The Beneficial Effects of Curcumin on Lipids: Possible Effects on Dyslipidemia-induced Cardiovascular Complications


Cite item

Full Text

Abstract

:Dyslipidemia and altered lipid metabolism are closely involved in the pathogenesis and clinical manifestation of many metabolic and non-metabolic diseases. Therefore, mitigation of pharmacological and nutritional factors together with lifestyle modifications is paramount. One potential nutraceutical exhibiting cell signaling and lipid-modulating properties implicated in dyslipidemias is curcumin. Specifically, recent evidence suggest that curcumin may improve lipid metabolism and prevent dyslipidemia-induced cardiovascular complications via several pathways. Although the exact molecular mechanisms involved are not well understood, the evidence presented in this review suggests that curcumin can provide significant lipid benefits via modulation of adipogenesis and lipolysis, and prevention or reduction of lipid peroxidation and lipotoxicity via different molecular pathways. Curcumin can also improve the lipid profile and reduce dyslipidemia- dependent cardiovascular problems by impacting important mechanisms of fatty acid oxidation, lipid absorption, and cholesterol metabolism. Although only limited direct supporting evidence is available, in this review we assess the available knowledge regarding the possible nutraceutical effects of curcumin on lipid homeostasis and its possible impacts on dyslipidemic cardiovascular events from a mechanistic viewpoint.

About the authors

Habib Yaribeygi

Research Center of Physiology, Semnan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Mina Maleki

Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Alexandra Butler

Department of Research, Royal College of Surgeons in Ireland - Bahrain

Email: info@benthamscience.net

Tannaz Jamialahmadi

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Eric Gumpricht

, Isagenix International LLC

Email: info@benthamscience.net

Amirhossein Sahebkar

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Liang, W.; Nishino, I. State of the art in muscle lipid diseases. Acta Myol., 2010, 29(2), 351-6. PMID: 21314018
  2. Lee, C-H.; Olson, P.; Evans, R.M. Minireview: Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology, 2003, 144(6), 2201-2207. PMID: 12746275
  3. Mesa-Herrera, F.; Taoro-González, L.; Valdés-Baizabal, C.; Diaz, M.; Marín, R. Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers. Int. J. Mol. Sci., 2019, 20(15), 3810. PMID: 31382686
  4. Gerc, V.; Masic, I.; Salihefendic, N.; Zildzic, M. Cardiovascular diseases (CVDs) in COVID-19 pandemic era. Mater. Sociomed., 2020, 32(2), 158-164. PMID: 32843866
  5. Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The global burden of cardiovascular diseases and risk: A compass for future health. J. Am. Coll. Cardiol., 2022, 80(25), 2361-2371.
  6. Chen, L.; Chen, X.W.; Huang, X.; Song, B.L.; Wang, Y.; Wang, Y. Regulation of glucose and lipid metabolism in health and disease. Sci. China Life Sci., 2019, 62(11), 1420-1458. PMID: 31686320
  7. Haile, K.; Timerga, A. Dyslipidemia and its associated risk factors among adult type-2 diabetic patients at Jimma University Medical Center, Jimma, Southwest Ethiopia. Diabetes Metab. Syndr. Obes., 2020, 13, 4589-4597. PMID: 33273834
  8. Savelieff, M.G.; Callaghan, B.C.; Feldman, E.L. The emerging role of dyslipidemia in diabetic microvascular complications. Curr. Opin. Endocrinol. Diabetes Obes., 2020, 27(2), 115-123. PMID: 32073426
  9. Athyros, V.G.; Doumas, M.; Imprialos, K.P.; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and lipid metabolism. Hormones, 2018, 17(1), 61-67. PMID: 29858856
  10. Chandel, N.S. Lipid metabolism. Cold Spring Harb. Perspect. Biol., 2021, 13(9), a040576. PMID: 34470787
  11. Long, J.; Zhang, C.J.; Zhu, N.; Du, K.; Yin, Y.F.; Tan, X.; Liao, D.F.; Qin, L. Lipid metabolism and carcinogenesis, cancer development. Am. J. Cancer Res., 2018, 8(5), 778-791. PMID: 29888102
  12. Chung, K.W. Advances in understanding of the role of lipid metabolism in aging. Cells, 2021, 10(4), 880. PMID: 33924316
  13. Ponziani, F.R.; Pecere, S.; Gasbarrini, A.; Ojetti, V. Physiology and pathophysiology of liver lipid metabolism. Expert Rev. Gastroenterol. Hepatol., 2015, 9(8), 1055-1067. PMID: 26070860
  14. Ko, C-W.; Qu, J.; Black, D.D.; Tso, P. Regulation of intestinal lipid metabolism: Current concepts and relevance to disease. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(3), 169-183. PMID: 32015520
  15. Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord., 2019, 20(4), 461-472. PMID: 31707624
  16. Séguro, F.; Rabès, J.P.; Taraszkiewicz, D.; Ruidavets, J.B.; Bongard, V.; Ferrières, J. Genetic diagnosis of familial hypercholesterolemia is associated with a premature and high coronary heart disease risk. Clin. Cardiol., 2018, 41(3), 385-391. PMID: 29574850
  17. Penno, G.; Solini, A.; Zoppini, G.; Fondelli, C.; Trevisan, R.; Vedovato, M.; Gruden, G.; Lamacchia, O.; Pontiroli, A.E.; Arosio, M.; Orsi, E.; Pugliese, G. Hypertriglyceridemia is independently associated with renal, but not retinal complications in subjects with type 2 diabetes: A cross-sectional analysis of the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicenter Study. PLoS One, 2015, 10(5), e0125512. PMID: 25942403
  18. Zhou, Y.; Wang, C.; Shi, K.; Yin, X. Relationship between dyslipidemia and diabetic retinopathy: A systematic review and meta-analysis. Medicine, 2018, 97(36), e12283. PMID: 30200172
  19. Jeng, C-J.; Hsieh, Y.T.; Yang, C.M.; Yang, C.H.; Lin, C.L.; Wang, I.J. Diabetic retinopathy in patients with dyslipidemia: Development and progression. Ophthalmol. Retina, 2018, 2(1), 38-45. PMID: 31047300
  20. Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Bloomgarden, Z.T.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; Guerin, C.K.; Bell, D.S.H.; Mechanick, J.I.; Pessah-Pollack, R.; Wyne, K.; Smith, D.; Brinton, E.A.; Fazio, S.; Davidson, M. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr. Pract., 2017, 23(S.2), 1-87. PMID: 28437620
  21. Pol, T.; Held, C.; Westerbergh, J.; Lindbäck, J.; Alexander, J.H.; Alings, M.; Erol, C.; Goto, S.; Halvorsen, S.; Huber, K.; Hanna, M.; Lopes, R.D.; Ruzyllo, W.; Granger, C.B.; Hijazi, Z. Dyslipidemia and risk of cardiovascular events in patients with atrial fibrillation treated with oral anticoagulation therapy: Insights from the ARISTOTLE (apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation) trial. J. Am. Heart Assoc., 2018, 7(3), e007444. PMID: 29419390
  22. Hedayatnia, M.; Asadi, Z.; Zare-Feyzabadi, R.; Yaghooti-Khorasani, M.; Ghazizadeh, H.; Ghaffarian-Zirak, R.; Nosrati-Tirkani, A.; Mohammadi-Bajgiran, M.; Rohban, M.; Sadabadi, F.; Rahimi, H.R.; Ghalandari, M.; Ghaffari, M.S.; Yousefi, A.; Pouresmaeili, E.; Besharatlou, M.R.; Moohebati, M.; Ferns, G.A.; Esmaily, H.; Ghayour-Mobarhan, M. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis., 2020, 19(1), 42. PMID: 32178672
  23. Vaziri, N.D. Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease. Clin. Exp. Nephrol., 2014, 18(2), 265-268. PMID: 23974528
  24. Yang, X.; Li, Y.; Li, Y.; Ren, X.; Zhang, X.; Hu, D.; Gao, Y.; Xing, Y.; Shang, H. Oxidative stress-mediated atherosclerosis: Mechanisms and therapies. Front. Physiol., 2017, 8, 600. PMID: 28878685
  25. Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell. Physiol., 2019, 234(6), 8152-8161. PMID: 30317615
  26. Wengrofsky, P.; Lee, J.; Makaryus, A.N. Dyslipidemia and its role in the pathogenesis of atherosclerotic cardiovascular disease: Implications for evaluation and targets for treatment of dyslipidemia based on recent guidelines. In: Dyslipidemia; IntechOpen, 2019.
  27. Cavieres, V.; Valdes, K.; Moreno, B.; Moore-Carrasco, R.; Gonzalez, D.R. Vascular hypercontractility and endothelial dysfunction before development of atherosclerosis in moderate dyslipidemia: Role for nitric oxide and interleukin-6. Am. J. Cardiovasc. Dis., 2014, 4(3), 114-122. PMID: 25360389
  28. Ercan, M.; Firtina, S.; Konukoglu, D. Comparison of plasma viscosity as a marker of endothelial dysfunction with nitric oxide and asymmetric dimethylarginine in subjects with dyslipidemia. Clin. Hemorheol. Microcirc., 2014, 57(4), 315-323. PMID: 23455843
  29. Khutami, C.; Sumiwi, S.A.; Khairul Ikram, N.K.; Muchtaridi, M. The effects of antioxidants from natural products on obesity, dyslipidemia, diabetes and their molecular signaling mechanism. Int. J. Mol. Sci., 2022, 23(4), 2056. PMID: 35216172
  30. Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P.; Ren, G.; Ning, G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab., 2008, 93(7), 2559-2565. PMID: 18397984
  31. Tian, H. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin. Chem. Eng. J., 2020, 382, 123043.
  32. Alkushi, A.G. Alternative natural management of dyslipidemia. In: Dyslipidemia; IntechOpen, 2019.
  33. Singh, S.P.; Sashidhara, K.V. Lipid lowering agents of natural origin: An account of some promising chemotypes. Eur. J. Med. Chem., 2017, 140, 331-348. PMID: 28987600
  34. Bahmani, M.; Mirhoseini, M.; Shirzad, H.; Sedighi, M.; Shahinfard, N.; Rafieian-Kopaei, M. A review on promising natural agents effective on hyperlipidemia. J. Evid. Based Complementary Altern. Med., 2015, 20(3), 228-238. PMID: 25633423
  35. Kita, T.; Imai, S.; Sawada, H.; Kumagai, H.; Seto, H. The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors. Biosci. Biotechnol. Biochem., 2008, 72(7), 1789-1798. PMID: 18603793
  36. Trujillo, J.; Chirino, Y.I.; Molina-Jijón, E.; Andérica-Romero, A.C.; Tapia, E.; Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol., 2013, 1(1), 448-456. PMID: 24191240
  37. Hussain, Z.; Thu, H.E.; Amjad, M.W.; Hussain, F.; Ahmed, T.A.; Khan, S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Mater. Sci. Eng. C, 2017, 77, 1316-1326. PMID: 28532009
  38. Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf. B Biointerfaces, 2010, 79(1), 113-125. PMID: 20456930
  39. Lababidi, N.; Sigal, V.; Koenneke, A.; Schwarzkopf, K.; Manz, A.; Schneider, M. Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration. Beilstein J. Nanotechnol., 2019, 10(1), 2280-2293. PMID: 31807413
  40. Lopresti, A.L.; Drummond, P.D. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study. J. Affect. Disord., 2017, 207, 188-196. PMID: 27723543
  41. Teter, B.; Morihara, T.; Lim, G.P.; Chu, T.; Jones, M.R.; Zuo, X.; Paul, R.M.; Frautschy, S.A.; Cole, G.M. Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol. Dis., 2019, 127, 432-448. PMID: 30951849
  42. Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e76. PMID: 20797714
  43. Mohajeri, M.; Bianconi, V.; Ávila-Rodriguez, M.F.; Barreto, G.E.; Jamialahmadi, T.; Pirro, M.; Sahebkar, A. Curcumin: A phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol. Res., 2020, 156, 104765. PMID: 32217147
  44. Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135. PMID: 29180127
  45. Ghasemi, F.; Bagheri, H.; Barreto, G.E.; Read, M.I.; Sahebkar, A. Effects of curcumin on microglial cells. Neurotox. Res., 2019, 36(1), 12-26. PMID: 30949950
  46. Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348. PMID: 27638428
  47. Iranshahi, M.; Sahebkar, A.; Hosseini, S.T.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine, 2010, 17(3-4), 269-273. PMID: 19577457
  48. Panahi, Y.; Ghanei, M.; Bashiri, S.; Hajihashemi, A.; Sahebkar, A. Short-term curcuminoid supplementation for chronic pulmonary complications due to sulfur mustard intoxication: Positive results of a randomized double-blind placebo-controlled trial. Drug Res., 2015, 65(11), 567-573. PMID: 25268878
  49. Marjaneh R.M.; Rahmani F.; Hassanian S.M.; Rezaei N.; Hashemzehi M.; Bahrami A.; Ariakia F.; Fiuji H.; Sahebkar A.; Avan A.; Khazaei M.; Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J. Cell Physiol. 2018 Oct; 233(10):6785-6798. Epub 2018 May 8 doi: 10.1002/jcp.26538 PMID: 29737515
  50. Keihanian F.; Saeidinia A.; Bagheri R.K.; Johnston T.P.; Sahebkar A.; Curcumin, hemostasis, thrombosis, and coagulation. J. Cell Physiol. 2018 Jun; 233(6):4497-4511. doi: 10.1002/jcp.26249. Epub 2017 Dec 26. PMID: 29052850.
  51. Khayatan D.; Razavi S.M.; Arab Z.N.; Niknejad A.H.; Nouri K.; Momtaz S.; Gumpricht E.; Jamialahmadi T.; Abdolghaffari A.H.; Barreto G.E.; Sahebkar A.; Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother. 2022 Oct; 154:113621. doi: 10.1016/j.biopha.2022.113621. Epub 2022 Aug 30. PMID: 36055110.
  52. Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458. PMID: 34904764
  53. Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Reiner, Ž.; Majeed, M.; Sahebkar, A. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement. Ther. Med., 2017, 33, 1-5. PMID: 28735818
  54. Hasanzadeh S.; Read M.I.; Bland A.R.; Majeed M.; Jamialahmadi T.; Sahebkar A.; Curcumin: An inflammasome silencer. Pharmacol. Res. 2020 Sep; 159:104921. doi: 10.1016/j.phrs.2020.104921. Epub 2020 May 25. PMID: 32464325.
  55. Mokhtari-Zaer A.; Marefati N.; Atkin S.L.; Butler A.E.; Sahebkar A.; The protective role of curcumin in myocardial ischemia-reperfusion injury. J. Cell Physiol.2018 Jan; 234(1):214-222. doi: 10.1002/jcp.26848. Epub 2018 Jul 3. PMID: 29968913.
  56. Soetikno, V.; Watanabe, K.; Sari, F.R.; Harima, M.; Thandavarayan, R.A.; Veeraveedu, P.T.; Arozal, W.; Sukumaran, V.; Lakshmanan, A.P.; Arumugam, S.; Suzuki, K. Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1 activity in streptozotocin-induced type I diabetic rats. Mol. Nutr. Food Res., 2011, 55(11), 1655-1665. doi: 10.1002/mnfr.201100080 PMID: 22045654
  57. Lu, M.; Yin, N.; Liu, W.; Cui, X.; Chen, S.; Wang, E. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. Biomed Res Int., 2017, 2017, 1516985. doi: 10.1155/2017/1516985 PMID: 28194406
  58. Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878. doi: 10.1002/ptr.6991 PMID: 33464676
  59. Ganjali, S.; Blesso, C.N.; Banach, M.; Pirro, M.; Majeed, M.; Sahebkar, A. Effects of curcumin on HDL functionality. Pharmacol. Res., 2017, 119, 208-218. doi: 10.1016/j.phrs.2017.02.008 PMID: 28192240
  60. Ahmadian, M.; Wang, Y.; Sul, H.S. Lipolysis in adipocytes. Int. J. Biochem. Cell Biol., 2010, 42(5), 555-559. doi: 10.1016/j.biocel.2009.12.009 PMID: 20025992
  61. Sancho, V.; Trigo, M.V.; González, N.; Valverde, I.; Malaisse, W.J.; Villanueva-Peñacarrillo, M.L. Effects of glucagon-like peptide-1 and exendins on kinase activity, glucose transport and lipid metabolism in adipocytes from normal and type-2 diabetic rats. J. Mol. Endocrinol., 2005, 35(1), 27-38. doi: 10.1677/jme.1.01747 PMID: 16087719
  62. Zhao, X.; Feng, D.; Wang, Q.; Abdulla, A.; Xie, X.J.; Zhou, J.; Sun, Y.; Yang, E.S.; Liu, L.P.; Vaitheesvaran, B.; Bridges, L.; Kurland, I.J.; Strich, R.; Ni, J.Q.; Wang, C.; Ericsson, J.; Pessin, J.E.; Ji, J.Y.; Yang, F. Regulation of lipogenesis by cyclin-dependent kinase 8–mediated control of SREBP-1. J. Clin. Invest., 2012, 122(7), 2417-2427. doi: 10.1172/JCI61462 PMID: 22684109
  63. Ducheix, S.; Lobaccaro, J.M.A.; Martin, P.G.; Guillou, H. Liver X Receptor: An oxysterol sensor and a major player in the control of lipogenesis. Chem. Phys. Lipids, 2011, 164(6), 500-514. doi: 10.1016/j.chemphyslip.2011.06.004 PMID: 21693109
  64. Wang, Y.; Viscarra, J.; Kim, S.J.; Sul, H.S. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol., 2015, 16(11), 678-689. doi: 10.1038/nrm4074 PMID: 26490400
  65. Sanders, F.W.B.; Griffin, J.L. De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biol. Rev. Camb. Philos. Soc., 2016, 91(2), 452-468. doi: 10.1111/brv.12178 PMID: 25740151
  66. Duncan, R.E.; Ahmadian, M.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H.S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr., 2007, 27(1), 79-101. doi: 10.1146/annurev.nutr.27.061406.093734 PMID: 17313320
  67. Kobori, M.; Takahashi, Y.; Takeda, H.; Takahashi, M.; Izumi, Y.; Akimoto, Y.; Sakurai, M.; Oike, H.; Nakagawa, T.; Itoh, M.; Bamba, T.; Kimura, T. Dietary intake of curcumin improves eIF2 signaling and reduces lipid levels in the white adipose tissue of obese mice. Sci. Rep., 2018, 8(1), 9081. doi: 10.1038/s41598-018-27105-w PMID: 29899429
  68. Song, W.Y.; Choi, J.H. Korean Curcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats. Nutr. Res. Pract., 2016, 10(5), 487-493. doi: 10.4162/nrp.2016.10.5.487 PMID: 27698955
  69. Cui, Y.; Yu, S.; Gao, W.; Zhao, Z.; Wu, J.; Xiao, M.; An, L. Dietary curcumin supplementation regulates the lipid metabolism in laying hens. Ital. J. Anim. Sci., 2022, 21(1), 1106-1116. doi: 10.1080/1828051X.2022.2071774
  70. Wang, L.; Zhang, B.; Huang, F.; Liu, B.; Xie, Y. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance. J. Lipid Res., 2016, 57(7), 1243-1255. doi: 10.1194/jlr.M067397 PMID: 27220352
  71. Shao, W.; Yu, Z.; Chiang, Y.; Yang, Y.; Chai, T.; Foltz, W.; Lu, H.; Fantus, I.G.; Jin, T. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS One, 2012, 7(1), e28784. doi: 10.1371/journal.pone.0028784 PMID: 22253696
  72. Ejaz, A.; Wu, D.; Kwan, P.; Meydani, M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr., 2009, 139(5), 919-925. doi: 10.3945/jn.108.100966 PMID: 19297423
  73. Pan, Y.; Zhao, D.; Yu, N.; An, T.; Miao, J.; Mo, F.; Gu, Y.; Zhang, D.; Gao, S.; Jiang, G. Curcumin improves glycolipid metabolism through regulating peroxisome proliferator activated receptor γ signalling pathway in high-fat diet-induced obese mice and 3T3-L1 adipocytes. R. Soc. Open Sci., 2017, 4(11), 170917. doi: 10.1098/rsos.170917 PMID: 29291086
  74. Xie, Z.; Shen, G.; Wang, Y.; Wu, C. Curcumin supplementation regulates lipid metabolism in broiler chickens. Poult. Sci., 2019, 98(1), 422-429. doi: 10.3382/ps/pey315 PMID: 30053224
  75. Shahid, S.U.; Sarwar, S. The abnormal lipid profile in obesity and Coronary Heart Disease (CHD) in Pakistani subjects. Lipids Health Dis., 2020, 19(1), 1-7. PMID: 31900179
  76. Ma, Y.; Temkin, S.M.; Hawkridge, A.M.; Guo, C.; Wang, W.; Wang, X.Y.; Fang, X. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett., 2018, 435, 92-100. doi: 10.1016/j.canlet.2018.08.006 PMID: 30102953
  77. Al Batran, R.; Almutairi, M.; Ussher, J.R. Glucagon-like peptide-1 receptor mediated control of cardiac energy metabolism. Peptides, 2018, 100, 94-100. doi: 10.1016/j.peptides.2017.12.005 PMID: 29412838
  78. Pilz, S.; März, W. Free fatty acids as a cardiovascular risk factor. Clin. Chem. Lab. Med., 2008, 46(4), 429-434. doi: 10.1515/CCLM.2008.118 PMID: 18605928
  79. I S Sobczak, A.; A Blindauer, C.; J Stewart, A. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients, 2019, 11(9), 2022. doi: 10.3390/nu11092022 PMID: 31466350
  80. Ghosh, A.; Gao, L.; Thakur, A.; Siu, P.M.; Lai, C.W.K. Role of free fatty acids in endothelial dysfunction. J. Biomed. Sci., 2017, 24(1), 50. doi: 10.1186/s12929-017-0357-5 PMID: 28750629
  81. Xin, Y.; Zhang, J.; Fan, Y.; Wang, C. Serum free fatty acids are associated with severe coronary artery calcification, especially in diabetes: A retrospective study. BMC Cardiovasc. Disord., 2021, 21(1), 343. doi: 10.1186/s12872-021-02152-w PMID: 34266394
  82. Berbée, J.F.P.; Boon, M.R.; Khedoe, P.P.S.J.; Bartelt, A.; Schlein, C.; Worthmann, A.; Kooijman, S.; Hoeke, G.; Mol, I.M.; John, C.; Jung, C.; Vazirpanah, N.; Brouwers, L.P.J.; Gordts, P.L.S.M.; Esko, J.D.; Hiemstra, P.S.; Havekes, L.M.; Scheja, L.; Heeren, J.; Rensen, P.C.N. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat. Commun., 2015, 6(1), 6356. doi: 10.1038/ncomms7356 PMID: 25754609
  83. Gao, C.L.; Zhu, C.; Zhao, Y.P.; Chen, X.H.; Ji, C.B.; Zhang, C.M.; Zhu, J.G.; Xia, Z.K.; Tong, M.L.; Guo, X.R. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol. Cell. Endocrinol., 2010, 320(1-2), 25-33. doi: 10.1016/j.mce.2010.01.039 PMID: 20144685
  84. Jang, E.M.; Choi, M.S.; Jung, U.J.; Kim, M.J.; Kim, H.J.; Jeon, S.M.; Shin, S.K.; Seong, C.N.; Lee, M.K. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat–fed hamsters. Metabolism, 2008, 57(11), 1576-1583. doi: 10.1016/j.metabol.2008.06.014 PMID: 18940397
  85. Na, L.X.; Zhang, Y.L.; Li, Y.; Liu, L.Y.; Li, R.; Kong, T.; Sun, C.H. Curcumin improves insulin resistance in skeletal muscle of rats. Nutr. Metab. Cardiovasc. Dis., 2011, 21(7), 526-533. doi: 10.1016/j.numecd.2009.11.009 PMID: 20227862
  86. Meléndez-Salcido, C.G.; Vargas-Ortiz, K.; Silva-Gaona, O.G.; León-García, M.C.; Ortega-Hernández, L.A.; Macías-Cervantes, M.H.; Ramírez-Emiliano, J.; Perez- Vazquez, V. Curcumin ameliorates protein expression changes involved in mitochondrial fatty acids metabolism in heart of mice fed a high-fructose diet. Res Square, 2020, 1-15. doi: 10.21203/rs.3.rs-17918/v1
  87. Ji, R.; Xiang, X.; Li, X.; Mai, K.; Ai, Q. Effects of dietary curcumin on growth, antioxidant capacity, fatty acid composition and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet. Br. J. Nutr., 2021, 126(3), 345-354. doi: 10.1017/S0007114520004171 PMID: 33076999
  88. Niu, Y.; He, J.; Ahmad, H.; Wang, C.; Zhong, X.; Zhang, L.; Cui, T.; Zhang, J.; Wang, T. Curcumin attenuates insulin resistance and hepatic lipid accumulation in a rat model of intra-uterine growth restriction through insulin signalling pathway and sterol regulatory element binding proteins. Br. J. Nutr., 2019, 122(6), 616-624. doi: 10.1017/S0007114519001508 PMID: 31237229
  89. Tranchida, F.; Shintu, L.; Rakotoniaina, Z.; Tchiakpe, L.; Deyris, V.; Hiol, A.; Caldarelli, S. Metabolomic and lipidomic analysis of serum samples following Curcuma longa extract supplementation in high-fructose and saturated fat fed rats. PLoS One, 2015, 10(8), e0135948. doi: 10.1371/journal.pone.0135948 PMID: 26288372
  90. Kamalakkannan, N.; Rukkumani, R.; Viswanathan, P.; Rajasekharan, K.N.; Menon, V.P. Effect of curcumin and its analogue on lipids in carbon tetrachloride–induced hepatotoxicity: A comparative study. Pharm. Biol., 2005, 43(5), 460-466. doi: 10.1080/13880200590963880
  91. Weisberg, S.P.; Leibel, R.; Tortoriello, D.V. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology, 2008, 149(7), 3549-3558. doi: 10.1210/en.2008-0262 PMID: 18403477
  92. Wu, L.Y.; Chen, C.W.; Chen, L.K.; Chou, H.Y.; Chang, C.L.; Juan, C.C. Curcumin attenuates adipogenesis by inducing preadipocyte apoptosis and inhibiting adipocyte differentiation. Nutrients, 2019, 11(10), 2307. doi: 10.3390/nu11102307 PMID: 31569380
  93. Ceja-Galicia, Z.A.; García-Arroyo, F.E.; Aparicio-Trejo, O.E.; El-Hafidi, M.; Gonzaga-Sánchez, G.; León-Contreras, J.C.; Hernández-Pando, R.; Guevara-Cruz, M.; Tovar, A.R.; Rojas-Morales, P.; Aranda-Rivera, A.K.; Sánchez-Lozada, L.G.; Tapia, E.; Pedraza-Chaverri, J. Therapeutic effect of curcumin on 5/6Nx hypertriglyceridemia: Association with the improvement of renal mitochondrial β-oxidation and lipid metabolism in kidney and liver. Antioxidants, 2022, 11(11), 2195. doi: 10.3390/antiox11112195 PMID: 36358567
  94. Zeng, C.; Zhong, P.; Zhao, Y.; Kanchana, K.; Zhang, Y.; Khan, Z.A.; Chakrabarti, S.; Wu, L.; Wang, J.; Liang, G. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J. Mol. Cell. Cardiol., 2015, 79, 1-12. doi: 10.1016/j.yjmcc.2014.10.002 PMID: 25444713
  95. Thota, R.N.; Acharya, S.H.; Abbott, K.A.; Garg, M.L. Curcumin and long-chain Omega-3 polyunsaturated fatty acids for prevention of type 2 diabetes (COP-D): Study protocol for a randomised controlled trial. Trials, 2016, 17(1), 565. doi: 10.1186/s13063-016-1702-9 PMID: 27894336
  96. Saraf-Bank, S.; Ahmadi, A.; Paknahad, Z.; Maracy, M.; Nourian, M. Effects of curcumin on cardiovascular risk factors in obese and overweight adolescent girls: A randomized clinical trial. Sao Paulo Med. J., 2019, 137(5), 414-422. doi: 10.1590/1516-3180.2018.0454120419 PMID: 31691723
  97. Lichtenstein, A.H.; Jones, P.J. Lipids: Absorption and transport. In: Present knowledge in nutrition, 10th ed.; Erdman Jr, J.W.; Macdonald, I.A.; Zeisel, S.H., Eds.; Wiley Online Library, 2012; 1, pp. 111-117. doi: 10.1002/9781119946045.ch9
  98. Jalili-Nik, M.; Mahboobnia, K.; Guest, P.C.; Majeed, M.; Al-Rasadi, K.; Jamialahmadi, T.; Sahebkar, A. Impact of curcumin on hepatic low-density lipoprotein uptake. In: Physical Exercise and Natural and Synthetic Products in Health and Disease; Guest, P.C., Ed.; Springer: New York, NY, 2022; 2343, pp. 395-400. doi: 10.1007/978-1-0716-1558-4_29
  99. Zou, J.; Zhang, S.; Li, P.; Zheng, X.; Feng, D. Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet–fed apolipoprotein E knockout mice. Nutr. Res., 2018, 56, 32-40. doi: 10.1016/j.nutres.2018.04.017 PMID: 30055772
  100. Feng, D.; Ohlsson, L.; Duan, R.D. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression. Lipids Health Dis., 2010, 9(1), 40. doi: 10.1186/1476-511X-9-40 PMID: 20403165
  101. Ferguson, J.J.A.; Stojanovski, E.; MacDonald-Wicks, L.; Garg, M.L. Curcumin potentiates cholesterol-lowering effects of phytosterols in hypercholesterolaemic individuals. A randomised controlled trial. Metabolism, 2018, 82, 22-35. doi: 10.1016/j.metabol.2017.12.009 PMID: 29291429
  102. Yuan, F.; Wu, W.; Ma, L.; Wang, D.; Hu, M.; Gong, J.; Fang, K.; Xu, L.; Dong, H.; Lu, F. Turmeric and curcuminiods ameliorate disorders of glycometabolism among subjects with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2022, 177, 106121. doi: 10.1016/j.phrs.2022.106121 PMID: 35143971
  103. Groenen, A.G.; Halmos, B.; Tall, A.R.; Westerterp, M. Cholesterol efflux pathways, inflammation, and atherosclerosis. Crit. Rev. Biochem. Mol. Biol., 2021, 56(4), 426-439. doi: 10.1080/10409238.2021.1925217 PMID: 34182846
  104. Aguilar-Ballester, M.; Herrero-Cervera, A.; Vinué, Á.; Martínez-Hervás, S.; González-Navarro, H. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients, 2020, 12(7), 2021. doi: 10.3390/nu12072021 PMID: 32645995
  105. Shin, S.K.; Ha, T.Y.; McGregor, R.A.; Choi, M.S. Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol. Nutr. Food Res., 2011, 55(12), 1829-1840. doi: 10.1002/mnfr.201100440 PMID: 22058071
  106. Qinna, N.A.; Kamona, B.S.; Alhussainy, T.M.; Taha, H.; Badwan, A.A.; Matalka, K.Z. Effects of prickly pear dried leaves, artichoke leaves, turmeric and garlic extracts, and their combinations on preventing dyslipidemia in rats. ISRN Pharmacol., 2012, 167979. doi: 10.5402/2012/167979 PMID: 22811929
  107. Riyad, P. Atherosclerotic plaque regression and HMG-CoA reductase inhibition potential of curcumin: An integrative omics and in-vivo study. J. Appl. Biol. Biotechnol., 2022, 10(1), 1-3.
  108. Sahebkar, A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother. Res., 2014, 28(5), 633-642. doi: 10.1002/ptr.5045 PMID: 23922235
  109. Sahebkar, A. Curcuminoids for the management of hypertriglyceridaemia. Nat. Rev. Cardiol., 2014, 11(2), 123-123. doi: 10.1038/nrcardio.2013.140-c1 PMID: 24395048
  110. Valentine, C.; Ohnishi, K.; Irie, K.; Murakami, A. Curcumin may induce lipolysis via proteo-stress in Huh7 human hepatoma cells. J. Clin. Biochem. Nutr., 2019, 65(2), 91-98. doi: 10.3164/jcbn.19-7 PMID: 31592057
  111. Akila, G.; Rajakrishnan, V.; Viswanathan, P.; Rajashekaran, K.N.; Menon, V.P. Effects of curcumin on lipid profile and lipid peroxidation status in experimental hepatic fibrosis. Hepatol. Res., 1998, 11(3), 147-157. doi: 10.1016/S1386-6346(98)00026-6
  112. Vafa, T.S.; Emadi, M.; Sadoughi, S.D. Effect of curcumin on Bax, Bcl-2, antioxidant enzymes and lipid peroxidation of sperm after freezing procedure. J. Ardabil Uni. Med. Sci., 2018, 18(1), 120-130. doi: 10.29252/jarums.18.1.120
  113. Soto-Urquieta, M.G.; López-Briones, S.; Pérez-Vázquez, V.; Saavedra-Molina, A.; González-Hernández, G.A.; Ramírez-Emiliano, J. Curcumin restores mitochondrial functions and decreases lipid peroxidation in liver and kidneys of diabetic db/db mice. Biol. Res., 2014, 47(1), 74. doi: 10.1186/0717-6287-47-74 PMID: 25723052
  114. Kalpana, C.; Menon, V.P. Modulatory effects of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity. Pol. J. Pharmacol., 2004, 56(5), 581-586. PMID: 15591646
  115. Ozcelik, M.; Erişir, M.; Guler, O.; Baykara, M.; Kirman, E. The effect of curcumin on lipid peroxidation and selected antioxidants in irradiated rats. Acta Vet. Brno, 2018, 87(4), 379-385. doi: 10.2754/avb201887040379
  116. Mahfouz, M.; Zhou, Q.; Kummerow, A. Effect of curcumin on LDL oxidation in vitro, and lipid peroxidation and antioxidant enzymes in cholesterol fed rabbits. Int. J. Vitam. Nutr. Res., 2011, 81(6), 378-391. doi: 10.1024/0300-9831/a000084 PMID: 22673922
  117. Mozolewska, P.; Duzowska, K.; Pakiet, A.; Mika, A.; Śledziński, T. Inhibitors of fatty acid synthesis and oxidation as potential anticancer agents in colorectal cancer treatment. Anticancer Res., 2020, 40(9), 4843-4856. doi: 10.21873/anticanres.14487 PMID: 32878772
  118. Younesian, O.; Kazerouni, F.; Dehghan-Nayeri, N.; Omrani, D.; Rahimipour, A.; Shanaki, M.; Rezapour Kalkhoran, M.; Cheshmi, F. Effect of curcumin on fatty acid synthase expression and enzyme activity in breast cancer cell line SKBR3. Int. J. Cancer Manag., 2017, 10(3) doi: 10.5812/ijcm.8173
  119. Marnett, L.J. Lipid peroxidation—DNA damage by malondialdehyde. Mutat. Res., 1999, 424(1-2), 83-95. doi: 10.1016/S0027-5107(99)00010-X PMID: 10064852
  120. Basu, S.; De, D.; Dev Khanna, H.; Kumar, A. Lipid peroxidation, DNA damage and total antioxidant status in neonatal hyperbilirubinemia. J. Perinatol., 2014, 34(7), 519-523. doi: 10.1038/jp.2014.45 PMID: 24674982
  121. Kuo, J.J.; Chang, H.H.; Tsai, T.H.; Lee, T.Y. Curcumin ameliorates mitochondrial dysfunction associated with inhibition of gluconeogenesis in free fatty acid-mediated hepatic lipoapoptosis. Int. J. Mol. Med., 2012, 30(3), 643-649. doi: 10.3892/ijmm.2012.1020 PMID: 22692588
  122. Tsai, I.J.; Chen, C.W.; Tsai, S.Y.; Wang, P.Y.; Owaga, E.; Hsieh, R.H. Curcumin supplementation ameliorated vascular dysfunction and improved antioxidant status in rats fed a high-sucrose, high-fat diet. Appl. Physiol. Nutr. Metab., 2018, 43(7), 669-676. doi: 10.1139/apnm-2017-0670 PMID: 29378153
  123. Zhao, L.; Luo, R.; Yu, H.; Li, S.; Yu, Q.; Wang, W.; Cai, K.; Xu, T.; Chen, R.; Tian, W. Curcumin protects human umbilical vein endothelial cells against high oxidized low density lipoprotein-induced lipotoxicity and modulates autophagy. Iran. J. Basic Med. Sci., 2021, 24(12), 1734-1742. PMID: 35432800
  124. Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials. Nutr. J., 2017, 16(1), 68. doi: 10.1186/s12937-017-0293-y PMID: 29020971
  125. Cox, F.F.; Misiou, A.; Vierkant, A.; Ale-Agha, N.; Grandoch, M.; Haendeler, J.; Altschmied, J. Protective effects of curcumin in cardiovascular diseases—Impact on oxidative stress and mitochondria. Cells, 2022, 11(3), 342. doi: 10.3390/cells11030342 PMID: 35159155
  126. Ahmadabady, S.; Beheshti, F.; Shahidpour, F.; Khordad, E.; Hosseini, M. A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochem. Biophys. Rep., 2021, 25, 100908. doi: 10.1016/j.bbrep.2021.100908 PMID: 33506115
  127. Salehi, B.; Del Prado-Audelo, M.L.; Cortés, H.; Leyva-Gómez, G.; Stojanović-Radić, Z.; Singh, Y.D.; Patra, J.K.; Das, G.; Martins, N.; Martorell, M.; Sharifi-Rad, M.; Cho, W.C.; Sharifi-Rad, J. Therapeutic applications of curcumin nanomedicine formulations in cardiovascular diseases. J. Clin. Med., 2020, 9(3), 746. doi: 10.3390/jcm9030746 PMID: 32164244

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers