Prognostic Value and Therapeutic Significance of CCL Chemokines in Gastric Cancer


Cite item

Full Text

Abstract

Background:Gastric cancer is one of the most common malignant tumours of the gastrointestinal tract, which has a significant negative impact on human health.

Aims:CCL chemokines play important roles in a variety of tumor microenvironments; nevertheless, gastric cancer has surprisingly limited associations with CCL chemokines.

Methods:In our study, we comprehensively utilized bioinformatics analysis tools and databases such as cBioPortal, UALCAN, GEPIA, GeneMANIA, STRING, and TRRUST to clarify the clinical significance and biology function of CCL chemokines in gastric cancer.

Results:The mRNA expression levels of CCL1/3/4/5/7/8/14/15/18/20/21/22/26 were up-regulated, while the mRNA expression levels of CCL2/11/13/16/17/19/23/24/25/28 were down-regulated. The chemokine significantly associated with the pathological stage of gastric cancer is CCL2/11/19/21. In gastric cancer, the expression level of CCL chemokines was not associated with disease-free survival, but low expression of CCL14 was significantly associated with longer overall survival. Therein, associated with the regulation of CCL chemokines are only 10 transcription factors (RELA, NFKB1, STAT6, IRF3, REL, SPI1, STAT1, STAT3, JUN and SP1). The major biological process and functional enrichment of CCL chemokines are to induce cell-directed migration.

Conclusion:These results may indicate that CCL chemokines may be immunotherapeutic targets and promising prognostic biomarkers for gastric cancer.

About the authors

Yonggang Tian

Department of Gastroenterology, Lanzhou University Second Hospital

Email: info@benthamscience.net

Yunqian Xie

The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology,, The Second Affiliated Hospital of Hainan Medical University,

Email: info@benthamscience.net

Guirong Yi

Department of Gastroenterology, Lanzhou University Second Hospital

Email: info@benthamscience.net

Fanqi Wu

The Second Hospital &Clinical Medical School,, Lanzhou University

Email: info@benthamscience.net

Xiaoyu Dang

The Second Hospital &Clinical Medical School,, , Lanzhou University

Email: info@benthamscience.net

Feihu Bai

The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology,, The Second Affiliated Hospital of Hainan Medical University

Author for correspondence.
Email: info@benthamscience.net

Jun Wang

Department of Gastroenterology, 986 Hospital, Xijing Hospital, Air Force Military Medical University

Author for correspondence.
Email: info@benthamscience.net

Dekui Zhang

Department of Gastroenterology, Lanzhou University Second Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Yeoh, K.G.; Tan, P. Mapping the genomic diaspora of gastric cancer. Nat. Rev. Cancer, 2022, 22(2), 71-84. doi: 10.1038/s41568-021-00412-7 PMID: 34702982
  2. Cao, T.; Zhang, W.; Wang, Q.; Wang, C.; Ma, W.; Zhang, C.; Ge, M.; Tian, M.; Yu, J.; Jiao, A.; Wang, L.; Liu, M.; Wang, P.; Guo, Z.; Zhou, Y.; Chen, S.; Yin, W.; Yi, J.; Guo, H.; Han, H.; Zhang, B.; Wu, K.; Fan, D.; Wang, X.; Nie, Y.; Lu, Y.; Zhao, X. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+ T cells. Cell, 2024, 187(9), 2288-2304.e27. doi: 10.1016/j.cell.2024.03.011 PMID: 38565142
  3. Wang, J.; Zhang, J.; Liu, H.; Meng, L.; Gao, X.; Zhao, Y.; Wang, C.; Gao, X.; Fan, A.; Cao, T.; Fan, D.; Zhao, X.; Lu, Y. N6-methyladenosine reader hnRNPA2B1 recognizes and stabilizes NEAT1 to confer chemoresistance in gastric cancer. Cancer Commun., 2024, 44(4), 469-490. doi: 10.1002/cac2.12534 PMID: 38512764
  4. Chen, Y.; Wang, B.; Zhao, Y.; Shao, X.; Wang, M.; Ma, F.; Yang, L.; Nie, M.; Jin, P.; Yao, K.; Song, H.; Lou, S.; Wang, H.; Yang, T.; Tian, Y.; Han, P.; Hu, Z. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun., 2024, 15(1), 1657. doi: 10.1038/s41467-024-46043-y PMID: 38395893
  5. Wong, M.C.S.; Huang, J.; Chan, P.S.F.; Choi, P.; Lao, X.Q.; Chan, S.M.; Teoh, A.; Liang, P. Global incidence and mortality of gastric cancer, 1980-2018. JAMA Netw. Open, 2021, 4(7), e2118457. doi: 10.1001/jamanetworkopen.2021.18457 PMID: 34309666
  6. Zeng, Y.; Jin, R.U. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin. Cancer Biol., 2022, 86(Pt 3), 566-582. doi: 10.1016/j.semcancer.2021.12.004 PMID: 34933124
  7. Fatehullah, A.; Terakado, Y.; Sagiraju, S.; Tan, T.L.; Sheng, T.; Tan, S.H.; Murakami, K.; Swathi, Y.; Ang, N.; Rajarethinam, R.; Ming, T.; Tan, P.; Lee, B.; Barker, N. A tumour-resident Lgr5+ stem-cell-like pool drives the establishment and progression of advanced gastric cancers. Nat. Cell Biol., 2021, 23(12), 1299-1313. doi: 10.1038/s41556-021-00793-9 PMID: 34857912
  8. Negura, I.; Pavel-Tanasa, M.; Danciu, M. Regulatory T cells in gastric cancer: Key controllers from pathogenesis to therapy. Cancer Treat. Rev., 2023, 120, 102629. doi: 10.1016/j.ctrv.2023.102629 PMID: 37769435
  9. Kuang, Z.Y.; Sun, Q.H.; Cao, L.C.; Ma, X.Y.; Wang, J.X.; Liu, K.X.; Li, J. Efficacy and safety of perioperative therapy for locally resectable gastric cancer: A network meta-analysis of randomized clinical trials. World J. Gastrointest. Oncol., 2024, 16(3), 1046-1058. doi: 10.4251/wjgo.v16.i3.1046 PMID: 38577462
  10. Sexton, R.E.; Al Hallak, M.N.; Diab, M.; Azmi, A.S. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev., 2020, 39(4), 1179-1203. doi: 10.1007/s10555-020-09925-3 PMID: 32894370
  11. Christodoulidis, G.; Koumarelas, K.E.; Kouliou, M.N. Revolutionizing gastric cancer treatment: The potential of immunotherapy. World J. Gastroenterol., 2024, 30(4), 286-289. doi: 10.3748/wjg.v30.i4.286 PMID: 38313231
  12. Song, Y.; Wang, J.; Sun, J.; Chen, X.; Shi, J.; Wu, Z.; Yu, D.; Zhang, F.; Wang, Z. Screening of potential biomarkers for gastric cancer with diagnostic value using label-free global proteome analysis. Genomics Proteomics Bioinformatics, 2020, 18(6), 679-695. doi: 10.1016/j.gpb.2020.06.012 PMID: 33607292
  13. Ferro, A.; Peleteiro, B.; Malvezzi, M.; Bosetti, C.; Bertuccio, P.; Levi, F.; Negri, E.; La Vecchia, C.; Lunet, N. Worldwide trends in gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype. Eur. J. Cancer, 2014, 50(7), 1330-1344. doi: 10.1016/j.ejca.2014.01.029 PMID: 24650579
  14. Brenner, H.; Rothenbacher, D.; Arndt, V. Epidemiology of stomach cancer. Methods Mol. Biol., 2009, 472, 467-477. doi: 10.1007/978-1-60327-492-0_23 PMID: 19107449
  15. Senchukova, M.A. Helicobacter pylori and gastric cancer progression. Curr. Microbiol., 2022, 79(12), 383. doi: 10.1007/s00284-022-03089-9 PMID: 36329283
  16. Thrift, A.P.; El-Serag, H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol., 2020, 18(3), 534-542. doi: 10.1016/j.cgh.2019.07.045 PMID: 31362118
  17. Pan, L.; Shi, Y.; Zhang, J.; Luo, G. Association between single nucleotide polymorphisms of mirnas and gastric cancer: a scoping review. Genet. Test. Mol. Biomarkers, 2022, 26(10), 459-467. doi: 10.1089/gtmb.2021.0258 PMID: 36251855
  18. Cheng, J.; Cai, M.; Shuai, X.; Gao, J.; Wang, G.; Tao, K. First-line systemic therapy for advanced gastric cancer: a systematic review and network meta-analysis. Ther. Adv. Med. Oncol., 2019, 11, p. 1758835919877726. doi: 10.1177/1758835919877726 PMID: 31632469
  19. Jain, U.; Saxena, K.; Chauhan, N. Helicobacter pylori induced reactive oxygen Species: A new and developing platform for detection. Helicobacter, 2021, 26(3), e12796. doi: 10.1111/hel.12796 PMID: 33666321
  20. Wei, L.; Sun, J.; Zhang, N.; Zheng, Y.; Wang, X.; Lv, L.; Liu, J.; Xu, Y.; Shen, Y.; Yang, M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol. Cancer, 2020, 19(1), 62. doi: 10.1186/s12943-020-01185-7 PMID: 32192494
  21. Zhao, A.J.; Qian, Y.Y.; Sun, H.; Hou, X.; Pan, J.; Liu, X.; Zhou, W.; Chen, Y.Z.; Jiang, X.; Li, Z.S.; Liao, Z. Screening for gastric cancer with magnetically controlled capsule gastroscopy in asymptomatic individuals. Gastrointest. Endosc., 2018, 88(3), 466-474.e1. doi: 10.1016/j.gie.2018.05.003 PMID: 29753039
  22. Tan, H.; Zhang, S.; Zhang, J.; Zhu, L.; Chen, Y.; Yang, H.; Chen, Y.; An, Y.; Liu, B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Theranostics, 2020, 10(19), 8880-8902. doi: 10.7150/thno.47548 PMID: 32754285
  23. Jin, G.; Zhang, J.; Cao, T.; Chen, B.; Tian, Y.; Shi, Y. Exosome-mediated lncRNA SND1-IT1 from gastric cancer cells enhances malignant transformation of gastric mucosa cells via up-regulating SNAIL1. J. Transl. Med., 2022, 20(1), 284. doi: 10.1186/s12967-022-03306-w PMID: 35739527
  24. You, L.; Dou, Y.; Zhang, Y.; Xiao, H.; Lv, H.; Wei, G.H.; Xu, D. SDC2 stabilization by USP14 promotes gastric cancer progression through co-option of PDK1. Int. J. Biol. Sci., 2023, 19(11), 3483-3498. doi: 10.7150/ijbs.84331 PMID: 37496999
  25. Lavy, R.; Kapiev, A.; Poluksht, N.; Halevy, A.; Keinan-Boker, L. Incidence trends and mortality rates of gastric cancer in Israel. Gastric Cancer, 2013, 16(2), 121-125. doi: 10.1007/s10120-012-0155-4 PMID: 22527183
  26. Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci., 2020, 21(11), 4012. doi: 10.3390/ijms21114012 PMID: 32512697
  27. Liang, Z.; Xu, Y.; Zhang, Y.; Zhang, X.; Song, J.; Jin, J.; Qian, H. Anticancer applications of phytochemicals in gastric cancer: Effects and molecular mechanism. Front. Pharmacol., 2023, 13, 1078090. doi: 10.3389/fphar.2022.1078090 PMID: 36712679
  28. Shen, X.; Zhao, K.; Xu, L.; Cheng, G.; Zhu, J.; Gan, L.; Wu, Y.; Zhuang, Z. YTHDF2 inhibits gastric cancer cell growth by regulating FOXC2 signaling pathway. Front. Genet., 2021, 11, 592042. doi: 10.3389/fgene.2020.592042 PMID: 33505426
  29. Zhang, Y.; Zhou, X.; Cheng, X.; Hong, X.; Jiang, X.; Jing, G.; Chen, K.; Li, Y. PRKAA1, stabilized by FTO in an m6A-YTHDF2-dependent manner, promotes cell proliferation and glycolysis of gastric cancer by regulating the redox balance. Neoplasma, 2022, 69(6), 1338-1348. doi: 10.4149/neo_2022_220714N714 PMID: 36305690
  30. Chen, J.; Röcken, C.; Malfertheiner, P.; Ebert, M.P.A. Recent advances in molecular diagnosis and therapy of gastric cancer. Dig. Dis., 2004, 22(4), 380-385. doi: 10.1159/000083602 PMID: 15812163
  31. Yao, F.Z.; Kong, D.G. Identification of kinesin family member 3B (KIF3B) as a molecular target for gastric cancer. Kaohsiung J. Med. Sci., 2020, 36(7), 515-522. doi: 10.1002/kjm2.12206 PMID: 32237034
  32. Tan, Z. Recent advances in the surgical treatment of advanced gastric cancer: A review. Med. Sci. Monit., 2019, 25, 3537-3541. doi: 10.12659/MSM.916475 PMID: 31080234
  33. Cai, X.; Deng, J.; Ming, Q.; Cai, H.; Chen, Z. Chemokine- like factor 1: A promising therapeutic target in human diseases. Exp. Biol. Med., 2020, 245(16), 1518-1528. doi: 10.1177/1535370220945225 PMID: 32715782
  34. Laurence, A.D.J. Location, movement and survival: the role of chemokines in haematopoiesis and malignancy. Br. J. Haematol., 2006, 132(3), 255-267. doi: 10.1111/j.1365-2141.2005.05841.x PMID: 16409290
  35. Rostene, W.; Buckingham, J.C. Chemokines as modulators of neuroendocrine functions. J. Mol. Endocrinol., 2007, 38(3), 351-353. doi: 10.1677/JME-07-0006 PMID: 17339397
  36. Nagarsheth, N.; Wicha, M.S.; Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol., 2017, 17(9), 559-572. doi: 10.1038/nri.2017.49 PMID: 28555670
  37. Mempel, T.R.; Lill, J.K.; Altenburger, L.M. How chemokines organize the tumour microenvironment. Nat. Rev. Cancer, 2024, 24(1), 28-50. doi: 10.1038/s41568-023-00635-w PMID: 38066335
  38. Bule, P.; Aguiar, S.I.; Aires-Da-Silva, F.; Dias, J.N.R. Chemokine-directed tumor microenvironment modulation in cancer immunotherapy. Int. J. Mol. Sci., 2021, 22(18), 9804. doi: 10.3390/ijms22189804 PMID: 34575965
  39. DiNatale, A.; Castelli, M.S.; Nash, B.; Meucci, O.; Fatatis, A. Regulation of tumor and metastasis initiation by chemokine receptors. J. Cancer, 2022, 13(11), 3160-3176. doi: 10.7150/jca.72331 PMID: 36118530
  40. Allinen, M.; Beroukhim, R.; Cai, L.; Brennan, C.; Lahti- Domenici, J.; Huang, H.; Porter, D.; Hu, M.; Chin, L.; Richardson, A.; Schnitt, S.; Sellers, W.R.; Polyak, K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 2004, 6(1), 17-32. doi: 10.1016/j.ccr.2004.06.010 PMID: 15261139
  41. Jiao, X.; Shu, G.; Liu, H.; Zhang, Q.; Ma, Z.; Ren, C.; Guo, H.; Shi, J.; Liu, J.; Zhang, C.; Wang, Y.; Gao, Y. The diagnostic value of chemokine/chemokine receptor pairs in hepatocellular carcinoma and colorectal liver metastasis. J. Histochem. Cytochem., 2019, 67(5), 299-308. doi: 10.1369/0022155418824274 PMID: 30633620
  42. Reschke, R.; Gajewski, T.F. CXCL9 and CXCL10 bring the heat to tumors. Sci. Immunol., 2022, 7(73), eabq6509. doi: 10.1126/sciimmunol.abq6509 PMID: 35867802
  43. Strieter, R.M.; Polverini, P.J.; Arenberg, D.A.; Kunkel, S.L. The role of CXC chemokines as regulators of angiogenesis. Shock, 1995, 4(3), 155-160. doi: 10.1097/00024382-199509000-00001 PMID: 8574748
  44. Ji, S.; Chen, H.; Yang, K.; Zhang, G.; Mao, B.; Hu, Y.; Zhang, H.; Xu, J. Peripheral cytokine levels as predictive biomarkers of benefit from immune checkpoint inhibitors in cancer therapy. Biomed. Pharmacother., 2020, 129, 110457. doi: 10.1016/j.biopha.2020.110457 PMID: 32887027
  45. Zhang, M.; Yang, W.; Wang, P.; Deng, Y.; Dong, Y.T.; Liu, F.F.; Huang, R.; Zhang, P.; Duan, Y.Q.; Liu, X.D.; Lin, D.; Chu, Q.; Zhong, B. CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer. Nat. Commun., 2020, 11(1), 6119. doi: 10.1038/s41467-020-19973-6 PMID: 33257678
  46. Wu, Z.; Sun, L.; Xu, Y.; Huang, H.; Wu, Z.; Qiu, B.; Yan, J.; Yin, X. The value of chemokine and chemokine receptors in diagnosis, prognosis, and immunotherapy of hepatocellular carcinoma. Cancer Manag. Res., 2024, 16, 403-420. doi: 10.2147/CMAR.S450959 PMID: 38736589
  47. Vautrot, V.; Bentayeb, H.; Causse, S.; Garrido, C.; Gobbo, J. Tumor-derived exosomes: Hidden players in PD-1/PD-L1 resistance. Cancers, 2021, 13(18), 4537. doi: 10.3390/cancers13184537 PMID: 34572764
  48. Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102. doi: 10.1093/nar/gkx247 PMID: 28407145
  49. Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V. S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658. doi: 10.1016/j.neo.2017.05.002 PMID: 28732212
  50. Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; Creighton, C.J.; Varambally, S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25, 18-27. doi: 10.1016/j.neo.2022.01.001 PMID: 35078134
  51. Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404. doi: 10.1158/2159-8290.CD-12-0095 PMID: 22588877
  52. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1. doi: 10.1126/scisignal.2004088 PMID: 23550210
  53. Warde-Farley, D.; Donaldson, SL.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, CT. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res, 2010, 38, W214-W220. doi: 10.1093/nar/gkq537
  54. Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res., 2018, 46(W1), W60-W64. doi: 10.1093/nar/gky311 PMID: 29912392
  55. Montojo, J.; Zuberi, K.; Rodriguez, H.; Kazi, F.; Wright, G.; Donaldson, S.L.; Morris, Q.; Bader, G.D. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics, 2010, 26(22), 2927-2928. doi: 10.1093/bioinformatics/btq562 PMID: 20926419
  56. Zuberi, K.; Franz, M.; Rodriguez, H.; Montojo, J.; Lopes, CT.; Bader, GD.; Morris, Q. GeneMANIA prediction server 2013 update. Nucleic Acids Res, 2013, 41, W115-W122. doi: 10.1093/nar/gkt533
  57. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
  58. Han, H.; Cho, J.W.; Lee, S.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C.Y.; Lee, M.; Kim, E.; Lee, S.; Kang, B.; Jeong, D.; Kim, Y.; Jeon, H.N.; Jung, H.; Nam, S.; Chung, M.; Kim, J.H.; Lee, I. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res., 2018, 46(D1), D380-D386. doi: 10.1093/nar/gkx1013 PMID: 29087512
  59. Han, H.; Shim, H.; Shin, D.; Shim, J.E.; Ko, Y.; Shin, J.; Kim, H.; Cho, A.; Kim, E.; Lee, T.; Kim, H.; Kim, K.; Yang, S.; Bae, D.; Yun, A.; Kim, S.; Kim, C.Y.; Cho, H.J.; Kang, B.; Shin, S.; Lee, I. TRRUST: a reference database of human transcriptional regulatory interactions. Sci. Rep., 2015, 5(1), 11432. doi: 10.1038/srep11432 PMID: 26066708
  60. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523. doi: 10.1038/s41467-019-09234-6 PMID: 30944313
  61. Chen, D.; Fu, M.; Chi, L.; Lin, L.; Cheng, J.; Xue, W.; Long, C.; Jiang, W.; Dong, X.; Sui, J.; Lin, D.; Lu, J.; Zhuo, S.; Liu, S.; Li, G.; Chen, G.; Yan, J. Prognostic and predictive value of a pathomics signature in gastric cancer. Nat. Commun., 2022, 13(1), 6903. doi: 10.1038/s41467-022-34703-w PMID: 36371443
  62. Chen, K.; Bao, Z.; Tang, P.; Gong, W.; Yoshimura, T.; Wang, J.M. Chemokines in homeostasis and diseases. Cell. Mol. Immunol., 2018, 15(4), 324-334. doi: 10.1038/cmi.2017.134 PMID: 29375126
  63. Marcuzzi, E.; Angioni, R.; Molon, B.; Calì, B. Chemokines and chemokine receptors: orchestrating tumor metastasization. Int. J. Mol. Sci., 2018, 20(1), 96. doi: 10.3390/ijms20010096 PMID: 30591657
  64. Baj-Krzyworzeka, M.; Węglarczyk, K.; Baran, J.; Szczepanik, A.; Szura, M.; Siedlar, M. Elevated level of some chemokines in plasma of gastric cancer patients. Cent. Eur. J. Immunol., 2016, 4(4), 358-362. doi: 10.5114/ceji.2016.65133 PMID: 28450798
  65. Zhang, J.; Yan, Y.; Cui, X.; Zhang, J.; Yang, Y.; Li, H.; Wu, H.; Li, J.; Wang, L.; Li, M.; Liu, X.; Wang, J.; Duan, X. CCL2 expression correlates with Snail expression and affects the prognosis of patients with gastric cancer. Pathol. Res. Pract., 2017, 213(3), 217-221. doi: 10.1016/j.prp.2016.12.013 PMID: 28215642
  66. Hwang, T.L.; Lee, L.Y.; Wang, C.C.; Liang, Y.; Huang, S.F.; Wu, C.M. CCL7 and CCL21 overexpression in gastric cancer is associated with lymph node metastasis and poor prognosis. World J. Gastroenterol., 2012, 18(11), 1249-1256. doi: 10.3748/wjg.v18.i11.1249 PMID: 22468089
  67. Jin, G.; Lv, J.; Yang, M.; Wang, M.; Zhu, M.; Wang, T.; Yan, C.; Yu, C.; Ding, Y.; Li, G.; Ren, C.; Ni, J.; Zhang, R.; Guo, Y.; Bian, Z.; Zheng, Y.; Zhang, N.; Jiang, Y.; Chen, J.; Wang, Y.; Xu, D.; Zheng, H.; Yang, L.; Chen, Y.; Walters, R.; Millwood, I.Y.; Dai, J.; Ma, H.; Chen, K.; Chen, Z.; Hu, Z.; Wei, Q.; Shen, H.; Li, L. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study. Lancet Oncol., 2020, 21(10), 1378-1386. doi: 10.1016/S1470-2045(20)30460-5 PMID: 33002439
  68. Rustgi, S.D.; Ching, C.K.; Kastrinos, F. Inherited predisposition to gastric cancer. Gastrointest. Endosc. Clin. N. Am., 2021, 31(3), 467-487. doi: 10.1016/j.giec.2021.03.010 PMID: 34053634
  69. Han, J.; Fu, R.; Chen, C.; Cheng, X.; Guo, T.; Huangfu, L.; Li, X.; Du, H.; Xing, X.; Ji, J. CXCL16 promotes gastric cancer tumorigenesis via ADAM10-dependent CXCL16/CXCR6 axis and activates Akt and MAPK signaling pathways: erratum. Int. J. Biol. Sci., 2023, 19(10), 3285-3287. doi: 10.7150/ijbs.84342 PMID: 37416762
  70. Low, J.T.; Christie, M.; Ernst, M.; Dumoutier, L.; Preaudet, A.; Ni, Y.; Griffin, M.D.W.; Mielke, L.A.; Strasser, A.; Putoczki, T.L.; O’Reilly, L.A. Loss of NFKB1 results in expression of tumor necrosis factor and activation of signal transducer and activator of transcription 1 to promote gastric tumorigenesis in mice. Gastroenterology, 2020, 159(4), 1444-1458.e15. doi: 10.1053/j.gastro.2020.06.039 PMID: 32569771
  71. Li, D.; Wu, C.; Cai, Y.; Liu, B. Association of NFKB1 and NFKBIA gene polymorphisms with susceptibility of gastric cancer. Tumour Biol., 2017, 39(7) doi: 10.1177/1010428317717107 PMID: 28670959
  72. Chen, Y.; Lu, R.; Zheng, H.; Xiao, R.; Feng, J.; Wang, H.; Gao, X.; Guo, L. The NFKB1 polymorphism (rs4648068) is associated with the cell proliferation and motility in gastric cancer. BMC Gastroenterol., 2015, 15(1), 21. doi: 10.1186/s12876-015-0243-0 PMID: 25888547
  73. Deng, J.Y.; Sun, D.; Liu, X.Y.; Pan, Y.; Liang, H. STAT-3 correlates with lymph node metastasis and cell survival in gastric cancer. World J. Gastroenterol., 2010, 16(42), 5380-5387. doi: 10.3748/wjg.v16.i42.5380 PMID: 21072904
  74. Lu, G.; Shi, W.; Zheng, H. Inhibition of STAT6/anoctamin-1 activation suppresses proliferation and invasion of gastric cancer cells. Cancer Biother. Radiopharm., 2018, 33(1), 3-7. doi: 10.1089/cbr.2017.2287 PMID: 29466035
  75. Jiao, S.; Guan, J.; Chen, M.; Wang, W.; Li, C.; Wang, Y.; Cheng, Y.; Zhou, Z. Targeting IRF3 as a YAP agonist therapy against gastric cancer. J. Exp. Med., 2018, 215(2), 699-718. doi: 10.1084/jem.20171116 PMID: 29339449
  76. Matsuo, K.; Yoshie, O.; Nakayama, T. Multifaceted roles of chemokines and chemokine receptors in tumor immunity. Cancers (Basel), 2021, 13(23), 6132. doi: 10.3390/cancers13236132 PMID: 34885241
  77. Ozga, A.J.; Chow, M.T.; Luster, A.D. Chemokines and the immune response to cancer. Immunity, 2021, 54(5), 859-874. doi: 10.1016/j.immuni.2021.01.012 PMID: 33838745
  78. Protti, M.P.; Monte, L.D.; Lullo, G.D. Tumor antigen-specific CD4+ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies. Tissue Antigens, 2014, 83(4), 237-246. doi: 10.1111/tan.12329 PMID: 24641502
  79. Qian, B.Z.; Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell, 2010, 141(1), 39-51. doi: 10.1016/j.cell.2010.03.014 PMID: 20371344

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers