Prognostic Value and Therapeutic Significance of CCL Chemokines in Gastric Cancer
- Authors: Tian Y.1, Xie Y.2, Yi G.1, Wu F.3, Dang X.4, Bai F.5, Wang J.6, Zhang D.1
-
Affiliations:
- Department of Gastroenterology, Lanzhou University Second Hospital
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology,, The Second Affiliated Hospital of Hainan Medical University,
- The Second Hospital &Clinical Medical School,, Lanzhou University
- The Second Hospital &Clinical Medical School,, , Lanzhou University
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology,, The Second Affiliated Hospital of Hainan Medical University
- Department of Gastroenterology, 986 Hospital, Xijing Hospital, Air Force Military Medical University
- Issue: Vol 31, No 42 (2024)
- Pages: 7043-7058
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjsvd.com/0929-8673/article/view/645156
- DOI: https://doi.org/10.2174/0109298673315146240731100101
- ID: 645156
Cite item
Full Text
Abstract
Background:Gastric cancer is one of the most common malignant tumours of the gastrointestinal tract, which has a significant negative impact on human health.
Aims:CCL chemokines play important roles in a variety of tumor microenvironments; nevertheless, gastric cancer has surprisingly limited associations with CCL chemokines.
Methods:In our study, we comprehensively utilized bioinformatics analysis tools and databases such as cBioPortal, UALCAN, GEPIA, GeneMANIA, STRING, and TRRUST to clarify the clinical significance and biology function of CCL chemokines in gastric cancer.
Results:The mRNA expression levels of CCL1/3/4/5/7/8/14/15/18/20/21/22/26 were up-regulated, while the mRNA expression levels of CCL2/11/13/16/17/19/23/24/25/28 were down-regulated. The chemokine significantly associated with the pathological stage of gastric cancer is CCL2/11/19/21. In gastric cancer, the expression level of CCL chemokines was not associated with disease-free survival, but low expression of CCL14 was significantly associated with longer overall survival. Therein, associated with the regulation of CCL chemokines are only 10 transcription factors (RELA, NFKB1, STAT6, IRF3, REL, SPI1, STAT1, STAT3, JUN and SP1). The major biological process and functional enrichment of CCL chemokines are to induce cell-directed migration.
Conclusion:These results may indicate that CCL chemokines may be immunotherapeutic targets and promising prognostic biomarkers for gastric cancer.
About the authors
Yonggang Tian
Department of Gastroenterology, Lanzhou University Second Hospital
Email: info@benthamscience.net
Yunqian Xie
The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology,, The Second Affiliated Hospital of Hainan Medical University,
Email: info@benthamscience.net
Guirong Yi
Department of Gastroenterology, Lanzhou University Second Hospital
Email: info@benthamscience.net
Fanqi Wu
The Second Hospital &Clinical Medical School,, Lanzhou University
Email: info@benthamscience.net
Xiaoyu Dang
The Second Hospital &Clinical Medical School,, , Lanzhou University
Email: info@benthamscience.net
Feihu Bai
The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology,, The Second Affiliated Hospital of Hainan Medical University
Author for correspondence.
Email: info@benthamscience.net
Jun Wang
Department of Gastroenterology, 986 Hospital, Xijing Hospital, Air Force Military Medical University
Author for correspondence.
Email: info@benthamscience.net
Dekui Zhang
Department of Gastroenterology, Lanzhou University Second Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Yeoh, K.G.; Tan, P. Mapping the genomic diaspora of gastric cancer. Nat. Rev. Cancer, 2022, 22(2), 71-84. doi: 10.1038/s41568-021-00412-7 PMID: 34702982
- Cao, T.; Zhang, W.; Wang, Q.; Wang, C.; Ma, W.; Zhang, C.; Ge, M.; Tian, M.; Yu, J.; Jiao, A.; Wang, L.; Liu, M.; Wang, P.; Guo, Z.; Zhou, Y.; Chen, S.; Yin, W.; Yi, J.; Guo, H.; Han, H.; Zhang, B.; Wu, K.; Fan, D.; Wang, X.; Nie, Y.; Lu, Y.; Zhao, X. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+ T cells. Cell, 2024, 187(9), 2288-2304.e27. doi: 10.1016/j.cell.2024.03.011 PMID: 38565142
- Wang, J.; Zhang, J.; Liu, H.; Meng, L.; Gao, X.; Zhao, Y.; Wang, C.; Gao, X.; Fan, A.; Cao, T.; Fan, D.; Zhao, X.; Lu, Y. N6-methyladenosine reader hnRNPA2B1 recognizes and stabilizes NEAT1 to confer chemoresistance in gastric cancer. Cancer Commun., 2024, 44(4), 469-490. doi: 10.1002/cac2.12534 PMID: 38512764
- Chen, Y.; Wang, B.; Zhao, Y.; Shao, X.; Wang, M.; Ma, F.; Yang, L.; Nie, M.; Jin, P.; Yao, K.; Song, H.; Lou, S.; Wang, H.; Yang, T.; Tian, Y.; Han, P.; Hu, Z. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun., 2024, 15(1), 1657. doi: 10.1038/s41467-024-46043-y PMID: 38395893
- Wong, M.C.S.; Huang, J.; Chan, P.S.F.; Choi, P.; Lao, X.Q.; Chan, S.M.; Teoh, A.; Liang, P. Global incidence and mortality of gastric cancer, 1980-2018. JAMA Netw. Open, 2021, 4(7), e2118457. doi: 10.1001/jamanetworkopen.2021.18457 PMID: 34309666
- Zeng, Y.; Jin, R.U. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin. Cancer Biol., 2022, 86(Pt 3), 566-582. doi: 10.1016/j.semcancer.2021.12.004 PMID: 34933124
- Fatehullah, A.; Terakado, Y.; Sagiraju, S.; Tan, T.L.; Sheng, T.; Tan, S.H.; Murakami, K.; Swathi, Y.; Ang, N.; Rajarethinam, R.; Ming, T.; Tan, P.; Lee, B.; Barker, N. A tumour-resident Lgr5+ stem-cell-like pool drives the establishment and progression of advanced gastric cancers. Nat. Cell Biol., 2021, 23(12), 1299-1313. doi: 10.1038/s41556-021-00793-9 PMID: 34857912
- Negura, I.; Pavel-Tanasa, M.; Danciu, M. Regulatory T cells in gastric cancer: Key controllers from pathogenesis to therapy. Cancer Treat. Rev., 2023, 120, 102629. doi: 10.1016/j.ctrv.2023.102629 PMID: 37769435
- Kuang, Z.Y.; Sun, Q.H.; Cao, L.C.; Ma, X.Y.; Wang, J.X.; Liu, K.X.; Li, J. Efficacy and safety of perioperative therapy for locally resectable gastric cancer: A network meta-analysis of randomized clinical trials. World J. Gastrointest. Oncol., 2024, 16(3), 1046-1058. doi: 10.4251/wjgo.v16.i3.1046 PMID: 38577462
- Sexton, R.E.; Al Hallak, M.N.; Diab, M.; Azmi, A.S. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev., 2020, 39(4), 1179-1203. doi: 10.1007/s10555-020-09925-3 PMID: 32894370
- Christodoulidis, G.; Koumarelas, K.E.; Kouliou, M.N. Revolutionizing gastric cancer treatment: The potential of immunotherapy. World J. Gastroenterol., 2024, 30(4), 286-289. doi: 10.3748/wjg.v30.i4.286 PMID: 38313231
- Song, Y.; Wang, J.; Sun, J.; Chen, X.; Shi, J.; Wu, Z.; Yu, D.; Zhang, F.; Wang, Z. Screening of potential biomarkers for gastric cancer with diagnostic value using label-free global proteome analysis. Genomics Proteomics Bioinformatics, 2020, 18(6), 679-695. doi: 10.1016/j.gpb.2020.06.012 PMID: 33607292
- Ferro, A.; Peleteiro, B.; Malvezzi, M.; Bosetti, C.; Bertuccio, P.; Levi, F.; Negri, E.; La Vecchia, C.; Lunet, N. Worldwide trends in gastric cancer mortality (19802011), with predictions to 2015, and incidence by subtype. Eur. J. Cancer, 2014, 50(7), 1330-1344. doi: 10.1016/j.ejca.2014.01.029 PMID: 24650579
- Brenner, H.; Rothenbacher, D.; Arndt, V. Epidemiology of stomach cancer. Methods Mol. Biol., 2009, 472, 467-477. doi: 10.1007/978-1-60327-492-0_23 PMID: 19107449
- Senchukova, M.A. Helicobacter pylori and gastric cancer progression. Curr. Microbiol., 2022, 79(12), 383. doi: 10.1007/s00284-022-03089-9 PMID: 36329283
- Thrift, A.P.; El-Serag, H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol., 2020, 18(3), 534-542. doi: 10.1016/j.cgh.2019.07.045 PMID: 31362118
- Pan, L.; Shi, Y.; Zhang, J.; Luo, G. Association between single nucleotide polymorphisms of mirnas and gastric cancer: a scoping review. Genet. Test. Mol. Biomarkers, 2022, 26(10), 459-467. doi: 10.1089/gtmb.2021.0258 PMID: 36251855
- Cheng, J.; Cai, M.; Shuai, X.; Gao, J.; Wang, G.; Tao, K. First-line systemic therapy for advanced gastric cancer: a systematic review and network meta-analysis. Ther. Adv. Med. Oncol., 2019, 11, p. 1758835919877726. doi: 10.1177/1758835919877726 PMID: 31632469
- Jain, U.; Saxena, K.; Chauhan, N. Helicobacter pylori induced reactive oxygen Species: A new and developing platform for detection. Helicobacter, 2021, 26(3), e12796. doi: 10.1111/hel.12796 PMID: 33666321
- Wei, L.; Sun, J.; Zhang, N.; Zheng, Y.; Wang, X.; Lv, L.; Liu, J.; Xu, Y.; Shen, Y.; Yang, M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol. Cancer, 2020, 19(1), 62. doi: 10.1186/s12943-020-01185-7 PMID: 32192494
- Zhao, A.J.; Qian, Y.Y.; Sun, H.; Hou, X.; Pan, J.; Liu, X.; Zhou, W.; Chen, Y.Z.; Jiang, X.; Li, Z.S.; Liao, Z. Screening for gastric cancer with magnetically controlled capsule gastroscopy in asymptomatic individuals. Gastrointest. Endosc., 2018, 88(3), 466-474.e1. doi: 10.1016/j.gie.2018.05.003 PMID: 29753039
- Tan, H.; Zhang, S.; Zhang, J.; Zhu, L.; Chen, Y.; Yang, H.; Chen, Y.; An, Y.; Liu, B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Theranostics, 2020, 10(19), 8880-8902. doi: 10.7150/thno.47548 PMID: 32754285
- Jin, G.; Zhang, J.; Cao, T.; Chen, B.; Tian, Y.; Shi, Y. Exosome-mediated lncRNA SND1-IT1 from gastric cancer cells enhances malignant transformation of gastric mucosa cells via up-regulating SNAIL1. J. Transl. Med., 2022, 20(1), 284. doi: 10.1186/s12967-022-03306-w PMID: 35739527
- You, L.; Dou, Y.; Zhang, Y.; Xiao, H.; Lv, H.; Wei, G.H.; Xu, D. SDC2 stabilization by USP14 promotes gastric cancer progression through co-option of PDK1. Int. J. Biol. Sci., 2023, 19(11), 3483-3498. doi: 10.7150/ijbs.84331 PMID: 37496999
- Lavy, R.; Kapiev, A.; Poluksht, N.; Halevy, A.; Keinan-Boker, L. Incidence trends and mortality rates of gastric cancer in Israel. Gastric Cancer, 2013, 16(2), 121-125. doi: 10.1007/s10120-012-0155-4 PMID: 22527183
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci., 2020, 21(11), 4012. doi: 10.3390/ijms21114012 PMID: 32512697
- Liang, Z.; Xu, Y.; Zhang, Y.; Zhang, X.; Song, J.; Jin, J.; Qian, H. Anticancer applications of phytochemicals in gastric cancer: Effects and molecular mechanism. Front. Pharmacol., 2023, 13, 1078090. doi: 10.3389/fphar.2022.1078090 PMID: 36712679
- Shen, X.; Zhao, K.; Xu, L.; Cheng, G.; Zhu, J.; Gan, L.; Wu, Y.; Zhuang, Z. YTHDF2 inhibits gastric cancer cell growth by regulating FOXC2 signaling pathway. Front. Genet., 2021, 11, 592042. doi: 10.3389/fgene.2020.592042 PMID: 33505426
- Zhang, Y.; Zhou, X.; Cheng, X.; Hong, X.; Jiang, X.; Jing, G.; Chen, K.; Li, Y. PRKAA1, stabilized by FTO in an m6A-YTHDF2-dependent manner, promotes cell proliferation and glycolysis of gastric cancer by regulating the redox balance. Neoplasma, 2022, 69(6), 1338-1348. doi: 10.4149/neo_2022_220714N714 PMID: 36305690
- Chen, J.; Röcken, C.; Malfertheiner, P.; Ebert, M.P.A. Recent advances in molecular diagnosis and therapy of gastric cancer. Dig. Dis., 2004, 22(4), 380-385. doi: 10.1159/000083602 PMID: 15812163
- Yao, F.Z.; Kong, D.G. Identification of kinesin family member 3B (KIF3B) as a molecular target for gastric cancer. Kaohsiung J. Med. Sci., 2020, 36(7), 515-522. doi: 10.1002/kjm2.12206 PMID: 32237034
- Tan, Z. Recent advances in the surgical treatment of advanced gastric cancer: A review. Med. Sci. Monit., 2019, 25, 3537-3541. doi: 10.12659/MSM.916475 PMID: 31080234
- Cai, X.; Deng, J.; Ming, Q.; Cai, H.; Chen, Z. Chemokine- like factor 1: A promising therapeutic target in human diseases. Exp. Biol. Med., 2020, 245(16), 1518-1528. doi: 10.1177/1535370220945225 PMID: 32715782
- Laurence, A.D.J. Location, movement and survival: the role of chemokines in haematopoiesis and malignancy. Br. J. Haematol., 2006, 132(3), 255-267. doi: 10.1111/j.1365-2141.2005.05841.x PMID: 16409290
- Rostene, W.; Buckingham, J.C. Chemokines as modulators of neuroendocrine functions. J. Mol. Endocrinol., 2007, 38(3), 351-353. doi: 10.1677/JME-07-0006 PMID: 17339397
- Nagarsheth, N.; Wicha, M.S.; Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol., 2017, 17(9), 559-572. doi: 10.1038/nri.2017.49 PMID: 28555670
- Mempel, T.R.; Lill, J.K.; Altenburger, L.M. How chemokines organize the tumour microenvironment. Nat. Rev. Cancer, 2024, 24(1), 28-50. doi: 10.1038/s41568-023-00635-w PMID: 38066335
- Bule, P.; Aguiar, S.I.; Aires-Da-Silva, F.; Dias, J.N.R. Chemokine-directed tumor microenvironment modulation in cancer immunotherapy. Int. J. Mol. Sci., 2021, 22(18), 9804. doi: 10.3390/ijms22189804 PMID: 34575965
- DiNatale, A.; Castelli, M.S.; Nash, B.; Meucci, O.; Fatatis, A. Regulation of tumor and metastasis initiation by chemokine receptors. J. Cancer, 2022, 13(11), 3160-3176. doi: 10.7150/jca.72331 PMID: 36118530
- Allinen, M.; Beroukhim, R.; Cai, L.; Brennan, C.; Lahti- Domenici, J.; Huang, H.; Porter, D.; Hu, M.; Chin, L.; Richardson, A.; Schnitt, S.; Sellers, W.R.; Polyak, K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 2004, 6(1), 17-32. doi: 10.1016/j.ccr.2004.06.010 PMID: 15261139
- Jiao, X.; Shu, G.; Liu, H.; Zhang, Q.; Ma, Z.; Ren, C.; Guo, H.; Shi, J.; Liu, J.; Zhang, C.; Wang, Y.; Gao, Y. The diagnostic value of chemokine/chemokine receptor pairs in hepatocellular carcinoma and colorectal liver metastasis. J. Histochem. Cytochem., 2019, 67(5), 299-308. doi: 10.1369/0022155418824274 PMID: 30633620
- Reschke, R.; Gajewski, T.F. CXCL9 and CXCL10 bring the heat to tumors. Sci. Immunol., 2022, 7(73), eabq6509. doi: 10.1126/sciimmunol.abq6509 PMID: 35867802
- Strieter, R.M.; Polverini, P.J.; Arenberg, D.A.; Kunkel, S.L. The role of CXC chemokines as regulators of angiogenesis. Shock, 1995, 4(3), 155-160. doi: 10.1097/00024382-199509000-00001 PMID: 8574748
- Ji, S.; Chen, H.; Yang, K.; Zhang, G.; Mao, B.; Hu, Y.; Zhang, H.; Xu, J. Peripheral cytokine levels as predictive biomarkers of benefit from immune checkpoint inhibitors in cancer therapy. Biomed. Pharmacother., 2020, 129, 110457. doi: 10.1016/j.biopha.2020.110457 PMID: 32887027
- Zhang, M.; Yang, W.; Wang, P.; Deng, Y.; Dong, Y.T.; Liu, F.F.; Huang, R.; Zhang, P.; Duan, Y.Q.; Liu, X.D.; Lin, D.; Chu, Q.; Zhong, B. CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer. Nat. Commun., 2020, 11(1), 6119. doi: 10.1038/s41467-020-19973-6 PMID: 33257678
- Wu, Z.; Sun, L.; Xu, Y.; Huang, H.; Wu, Z.; Qiu, B.; Yan, J.; Yin, X. The value of chemokine and chemokine receptors in diagnosis, prognosis, and immunotherapy of hepatocellular carcinoma. Cancer Manag. Res., 2024, 16, 403-420. doi: 10.2147/CMAR.S450959 PMID: 38736589
- Vautrot, V.; Bentayeb, H.; Causse, S.; Garrido, C.; Gobbo, J. Tumor-derived exosomes: Hidden players in PD-1/PD-L1 resistance. Cancers, 2021, 13(18), 4537. doi: 10.3390/cancers13184537 PMID: 34572764
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102. doi: 10.1093/nar/gkx247 PMID: 28407145
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V. S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658. doi: 10.1016/j.neo.2017.05.002 PMID: 28732212
- Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; Creighton, C.J.; Varambally, S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25, 18-27. doi: 10.1016/j.neo.2022.01.001 PMID: 35078134
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404. doi: 10.1158/2159-8290.CD-12-0095 PMID: 22588877
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1. doi: 10.1126/scisignal.2004088 PMID: 23550210
- Warde-Farley, D.; Donaldson, SL.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, CT. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res, 2010, 38, W214-W220. doi: 10.1093/nar/gkq537
- Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res., 2018, 46(W1), W60-W64. doi: 10.1093/nar/gky311 PMID: 29912392
- Montojo, J.; Zuberi, K.; Rodriguez, H.; Kazi, F.; Wright, G.; Donaldson, S.L.; Morris, Q.; Bader, G.D. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics, 2010, 26(22), 2927-2928. doi: 10.1093/bioinformatics/btq562 PMID: 20926419
- Zuberi, K.; Franz, M.; Rodriguez, H.; Montojo, J.; Lopes, CT.; Bader, GD.; Morris, Q. GeneMANIA prediction server 2013 update. Nucleic Acids Res, 2013, 41, W115-W122. doi: 10.1093/nar/gkt533
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
- Han, H.; Cho, J.W.; Lee, S.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C.Y.; Lee, M.; Kim, E.; Lee, S.; Kang, B.; Jeong, D.; Kim, Y.; Jeon, H.N.; Jung, H.; Nam, S.; Chung, M.; Kim, J.H.; Lee, I. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res., 2018, 46(D1), D380-D386. doi: 10.1093/nar/gkx1013 PMID: 29087512
- Han, H.; Shim, H.; Shin, D.; Shim, J.E.; Ko, Y.; Shin, J.; Kim, H.; Cho, A.; Kim, E.; Lee, T.; Kim, H.; Kim, K.; Yang, S.; Bae, D.; Yun, A.; Kim, S.; Kim, C.Y.; Cho, H.J.; Kang, B.; Shin, S.; Lee, I. TRRUST: a reference database of human transcriptional regulatory interactions. Sci. Rep., 2015, 5(1), 11432. doi: 10.1038/srep11432 PMID: 26066708
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523. doi: 10.1038/s41467-019-09234-6 PMID: 30944313
- Chen, D.; Fu, M.; Chi, L.; Lin, L.; Cheng, J.; Xue, W.; Long, C.; Jiang, W.; Dong, X.; Sui, J.; Lin, D.; Lu, J.; Zhuo, S.; Liu, S.; Li, G.; Chen, G.; Yan, J. Prognostic and predictive value of a pathomics signature in gastric cancer. Nat. Commun., 2022, 13(1), 6903. doi: 10.1038/s41467-022-34703-w PMID: 36371443
- Chen, K.; Bao, Z.; Tang, P.; Gong, W.; Yoshimura, T.; Wang, J.M. Chemokines in homeostasis and diseases. Cell. Mol. Immunol., 2018, 15(4), 324-334. doi: 10.1038/cmi.2017.134 PMID: 29375126
- Marcuzzi, E.; Angioni, R.; Molon, B.; Calì, B. Chemokines and chemokine receptors: orchestrating tumor metastasization. Int. J. Mol. Sci., 2018, 20(1), 96. doi: 10.3390/ijms20010096 PMID: 30591657
- Baj-Krzyworzeka, M.; Węglarczyk, K.; Baran, J.; Szczepanik, A.; Szura, M.; Siedlar, M. Elevated level of some chemokines in plasma of gastric cancer patients. Cent. Eur. J. Immunol., 2016, 4(4), 358-362. doi: 10.5114/ceji.2016.65133 PMID: 28450798
- Zhang, J.; Yan, Y.; Cui, X.; Zhang, J.; Yang, Y.; Li, H.; Wu, H.; Li, J.; Wang, L.; Li, M.; Liu, X.; Wang, J.; Duan, X. CCL2 expression correlates with Snail expression and affects the prognosis of patients with gastric cancer. Pathol. Res. Pract., 2017, 213(3), 217-221. doi: 10.1016/j.prp.2016.12.013 PMID: 28215642
- Hwang, T.L.; Lee, L.Y.; Wang, C.C.; Liang, Y.; Huang, S.F.; Wu, C.M. CCL7 and CCL21 overexpression in gastric cancer is associated with lymph node metastasis and poor prognosis. World J. Gastroenterol., 2012, 18(11), 1249-1256. doi: 10.3748/wjg.v18.i11.1249 PMID: 22468089
- Jin, G.; Lv, J.; Yang, M.; Wang, M.; Zhu, M.; Wang, T.; Yan, C.; Yu, C.; Ding, Y.; Li, G.; Ren, C.; Ni, J.; Zhang, R.; Guo, Y.; Bian, Z.; Zheng, Y.; Zhang, N.; Jiang, Y.; Chen, J.; Wang, Y.; Xu, D.; Zheng, H.; Yang, L.; Chen, Y.; Walters, R.; Millwood, I.Y.; Dai, J.; Ma, H.; Chen, K.; Chen, Z.; Hu, Z.; Wei, Q.; Shen, H.; Li, L. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study. Lancet Oncol., 2020, 21(10), 1378-1386. doi: 10.1016/S1470-2045(20)30460-5 PMID: 33002439
- Rustgi, S.D.; Ching, C.K.; Kastrinos, F. Inherited predisposition to gastric cancer. Gastrointest. Endosc. Clin. N. Am., 2021, 31(3), 467-487. doi: 10.1016/j.giec.2021.03.010 PMID: 34053634
- Han, J.; Fu, R.; Chen, C.; Cheng, X.; Guo, T.; Huangfu, L.; Li, X.; Du, H.; Xing, X.; Ji, J. CXCL16 promotes gastric cancer tumorigenesis via ADAM10-dependent CXCL16/CXCR6 axis and activates Akt and MAPK signaling pathways: erratum. Int. J. Biol. Sci., 2023, 19(10), 3285-3287. doi: 10.7150/ijbs.84342 PMID: 37416762
- Low, J.T.; Christie, M.; Ernst, M.; Dumoutier, L.; Preaudet, A.; Ni, Y.; Griffin, M.D.W.; Mielke, L.A.; Strasser, A.; Putoczki, T.L.; OReilly, L.A. Loss of NFKB1 results in expression of tumor necrosis factor and activation of signal transducer and activator of transcription 1 to promote gastric tumorigenesis in mice. Gastroenterology, 2020, 159(4), 1444-1458.e15. doi: 10.1053/j.gastro.2020.06.039 PMID: 32569771
- Li, D.; Wu, C.; Cai, Y.; Liu, B. Association of NFKB1 and NFKBIA gene polymorphisms with susceptibility of gastric cancer. Tumour Biol., 2017, 39(7) doi: 10.1177/1010428317717107 PMID: 28670959
- Chen, Y.; Lu, R.; Zheng, H.; Xiao, R.; Feng, J.; Wang, H.; Gao, X.; Guo, L. The NFKB1 polymorphism (rs4648068) is associated with the cell proliferation and motility in gastric cancer. BMC Gastroenterol., 2015, 15(1), 21. doi: 10.1186/s12876-015-0243-0 PMID: 25888547
- Deng, J.Y.; Sun, D.; Liu, X.Y.; Pan, Y.; Liang, H. STAT-3 correlates with lymph node metastasis and cell survival in gastric cancer. World J. Gastroenterol., 2010, 16(42), 5380-5387. doi: 10.3748/wjg.v16.i42.5380 PMID: 21072904
- Lu, G.; Shi, W.; Zheng, H. Inhibition of STAT6/anoctamin-1 activation suppresses proliferation and invasion of gastric cancer cells. Cancer Biother. Radiopharm., 2018, 33(1), 3-7. doi: 10.1089/cbr.2017.2287 PMID: 29466035
- Jiao, S.; Guan, J.; Chen, M.; Wang, W.; Li, C.; Wang, Y.; Cheng, Y.; Zhou, Z. Targeting IRF3 as a YAP agonist therapy against gastric cancer. J. Exp. Med., 2018, 215(2), 699-718. doi: 10.1084/jem.20171116 PMID: 29339449
- Matsuo, K.; Yoshie, O.; Nakayama, T. Multifaceted roles of chemokines and chemokine receptors in tumor immunity. Cancers (Basel), 2021, 13(23), 6132. doi: 10.3390/cancers13236132 PMID: 34885241
- Ozga, A.J.; Chow, M.T.; Luster, A.D. Chemokines and the immune response to cancer. Immunity, 2021, 54(5), 859-874. doi: 10.1016/j.immuni.2021.01.012 PMID: 33838745
- Protti, M.P.; Monte, L.D.; Lullo, G.D. Tumor antigen-specific CD4+ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies. Tissue Antigens, 2014, 83(4), 237-246. doi: 10.1111/tan.12329 PMID: 24641502
- Qian, B.Z.; Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell, 2010, 141(1), 39-51. doi: 10.1016/j.cell.2010.03.014 PMID: 20371344
Supplementary files
