Identifying Hub Genes for Glaucoma based on Bulk RNA Sequencing Data and Multi-machine Learning Models
- Authors: Xie Y.1, Yu K.2
-
Affiliations:
- Pharmacy Department, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University
- College of Animal Science and Technology, Guangxi University
- Issue: Vol 31, No 42 (2024)
- Pages: 7059-7071
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjsvd.com/0929-8673/article/view/645158
- DOI: https://doi.org/10.2174/0109298673283658231130104550
- ID: 645158
Cite item
Full Text
Abstract
Aims:The aims of this study were to determine hub genes in glaucoma through multiple machine learning algorithms.
Background:Glaucoma has afflicted many patients for many years, with excessive pressure in the eye continuously damaging the nervous system and leading to severe blindness. An effective molecular diagnostic method is currently lacking.
Objective:The present study attempted to reveal the molecular mechanism and gene regulatory network of hub genes in glaucoma, followed by an attempt to reveal the drug-gene-disease network regulated by hub genes.
Methods:A microarray sequencing dataset (GSE9944) was obtained through the Gene Expression Omnibus database. The differentially expressed genes in Glaucoma were identified. Based on these genes, we constructed three machine learning models for feature training, Random Forest model (RF), Least absolute shrinkage and selection operator regression model (LASSO), and Support Vector Machines model (SVM). Meanwhile, Weighted Gene Co-Expression Network Analysis (WGCNA) was performed for GSE9944 expression profiles to identify Glaucoma-related genes. The overlapping genes in the four groups were considered as hub genes of Glaucoma. Based on these genes, we also constructed a molecular diagnostic model of Glaucoma. In this study, we also performed molecular docking analysis to explore the gene-drug network targeting hub genes. In addition, we evaluated the immune cell infiltration landscape in Glaucoma samples and normal samples by applying CIBERSORT method.
Results:8 hub genes were determined: ATP6V0D1, PLEC, SLC25A1, HRSP12, PKN1, RHOD, TMEM158 and GSN. The diagnostic model showed excellent diagnostic performance (area under the curve=1). GSN might positively regulate T cell CD4 naïve as well as negatively regulate T cell regulation (Tregs). In addition, we constructed gene-drug networks in an attempt to explore novel therapeutic agents for Glaucoma.
Conclusion:Our results systematically determined 8 hub genes and established a molecular diagnostic model that allowed the diagnosis of Glaucoma. Our study provided a basis for future systematic studies of Glaucoma pathogenesis.
About the authors
Yangyang Xie
Pharmacy Department, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
Kai Yu
College of Animal Science and Technology, Guangxi University
Author for correspondence.
Email: info@benthamscience.net
References
- Glaucoma. Am. Fam. Physician., 2023, 107(3), Online. PMID: 36920818
- Chakrabarti, A.; Mohan, N.; Nazm, N.; Mehta, R.; Edward, D. Newer advances in medical management of glaucoma. Indian J. Ophthalmol., 2022, 70(6), 1920-1930. doi: 10.4103/ijo.IJO_2239_21 PMID: 35647957
- Aldaas, K.; Challa, P.; Weber, D.J.; Fleischman, D. Infections and glaucoma. Surv. Ophthalmol., 2022, 67(3), 637-658. doi: 10.1016/j.survophthal.2021.08.009 PMID: 34487741
- Javitt, G.H.; Vollebregt, E.R. Regulation of molecular diagnostics. Annu. Rev. Genomics Hum. Genet., 2022, 23(1), 653-673. doi: 10.1146/annurev-genom-121521-010416 PMID: 36044907
- Xiong, T.; Lv, X.S.; Wu, G.J.; Guo, Y.X.; Liu, C.; Hou, F.X.; Wang, J.K.; Fu, Y.F.; Liu, F.Q. Single-cell sequencing analysis and multiple machine learning methods identified G0S2 and HPSE as novel biomarkers for abdominal aortic aneurysm. Front. Immunol., 2022, 13, 907309. doi: 10.3389/fimmu.2022.907309 PMID: 35769488
- Han, H.; Chen, Y.; Yang, H.; Cheng, W.; Zhang, S.; Liu, Y.; Liu, Q.; Liu, D.; Yang, G.; Li, K. Identification and verification of diagnostic biomarkers for glomerular injury in diabetic nephropathy based on machine learning algorithms. Front. Endocrinol., 2022, 13, 876960. doi: 10.3389/fendo.2022.876960 PMID: 35663304
- Chen, Y.; Liao, R.; Yao, Y.; Wang, Q.; Fu, L. Machine learning to identify immune-related biomarkers of rheumatoid arthritis based on WGCNA network. Clin. Rheumatol., 2022, 41(4), 1057-1068. doi: 10.1007/s10067-021-05960-9 PMID: 34767108
- Hu, L.; Chen, M.; Dai, H.; Wang, H.; Yang, W. A metabolism-related gene signature predicts the prognosis of breast cancer patients: Combined analysis of high-throughput sequencing and gene chip data sets. Oncologie, 2022, 24(4), 803-822. doi: 10.32604/oncologie.2022.026419
- Chen, Y.; Huang, L.; Wei, Z.; Liu, X.; Chen, L.; Wang, B. Development and validation of a nomogram model to predict the prognosis of intrahepatic cholangiocarcinoma. Oncologie, 2022, 24(2), 329-340. doi: 10.32604/oncologie.2022.022521
- Eraslan, G.; Avsec, .; Gagneur, J.; Theis, F.J. Deep learning: New computational modelling techniques for genomics. Nat. Rev. Genet., 2019, 20(7), 389-403. doi: 10.1038/s41576-019-0122-6 PMID: 30971806
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers., 2021, 25(3), 1315-1360. doi: 10.1007/s11030-021-10217-3 PMID: 33844136
- Alabi, R.O.; Mäkitie, A.A.; Pirinen, M.; Elmusrati, M.; Leivo, I.; Almangush, A. Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer. Int. J. Med. Inform., 2021, 145, 104313. doi: 10.1016/j.ijmedinf.2020.104313 PMID: 33142259
- Chen, X.; Li, T.H.; Zhao, Y.; Wang, C.C.; Zhu, C.C. Deep-belief network for predicting potential miRNA-disease associations. Brief. Bioinform., 2021, 22(3), bbaa186. doi: 10.1093/bib/bbaa186 PMID: 34020550
- Ha, J.; Park, C.; Park, C.; Park, S. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization. J. Biomed. Inform., 2020, 102, 103358. doi: 10.1016/j.jbi.2019.103358 PMID: 31857202
- Ha, J.; Park, S. NCMD: Node2vec-based neural collaborative filtering for predicting MiRNA-disease association. IEEE/ACM Trans. Comput. Biol. Bioinform., 2023, 20(2), 1257-1268. doi: 10.1109/TCBB.2022.3191972
- Ha, J. MDMF: Predicting miRNAdisease association based on matrix factorization with disease similarity constraint. J. Pers. Med., 2022, 12(6), 885. doi: 10.3390/jpm12060885 PMID: 35743670
- Ha, J. SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association. Knowl. Base. Syst., 2023, 263, 110295. doi: 10.1016/j.knosys.2023.110295
- Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; Li, S.; Song, X. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 2022, 1(3), e36. doi: 10.1002/imt2.36
- Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 2012, 28(6), 882-883. doi: 10.1093/bioinformatics/bts034 PMID: 22257669
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297. doi: 10.1007/BF00994018
- Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine learning in medicine: A practical introduction. BMC Med. Res. Methodol., 2019, 19(1), 64. doi: 10.1186/s12874-019-0681-4 PMID: 30890124
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for Coxs proportional hazards model via coordinate descent. J. Stat. Softw., 2011, 39(5), 1-13. doi: 10.18637/jss.v039.i05 PMID: 27065756
- Ishwaran, H.; Lu, M.; Kogalur, U.B. randomForestSRC: Variable Importance (VIMP) with Subsampling Inference Vignette. 2021. Available from: https://ishwaran.org/vignettes/rfsrc-subsample.pdf
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformat., 2008, 9(1), 559. doi: 10.1186/1471-2105-9-559 PMID: 19114008
- He, Y.; Ge, J.; Tombran-Tink, J. Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci., 2008, 49(11), 4912-4922. doi: 10.1167/iovs.08-2192 PMID: 18614807
- Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259. doi: 10.1007/978-1-4939-7493-1_12 PMID: 29344893
- El-Hachem, N. AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. Methods Mol. Biol., 2017, 1598, 391-403.
- Sterling, T.; Irwin, J.J. ZINC 15 Ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337. doi: 10.1021/acs.jcim.5b00559 PMID: 26479676
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
- Reimers, M.; Carey, V.J. Bioconductor: An open source framework for bioinformatics and computational biology. Methods Enzymol., 2006, 411, 119-134. doi: 10.1016/S0076-6879(06)11008-3 PMID: 16939789
- Harris, A.; Guidoboni, G.; Siesky, B.; Mathew, S.; Verticchio, V.A.C.; Rowe, L.; Arciero, J. Ocular blood flow as a clinical observation: Value, limitations and data analysis. Prog. Retin. Eye Res., 2020, 78, 100841. doi: 10.1016/j.preteyeres.2020.100841 PMID: 31987983
- He, Y.; Leung, K.W.; Zhuo, Y.H.; Ge, J. Pro370Leu mutant myocilin impairs mitochondrial functions in human trabecular meshwork cells. Mol. Vis., 2009, 15, 815-825. PMID: 19390644
- Saracaloglu, A.; Demiryürek, S.; Okumus, S.; Oztuzcu, S.; Bozgeyik, I.; Coskun, E.; Aksoy, U.; Kaydu, E.; Erbagci, I.; Gürler, B.; Alasehirli, B.; Demiryürek, A.T. Toward novel diagnostics for primary open-angle glaucoma? an association study of polymorphic variation in ras homolog family member (A, B, C, D) Genes RHOA, RHOB, RHOC, and RHOD. OMICS, 2016, 20(5), 290-295. doi: 10.1089/omi.2016.0031 PMID: 27195967
- Potrč, M.; Volk, M.; de Rosa, M.; Piem, J.; Teran, N.; Jaklič, H.; Maver, A.; Drnovek-Olup, B.; Bollati, M.; Vogelnik, K.; Hočevar, A.; Gornik, A.; Pfeifer, V.; Peterlin, B.; Hawlina, M.; Fakin, A. Clinical and histopathological features of gelsolin amyloidosis associated with a novel GSN variant p.Glu580Lys. Int. J. Mol. Sci., 2021, 22(3), 1084. doi: 10.3390/ijms22031084 PMID: 33499149
- Liu, M.; Pi, H.; Xi, Y.; Wang, L.; Tian, L.; Chen, M.; Xie, J.; Deng, P.; Zhang, T.; Zhou, C.; Liang, Y.; Zhang, L.; He, M.; Lu, Y.; Chen, C.; Yu, Z.; Zhou, Z. KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy, 2021, 17(4), 903-924. doi: 10.1080/15548627.2020.1739444 PMID: 32160081
- Asare-Werehene, M.; Communal, L.; Carmona, E.; Han, Y.; Song, Y.S.; Burger, D.; Mes-Masson, A.M.; Tsang, B.K. Plasma gelsolin inhibits CD8+ T-cell function and regulates glutathione production to confer chemoresistance in ovarian cancer. Cancer Res., 2020, 80(18), 3959-3971. doi: 10.1158/0008-5472.CAN-20-0788 PMID: 32641415
- Yang, X.; Zeng, Q.; Göktas, E.; Gopal, K.; Al-Aswad, L.; Blumberg, D.M.; Cioffi, G.A.; Liebmann, J.M.; Tezel, G. T-lymphocyte subset distribution and activity in patients with glaucoma. Invest. Ophthalmol. Vis. Sci., 2019, 60(4), 877-888. doi: 10.1167/iovs.18-26129 PMID: 30821813
Supplementary files
