructed gene-drug networks in an attempt to explore novel therapeutic agents for Glaucoma.

Conclusion:Our results systematically determined 8 hub genes and established a molecular diagnostic model that allowed the diagnosis of Glaucoma. Our study provided a basis for future systematic studies of Glaucoma pathogenesis.

About the authors

Yangyang Xie

Pharmacy Department, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

Kai Yu

College of Animal Science and Technology, Guangxi University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Glaucoma. Am. Fam. Physician., 2023, 107(3), Online. PMID: 36920818
  2. Chakrabarti, A.; Mohan, N.; Nazm, N.; Mehta, R.; Edward, D. Newer advances in medical management of glaucoma. Indian J. Ophthalmol., 2022, 70(6), 1920-1930. doi: 10.4103/ijo.IJO_2239_21 PMID: 35647957
  3. Aldaas, K.; Challa, P.; Weber, D.J.; Fleischman, D. Infections and glaucoma. Surv. Ophthalmol., 2022, 67(3), 637-658. doi: 10.1016/j.survophthal.2021.08.009 PMID: 34487741
  4. Javitt, G.H.; Vollebregt, E.R. Regulation of molecular diagnostics. Annu. Rev. Genomics Hum. Genet., 2022, 23(1), 653-673. doi: 10.1146/annurev-genom-121521-010416 PMID: 36044907
  5. Xiong, T.; Lv, X.S.; Wu, G.J.; Guo, Y.X.; Liu, C.; Hou, F.X.; Wang, J.K.; Fu, Y.F.; Liu, F.Q. Single-cell sequencing analysis and multiple machine learning methods identified G0S2 and HPSE as novel biomarkers for abdominal aortic aneurysm. Front. Immunol., 2022, 13, 907309. doi: 10.3389/fimmu.2022.907309 PMID: 35769488
  6. Han, H.; Chen, Y.; Yang, H.; Cheng, W.; Zhang, S.; Liu, Y.; Liu, Q.; Liu, D.; Yang, G.; Li, K. Identification and verification of diagnostic biomarkers for glomerular injury in diabetic nephropathy based on machine learning algorithms. Front. Endocrinol., 2022, 13, 876960. doi: 10.3389/fendo.2022.876960 PMID: 35663304
  7. Chen, Y.; Liao, R.; Yao, Y.; Wang, Q.; Fu, L. Machine learning to identify immune-related biomarkers of rheumatoid arthritis based on WGCNA network. Clin. Rheumatol., 2022, 41(4), 1057-1068. doi: 10.1007/s10067-021-05960-9 PMID: 34767108
  8. Hu, L.; Chen, M.; Dai, H.; Wang, H.; Yang, W. A metabolism-related gene signature predicts the prognosis of breast cancer patients: Combined analysis of high-throughput sequencing and gene chip data sets. Oncologie, 2022, 24(4), 803-822. doi: 10.32604/oncologie.2022.026419
  9. Chen, Y.; Huang, L.; Wei, Z.; Liu, X.; Chen, L.; Wang, B. Development and validation of a nomogram model to predict the prognosis of intrahepatic cholangiocarcinoma. Oncologie, 2022, 24(2), 329-340. doi: 10.32604/oncologie.2022.022521
  10. Eraslan, G.; Avsec, Ž.; Gagneur, J.; Theis, F.J. Deep learning: New computational modelling techniques for genomics. Nat. Rev. Genet., 2019, 20(7), 389-403. doi: 10.1038/s41576-019-0122-6 PMID: 30971806
  11. Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers., 2021, 25(3), 1315-1360. doi: 10.1007/s11030-021-10217-3 PMID: 33844136
  12. Alabi, R.O.; Mäkitie, A.A.; Pirinen, M.; Elmusrati, M.; Leivo, I.; Almangush, A. Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer. Int. J. Med. Inform., 2021, 145, 104313. doi: 10.1016/j.ijmedinf.2020.104313 PMID: 33142259
  13. Chen, X.; Li, T.H.; Zhao, Y.; Wang, C.C.; Zhu, C.C. Deep-belief network for predicting potential miRNA-disease associations. Brief. Bioinform., 2021, 22(3), bbaa186. doi: 10.1093/bib/bbaa186 PMID: 34020550
  14. Ha, J.; Park, C.; Park, C.; Park, S. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization. J. Biomed. Inform., 2020, 102, 103358. doi: 10.1016/j.jbi.2019.103358 PMID: 31857202
  15. Ha, J.; Park, S. NCMD: Node2vec-based neural collaborative filtering for predicting MiRNA-disease association. IEEE/ACM Trans. Comput. Biol. Bioinform., 2023, 20(2), 1257-1268. doi: 10.1109/TCBB.2022.3191972
  16. Ha, J. MDMF: Predicting miRNA–disease association based on matrix factorization with disease similarity constraint. J. Pers. Med., 2022, 12(6), 885. doi: 10.3390/jpm12060885 PMID: 35743670
  17. Ha, J. SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association. Knowl. Base. Syst., 2023, 263, 110295. doi: 10.1016/j.knosys.2023.110295
  18. Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; Li, S.; Song, X. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 2022, 1(3), e36. doi: 10.1002/imt2.36
  19. Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 2012, 28(6), 882-883. doi: 10.1093/bioinformatics/bts034 PMID: 22257669
  20. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  21. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  22. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297. doi: 10.1007/BF00994018
  23. Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine learning in medicine: A practical introduction. BMC Med. Res. Methodol., 2019, 19(1), 64. doi: 10.1186/s12874-019-0681-4 PMID: 30890124
  24. Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw., 2011, 39(5), 1-13. doi: 10.18637/jss.v039.i05 PMID: 27065756
  25. Ishwaran, H.; Lu, M.; Kogalur, U.B. randomForestSRC: Variable Importance (VIMP) with Subsampling Inference Vignette. 2021. Available from: https://ishwaran.org/vignettes/rfsrc-subsample.pdf
  26. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformat., 2008, 9(1), 559. doi: 10.1186/1471-2105-9-559 PMID: 19114008
  27. He, Y.; Ge, J.; Tombran-Tink, J. Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci., 2008, 49(11), 4912-4922. doi: 10.1167/iovs.08-2192 PMID: 18614807
  28. Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259. doi: 10.1007/978-1-4939-7493-1_12 PMID: 29344893
  29. El-Hachem, N. AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. Methods Mol. Biol., 2017, 1598, 391-403.
  30. Sterling, T.; Irwin, J.J. ZINC 15 – Ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337. doi: 10.1021/acs.jcim.5b00559 PMID: 26479676
  31. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
  32. Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
  33. Reimers, M.; Carey, V.J. Bioconductor: An open source framework for bioinformatics and computational biology. Methods Enzymol., 2006, 411, 119-134. doi: 10.1016/S0076-6879(06)11008-3 PMID: 16939789
  34. Harris, A.; Guidoboni, G.; Siesky, B.; Mathew, S.; Verticchio, V.A.C.; Rowe, L.; Arciero, J. Ocular blood flow as a clinical observation: Value, limitations and data analysis. Prog. Retin. Eye Res., 2020, 78, 100841. doi: 10.1016/j.preteyeres.2020.100841 PMID: 31987983
  35. He, Y.; Leung, K.W.; Zhuo, Y.H.; Ge, J. Pro370Leu mutant myocilin impairs mitochondrial functions in human trabecular meshwork cells. Mol. Vis., 2009, 15, 815-825. PMID: 19390644
  36. Saracaloglu, A.; Demiryürek, S.; Okumus, S.; Oztuzcu, S.; Bozgeyik, I.; Coskun, E.; Aksoy, U.; Kaydu, E.; Erbagci, I.; Gürler, B.; Alasehirli, B.; Demiryürek, A.T. Toward novel diagnostics for primary open-angle glaucoma? an association study of polymorphic variation in ras homolog family member (A, B, C, D) Genes RHOA, RHOB, RHOC, and RHOD. OMICS, 2016, 20(5), 290-295. doi: 10.1089/omi.2016.0031 PMID: 27195967
  37. Potrč, M.; Volk, M.; de Rosa, M.; Pižem, J.; Teran, N.; Jaklič, H.; Maver, A.; Drnovšek-Olup, B.; Bollati, M.; Vogelnik, K.; Hočevar, A.; Gornik, A.; Pfeifer, V.; Peterlin, B.; Hawlina, M.; Fakin, A. Clinical and histopathological features of gelsolin amyloidosis associated with a novel GSN variant p.Glu580Lys. Int. J. Mol. Sci., 2021, 22(3), 1084. doi: 10.3390/ijms22031084 PMID: 33499149
  38. Liu, M.; Pi, H.; Xi, Y.; Wang, L.; Tian, L.; Chen, M.; Xie, J.; Deng, P.; Zhang, T.; Zhou, C.; Liang, Y.; Zhang, L.; He, M.; Lu, Y.; Chen, C.; Yu, Z.; Zhou, Z. KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy, 2021, 17(4), 903-924. doi: 10.1080/15548627.2020.1739444 PMID: 32160081
  39. Asare-Werehene, M.; Communal, L.; Carmona, E.; Han, Y.; Song, Y.S.; Burger, D.; Mes-Masson, A.M.; Tsang, B.K. Plasma gelsolin inhibits CD8+ T-cell function and regulates glutathione production to confer chemoresistance in ovarian cancer. Cancer Res., 2020, 80(18), 3959-3971. doi: 10.1158/0008-5472.CAN-20-0788 PMID: 32641415
  40. Yang, X.; Zeng, Q.; Göktas, E.; Gopal, K.; Al-Aswad, L.; Blumberg, D.M.; Cioffi, G.A.; Liebmann, J.M.; Tezel, G. T-lymphocyte subset distribution and activity in patients with glaucoma. Invest. Ophthalmol. Vis. Sci., 2019, 60(4), 877-888. doi: 10.1167/iovs.18-26129 PMID: 30821813

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers