The Link between miRNAs and PCKS9 in Atherosclerosis

  • Authors: Macvanin M.1, Gluvic Z.2, Klisic A.3, Manojlovic M.4, Suri J.5, Rizzo M.6, Isenovic E.7
  • Affiliations:
    1. Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade
    2. Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine,, University of Belgrade
    3. Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro- Faculty of Medicine
    4. Faculty of Medicine Novi Sad,, University of Novi Sad
    5. Stroke Monitoring and Diagnostic Division Monitoring and Diagnostic Division, AtheroPoint
    6. Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo
    7. Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia,, University of Belgrade
  • Issue: Vol 31, No 42 (2024)
  • Pages: 6926-6956
  • Section: Anti-Infectives and Infectious Diseases
  • URL: https://rjsvd.com/0929-8673/article/view/645150
  • DOI: https://doi.org/10.2174/0109298673262124231102042914
  • ID: 645150

Cite item

Full Text

Abstract

:Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.

About the authors

Mirjana Macvanin

Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade

Author for correspondence.
Email: info@benthamscience.net

Zoran Gluvic

Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine,, University of Belgrade

Email: info@benthamscience.net

Aleksandra Klisic

Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro- Faculty of Medicine

Email: info@benthamscience.net

Mia Manojlovic

Faculty of Medicine Novi Sad,, University of Novi Sad

Email: info@benthamscience.net

Jasjit Suri

Stroke Monitoring and Diagnostic Division Monitoring and Diagnostic Division, AtheroPoint

Email: info@benthamscience.net

Manfredi Rizzo

Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo

Email: info@benthamscience.net

Esma Isenovic

Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia,, University of Belgrade

Email: info@benthamscience.net

References

  1. Rotllan, N. The underlying pathology of atherosclerosis: Different players. Int. J. Mol. Sci., 2022, 23(6), 3235. doi: 10.3390/ijms23063235 PMID: 35328656
  2. Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: recent developments. Cell, 2022, 185(10), 1630-1645. doi: 10.1016/j.cell.2022.04.004 PMID: 35504280
  3. Klisic, A.; Kavaric, N.; Vujcic, S.; Mihajlovic, M.; Zeljkovic, A.; Ivanisevic, J.; Spasojevic-Kalimanovska, V.; Ninic, A.; Kotur-Stevuljevic, J.; Vekic, J. Inverse association between serum endocan levels and small LDL and HDL particles in patients with type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(15), 8127-8135. doi: 10.26355/eurrev_202008_22499 PMID: 32767341
  4. Salekeen, R.; Haider, A. N.; Akhter, F.; Billah, M. M.; Islam, M. E.; Didarul Islam, K. M. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. Int. J. Cardiol. Cardiovasc. Risk Prev., 2022, 14, 200143. doi: 10.1016/j.ijcrp.2022.200143
  5. Shao, W.; Wang, S.; Wang, X.; Yao, L.; Yuan, X.; Huang, D.; Lv, B.; Ye, Y.; Xue, H. miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway. Aging, 2022, 14(5), 2418-2431. doi: 10.18632/aging.203951 PMID: 35288486
  6. Javadifar, A.; Rastgoo, S.; Banach, M.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs. Int. J. Mol. Sci., 2021, 22(5), 2529. doi: 10.3390/ijms22052529 PMID: 33802600
  7. Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metabolism, 2019, 92, 71-81. doi: 10.1016/j.metabol.2018.11.005 PMID: 30447223
  8. Khalifeh, M.; Santos, R.D.; Oskuee, R.K.; Badiee, A.; Aghaee-Bakhtiari, S.H.; Sahebkar, A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog. Lipid Res., 2023, 89, 101197. doi: 10.1016/j.plipres.2022.101197 PMID: 36400247
  9. Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther., 2022, 7(1), 131. doi: 10.1038/s41392-022-00955-7 PMID: 35459215
  10. Yurtseven, E.; Ural, D.; Baysal, K.; Tokgözoğlu, L. An update on the role of PCSK9 in atherosclerosis. J. Atheroscler. Thromb., 2020, 27(9), 909-918. doi: 10.5551/jat.55400 PMID: 32713931
  11. D'Ardes, D.; Santilli, F.; Guagnano, M. T.; Bucci, M.; Cipollone, F. From endothelium to lipids, through microRNAs and PCSK9: A fascinating travel across atherosclerosis. High Blood Press Cardiovasc. Prev., 2020, 27(>1), 1-8. doi: 10.1007/s40292-019-00356-y
  12. Ricci, C.; Ruscica, M. PCSK9 induces a pro-inflammatory response in macrophages. Sci. Rep., 2018, 8(1), 2267. doi: 10.1038/s41598-018-20425-x
  13. Ferri, N.; Tibolla, G.; Pirillo, A.; Cipollone, F.; Mezzetti, A.; Pacia, S.; Corsini, A.; Catapano, A.L. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis, 2012, 220(2), 381-386. doi: 10.1016/j.atherosclerosis.2011.11.026 PMID: 22176652
  14. Ference, B.A.; Robinson, J.G.; Brook, R.D.; Catapano, A.L.; Chapman, M.J.; Neff, D.R.; Voros, S.; Giugliano, R.P.; Davey Smith, G.; Fazio, S.; Sabatine, M.S. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med., 2016, 375(22), 2144-2153. doi: 10.1056/NEJMoa1604304 PMID: 27959767
  15. Khan, S.U.; Yedlapati, S.H.; Lone, A.N.; Hao, Q.; Guyatt, G.; Delvaux, N.; Bekkering, G.E.T.; Vandvik, P.O.; Riaz, I.B.; Li, S.; Aertgeerts, B.; Rodondi, N. PCSK9 inhibitors and ezetimibe with or without statin therapy for cardiovascular risk reduction: A systematic review and network meta-analysis. BMJ, 2022, 377, e069116. doi: 10.1136/bmj-2021-069116 PMID: 35508321
  16. Banerjee, Y.; Pantea Stoian, A.; Cicero, A. F. G. Inclisiran: A small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin. Drug Saf., 2022, 21(1), 9-20. doi: 10.1080/14740338.2022.1988568
  17. Maulucci, G.; Cipriani, F.; Russo, D.; Casavecchia, G.; Di Staso, C.; Di Martino, L.; Ruggiero, A.; Di Biase, M.; Brunetti, N.D. Improved endothelial function after short-term therapy with evolocumab. J. Clin. Lipidol., 2018, 12(3), 669-673. doi: 10.1016/j.jacl.2018.02.004 PMID: 29544724
  18. Cicero, A.F.G.; Toth, P.P.; Fogacci, F.; Virdis, A.; Borghi, C. Improvement in arterial stiffness after short-term treatment with PCSK9 inhibitors. Nutr. Metab. Cardiovasc. Dis., 2019, 29(5), 527-529. doi: 10.1016/j.numecd.2019.01.010 PMID: 30954414
  19. Klisic, A.; Radoman Vujacic, I.; Munjas, J.; Ninic, A.; Kotur-Stevuljevic, J. Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus - a review article. Arch. Med. Sci., 2022, 18(4), 870-880. doi: 10.5114/aoms/146796 PMID: 35832702
  20. Xiang, Y.; Mao, L.; Zuo, M. L.; Song, G. L.; Tan, L. M.; Yang, Z. B. The role of MicroRNAs in hyperlipidemia: From pathogenesis to therapeutical application. Mediators Inflamm., 2022, 2022, 3101900. doi: 10.1155/2022/3101900
  21. Giglio, R. V.; Nikolic, D.; Volti, G. L. Liraglutide increases serum levels of microRNA-27b, -130a and -210 in patients with type 2 diabetes mellitus: A novel epigenetic effect. Metabolites, 2020, 10(10), 391. doi: 10.3390/metabo10100391
  22. Signorelli, S.S.; Volsi, G.L.; Pitruzzella, A.; Fiore, V.; Mangiafico, M.; Vanella, L.; Parenti, R.; Rizzo, M.; Volti, G.L. Circulating miR-130a, miR-27b, and miR-210 in patients with peripheral artery disease and their potential relationship with oxidative stress. Angiology, 2016, 67(10), 945-950. doi: 10.1177/0003319716638242 PMID: 26980776
  23. Macvanin, M.T.; Zafirovic, S.; Obradovic, M.; Isenovic, E.R. Editorial: Non-coding RNA in diabetes and cardiovascular diseases. Front. Endocrinol., 2023, 14, 1149857. doi: 10.3389/fendo.2023.1149857 PMID: 36814579
  24. Macvanin, M.; Obradovic, M.; Zafirovic, S.; Stanimirovic, J.; Isenovic, E.R. The role of miRNAs in metabolic diseases. Curr. Med. Chem., 2023, 30(17), 1922-1944. doi: 10.2174/0929867329666220801161536 PMID: 35927902
  25. Macvanin, M.T.; Gluvic, Z.; Radovanovic, J.; Essack, M.; Gao, X.; Isenovic, E.R. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front. Endocrinol., 2023, 14, 1124613. doi: 10.3389/fendo.2023.1124613 PMID: 36950696
  26. Aryal, B.; Rotllan, N.; Fernández-Hernando, C. Noncoding RNAs and atherosclerosis. Curr. Atheroscler. Rep., 2014, 16(5), 407. doi: 10.1007/s11883-014-0407-3 PMID: 24623179
  27. Jackson, A.O.; Regine, M.A.; Subrata, C.; Long, S. Molecular mechanisms and genetic regulation in atherosclerosis. Int. J. Cardiol. Heart Vasc., 2018, 21, 36-44. doi: 10.1016/j.ijcha.2018.09.006 PMID: 30276232
  28. Dong, J.; He, M.; Li, J.; Pessentheiner, A.; Wang, C.; Zhang, J.; Sun, Y.; Wang, W.T.; Zhang, Y.; Liu, J.; Wang, S.C.; Huang, P.H.; Gordts, P.L.S.M.; Yuan, Z.Y.; Tsimikas, S.; Shyy, J.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight, 2020, 5(23), e143812. doi: 10.1172/jci.insight.143812 PMID: 33119548
  29. Krittanawong, C.; Khawaja, M.; Rosenson, R.S.; Amos, C.I.; Nambi, V.; Lavie, C.J.; Virani, S.S. Association of PCSK9 variants with the risk of atherosclerotic cardiovascular disease and variable responses to PCSK9 inhibitor therapy. Curr. Probl. Cardiol., 2022, 47(7), 101043. doi: 10.1016/j.cpcardiol.2021.101043 PMID: 34780866
  30. Jeong, H.J.; Lee, H.S.; Kim, K.S.; Kim, Y.K.; Yoon, D.; Park, S.W. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J. Lipid Res., 2008, 49(2), 399-409. doi: 10.1194/jlr.M700443-JLR200 PMID: 17921436
  31. Cao, G.; Qian, Y.W.; Kowala, M.; Konrad, R. Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease. Endocr. Metab. Immune Disord. Drug Targets, 2008, 8(4), 238-243. doi: 10.2174/187153008786848286 PMID: 19075777
  32. Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(9), 2045-2051. doi: 10.1161/ATVBAHA.108.179705 PMID: 22895665
  33. Topper, J.N.; Cai, J.; Falb, D.; Gimbrone, M.A., Jr Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl. Acad. Sci., 1996, 93(19), 10417-10422. doi: 10.1073/pnas.93.19.10417 PMID: 8816815
  34. Ridker, P.M. Residual inflammatory risk: Addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J., 2016, 37(22), 1720-1722. doi: 10.1093/eurheartj/ehw024 PMID: 26908943
  35. Libby, P. Inflammation in atherosclerosis. Nature, 2002, 420(6917), 868-874. doi: 10.1038/nature01323 PMID: 12490960
  36. Libby, P. The changing landscape of atherosclerosis. Nature, 2021, 592(7855), 524-533. doi: 10.1038/s41586-021-03392-8 PMID: 33883728
  37. Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126. doi: 10.1056/NEJM199901143400207 PMID: 9887164
  38. Suwaidi, J.A.; Hamasaki, S.; Higano, S.T.; Nishimura, R.A.; Holmes, D.R., Jr; Lerman, A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation, 2000, 101(9), 948-954. doi: 10.1161/01.CIR.101.9.948 PMID: 10704159
  39. Schächinger, V.; Britten, M.B.; Zeiher, A.M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation, 2000, 101(16), 1899-1906. doi: 10.1161/01.CIR.101.16.1899 PMID: 10779454
  40. Félétou, M.; Vanhoutte, P.M. Endothelial dysfunction: A multifaceted disorder (The Wiggers Award Lecture). Am. J. Physiol. Heart Circ. Physiol., 2006, 291(3), H985-H1002. doi: 10.1152/ajpheart.00292.2006 PMID: 16632549
  41. Landmesser, U.; Drexler, H. The clinical significance of endothelial dysfunction. Curr. Opin. Cardiol., 2005, 20(6), 547-551. doi: 10.1097/01.hco.0000179821.11071.79 PMID: 16234629
  42. Zago, A.S.; Zanesco, A. Nitric oxide, cardiovascular disease and physical exercise. Arq. Bras. Cardiol., 2006, 87(6), e264-e270. doi: 10.1590/S0066-782X2006001900029 PMID: 17262101
  43. Flammer, A.J.; Lüscher, T.F. Three decades of endothelium research: From the detection of NO to the everyday implementation of endothelial function measurements in cardiovascular diseases. Swiss Med. Wkly., 2010, 140, w13122. doi: 10.4414/smw.2010.13122 PMID: 21120736
  44. Goldstein, J.L.; Brown, M.S. A century of cholesterol and coronaries: From plaques to genes to statins. Cell, 2015, 161(1), 161-172. doi: 10.1016/j.cell.2015.01.036 PMID: 25815993
  45. Gisterå, A.; Klement, M.L.; Polyzos, K.A.; Mailer, R.K.W.; Duhlin, A.; Karlsson, M.C.I.; Ketelhuth, D.F.J.; Hansson, G.K. Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation, 2018, 138(22), 2513-2526. doi: 10.1161/CIRCULATIONAHA.118.034076 PMID: 29997115
  46. Kruth, H.S. Sequestration of aggregated low-density lipoproteins by macrophages. Curr. Opin. Lipidol., 2002, 13(5), 483-488. doi: 10.1097/00041433-200210000-00003 PMID: 12352011
  47. Witztum, J.L.; Berliner, J.A. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr. Opin. Lipidol., 1998, 9(5), 441-448. doi: 10.1097/00041433-199810000-00008 PMID: 9812198
  48. Dichtl, W.; Nilsson, L.; Goncalves, I.; Ares, M.P.S.; Banfi, C.; Calara, F.; Hamsten, A.; Eriksson, P.; Nilsson, J. Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ. Res., 1999, 84(9), 1085-1094. doi: 10.1161/01.RES.84.9.1085 PMID: 10325246
  49. Kranzhöfer, R.; Schmidt, J.; Pfeiffer, C.A.H.; Hagl, S.; Libby, P.; Kübler, W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 1999, 19(7), 1623-1629. doi: 10.1161/01.ATV.19.7.1623 PMID: 10397679
  50. Yudkin, J.S.; Stehouwer, C.D.A.; Emeis, J.J.; Coppack, S.W. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol., 1999, 19(4), 972-978. doi: 10.1161/01.ATV.19.4.972 PMID: 10195925
  51. Karabulut, A. The role of microbiologic agents in the progression of the atherosclerosis: A comprehensive review. J. Saudi Heart Assoc., 2020, 32(3), 440-450. doi: 10.37616/2212-5043.1198 PMID: 33299789
  52. Zaric, B.L.; Radovanovic, J.N.; Gluvic, Z.; Stewart, A.J.; Essack, M.; Motwalli, O.; Gojobori, T.; Isenovic, E.R. Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Front. Immunol., 2020, 11, 551758. doi: 10.3389/fimmu.2020.551758 PMID: 33117340
  53. Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation, 2002, 105(9), 1135-1143. doi: 10.1161/hc0902.104353 PMID: 11877368
  54. Obradovic, M.; Zaric, B.; Sudar-Milovanovic, E.; Ilincic, B.; Stokic, E.; Perovic, M.; Isenovic, E.R. PCSK9 and hypercholesterolemia: Therapeutic approach. Curr. Drug Targets, 2018, 19(9), 1058-1067. doi: 10.2174/1389450119666171205101401 PMID: 29210646
  55. Davies, M.J. Stability and instability: Two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation, 1996, 94(8), 2013-2020. doi: 10.1161/01.CIR.94.8.2013 PMID: 8873680
  56. de Boer, O.; van der Wal, A.C.; Teeling, P.; Becker, A.E. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: A prominent role for neovascularization? Cardiovasc. Res., 1999, 41(2), 443-449. doi: 10.1016/S0008-6363(98)00255-7 PMID: 10341843
  57. Seidah, N. G.; Prat, A. The multifaceted biology of PCSK9. Endocr. Rev., 2022, 43(3), 558-582. doi: 10.1210/endrev/bnab035
  58. Banach, M.; Rizzo, M.; Obradovic, M.; Montalto, G.; Rysz, J.; Mikhailidis, D.P.; Isenovic, E.R. PCSK9 inhibition - a novel mechanism to treat lipid disorders? Curr. Pharm. Des., 2013, 19(21), 3869-3877. doi: 10.2174/13816128113199990303 PMID: 23286435
  59. Piper, D. E.; Jackson, S.; Liu, Q.; Romanow, W. G.; Shetterly, S.; Thibault, S. T.; Shan, B.; Walker, N. P. The crystal structure of PCSK9: A regulator of plasma LDL-cholesterol. Structure, 2007, 15(5), 545-552. doi: 10.1016/j.str.2007.04.004
  60. Salowe, S.P.; Zhang, L.; Zokian, H.J.; Gesell, J.J.; Zink, D.L.; Wiltsie, J.; Ai, X.; Kavana, M.; Pinto, S. In vitro assays for the discovery of PCSK9 autoprocessing inhibitors. SLAS Discov., 2016, 21(10), 1034-1041. doi: 10.1177/1087057116657312 PMID: 27412534
  61. Korneva, V.; Kuznetsova, T.; Julius, U. The state of the problem of achieving extremely low LDL levels. Curr. Pharm. Des., 2021, 27(37), 3841-3857. doi: 10.2174/1381612827999210111182030 PMID: 33430743
  62. Shapiro, M.D.; Tavori, H.; Fazio, S. PCSK9: From basic science discoveries to clinical trials. Circ. Res., 2018, 122(10), 1420-1438. doi: 10.1161/CIRCRESAHA.118.311227 PMID: 29748367
  63. Seidah, N.G.; Garçon, D. Expanding biology of PCSK9: Roles in atherosclerosis and beyond. Curr. Atheroscler. Rep., 2022, 24(10), 821-830. doi: 10.1007/s11883-022-01057-z PMID: 35904732
  64. Chorba, J.S.; Shokat, K.M. The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis. J. Biol. Chem., 2014, 289(42), 29030-29043. doi: 10.1074/jbc.M114.594861 PMID: 25210046
  65. Lin, X.L.; Xiao, L.L.; Tang, Z.H.; Jiang, Z.S.; Liu, M.H. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed. Pharmacother., 2018, 104, 36-44. doi: 10.1016/j.biopha.2018.05.024 PMID: 29758414
  66. Sun, L.; Yang, X.; Li, Q.; Zeng, P.; Liu, Y.; Liu, L.; Chen, Y.; Yu, M.; Ma, C.; Li, X.; Li, Y.; Zhang, R.; Zhu, Y.; Miao, Q.R.; Han, J.; Duan, Y. Activation of adiponectin receptor regulates proprotein convertase subtilisin/kexin type 9 expression and inhibits lesions in apoe-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2017, 37(7), 1290-1300. doi: 10.1161/ATVBAHA.117.309630 PMID: 28546220
  67. Schulz, R.; Schlüter, K.D.; Laufs, U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res. Cardiol., 2015, 110(2), 4. doi: 10.1007/s00395-015-0463-z PMID: 25600226
  68. Soskić, S.S.; Dobutović, B.D.; Sudar, E.M.; Obradović, M.M.; Nikolić, D.M.; Zarić, B.L.; Stojanović, S.Đ.; Stokić, E.J.; Mikhailidis, D.P.; Isenović, E.R. Peroxisome proliferator-activated receptors and atherosclerosis. Angiology, 2011, 62(7), 523-534. doi: 10.1177/0003319711401012 PMID: 21467121
  69. Sosnowska, B.; Mazidi, M.; Penson, P.; Gluba-Brzózka, A.; Rysz, J.; Banach, M. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 2017, 265, 275-282. doi: 10.1016/j.atherosclerosis.2017.08.027 PMID: 28870631
  70. Winnik, S.; Auwerx, J.; Sinclair, D.A.; Matter, C.M. Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. Eur. Heart J., 2015, 36(48), 3404-3412. doi: 10.1093/eurheartj/ehv290 PMID: 26112889
  71. Luquero, A.; Badimon, L.; Borrell-Pages, M. PCSK9 functions in atherosclerosis are not limited to plasmatic LDL-cholesterol regulation. Front. Cardiovasc. Med., 2021, 8, 639727. doi: 10.3389/fcvm.2021.639727 PMID: 33834043
  72. Stanimirovic, J.; Obradovic, M.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Pitt, S. J.; Stewart, A. J.; Isenovic, E. R. A high fat diet induces sex-specific differences in hepatic lipid metabolism and nitrite/nitrate in rats. Nitric Oxide : Biol. Chem., 2016, 54, 51-59. doi: 10.1016/j.niox.2016.02.007
  73. Seidah, N.G.; Pasquato, A.; Andréo, U. How do enveloped viruses exploit the secretory proprotein convertases to regulate infectivity and spread? Viruses, 2021, 13(7), 1229. doi: 10.3390/v13071229 PMID: 34202098
  74. Liu, X.; Bao, X.; Hu, M.; Chang, H.; Jiao, M.; Cheng, J.; Xie, L.; Huang, Q.; Li, F.; Li, C. Y. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature, 2020, 588(7839), 693-698. doi: 10.1038/s41586-020-2911-7
  75. Coppinger, C.; Movahed, M.R.; Azemawah, V.; Peyton, L.; Gregory, J.; Hashemzadeh, M. A comprehensive review of PCSK9 inhibitors. J. Cardiovasc. Pharmacol. Ther., 2022, 27, 10742484221100107. doi: 10.1177/10742484221100107 PMID: 35593194
  76. Tomic Naglic, D.; Manojlovic, M.; Pejakovic, S.; Stepanovic, K.; Prodanovic Simeunovic, J. Lipoprotein(a): Role in atherosclerosis and new treatment options. Biomol. Biomed., 2023, 23(4), 575-583. doi: 10.17305/bb.2023.8992
  77. Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; Jukema, J.W.; Lecorps, G.; Mahaffey, K.W.; Moryusef, A.; Pordy, R.; Quintero, K.; Roe, M.T.; Sasiela, W.J.; Tamby, J.F.; Tricoci, P.; White, H.D.; Zeiher, A.M. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med., 2018, 379(22), 2097-2107. doi: 10.1056/NEJMoa1801174 PMID: 30403574
  78. Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722. doi: 10.1056/NEJMoa1615664 PMID: 28304224
  79. Chen, H.; Chen, X. PCSK9 inhibitors for acute coronary syndrome: The era of early implementation. Front. Cardiovasc. Med., 2023, 10, 1138787. doi: 10.3389/fcvm.2023.1138787 PMID: 37200976
  80. Hao, Y.; Yang, Y.; Wang, Y.; Li, J. Effect of the early application of evolocumab on blood lipid profile and cardiovascular prognosis in patients with extremely high-risk acute coronary syndrome. Int. Heart J., 2022, 63(4), 669-677. doi: 10.1536/ihj.22-052 PMID: 35831153
  81. Blom, D.J.; Koren, M.J.; Roth, E.; Monsalvo, M.L.; Djedjos, C.S.; Nelson, P.; Elliott, M.; Wasserman, S.M.; Ballantyne, C.M.; Holman, R.R. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome. Diabetes Obes. Metab., 2017, 19(1), 98-107. doi: 10.1111/dom.12788 PMID: 27619750
  82. Giugliano, R.P.; Mach, F.; Zavitz, K.; Kurtz, C.; Im, K.; Kanevsky, E.; Schneider, J.; Wang, H.; Keech, A.; Pedersen, T.R.; Sabatine, M.S.; Sever, P.S.; Robinson, J.G.; Honarpour, N.; Wasserman, S.M.; Ott, B.R. Cognitive function in a randomized trial of evolocumab. N. Engl. J. Med., 2017, 377(7), 633-643. doi: 10.1056/NEJMoa1701131 PMID: 28813214
  83. Mehta, S.R.; Pare, G.; Lonn, E.M.; Jolly, S.S.; Natarajan, M.K.; Pinilla-Echeverri, N.; Schwalm, J.D.; Sheth, T.N.; Sibbald, M.; Tsang, M.; Valettas, N.; Velianou, J.L.; Lee, S.F.; Ferdous, T.; Nauman, S.; Nguyen, H.; McCready, T.; McQueen, M.J. Effects of routine early treatment with PCSK9 inhibitors in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: A randomised, double-blind, sham-controlled trial. EuroIntervention, 2022, 18(11), e888-e896. doi: 10.4244/EIJ-D-22-00735 PMID: 36349701
  84. Koskinas, K.C.; Windecker, S.; Pedrazzini, G.; Mueller, C.; Cook, S.; Matter, C.M.; Muller, O.; Häner, J.; Gencer, B.; Crljenica, C.; Amini, P.; Deckarm, O.; Iglesias, J.F.; Räber, L.; Heg, D.; Mach, F. Evolocumab for early reduction of LDL cholesterol levels in patients with acute coronary syndromes (EVOPACS). J. Am. Coll. Cardiol., 2019, 74(20), 2452-2462. doi: 10.1016/j.jacc.2019.08.010 PMID: 31479722
  85. Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; van Geuns, R.J.; Ondracek, A.S.; Radu Juul Jensen, M.D.; Zanchin, C.; Stortecky, S.; Spirk, D.; Siontis, G.C.M.; Saleh, L.; Matter, C.M.; Daemen, J.; Mach, F.; Heg, D.; Windecker, S.; Engstrøm, T.; Lang, I.M.; Koskinas, K.C.; Ambühl, M.; Bär, S.; Frenk, A.; Morf, L.U.; Inderkum, A.; Leuthard, S.; Kavaliauskaite, R.; Rexhaj, E.; Shibutani, H.; Mitter, V.R.; Kaiser, C.; Mayr, M.; Eberli, F.R.; O’Sullivan, C.J.; Templin, C.; von Eckardstein, A.; Ghandilyan, A.; Pawar, R.; Jonker, H.; Hofbauer, T.; Goliasch, G.; Bang, L.; Sørensen, R.; Tovar Forero, M.N.; Degrauwe, S.; Ten Cate, T. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction. JAMA, 2022, 327(18), 1771-1781. doi: 10.1001/jama.2022.5218 PMID: 35368058
  86. Gaba, P.; O’Donoghue, M.L.; Park, J.G.; Wiviott, S.D.; Atar, D.; Kuder, J.F.; Im, K.; Murphy, S.A.; De Ferrari, G.M.; Gaciong, Z.A.; Toth, K.; Gouni-Berthold, I.; Lopez-Miranda, J.; Schiele, F.; Mach, F.; Flores-Arredondo, J.H.; López, J.A.G.; Elliott-Davey, M.; Wang, B.; Monsalvo, M.L.; Abbasi, S.; Giugliano, R.P.; Sabatine, M.S. Association between achieved low-density lipoprotein cholesterol levels and long-term cardiovascular and safety outcomes: An analysis of fourier-ole. Circulation, 2023, 147(16), 1192-1203. doi: 10.1161/CIRCULATIONAHA.122.063399 PMID: 36779348
  87. Kaufman, T.M.; Warden, B.A.; Minnier, J.; Miles, J.R.; Duell, P.B.; Purnell, J.Q.; Wojcik, C.; Fazio, S.; Shapiro, M.D. Application of PCSK9 inhibitors in practice. Circ. Res., 2019, 124(1), 32-37. doi: 10.1161/CIRCRESAHA.118.314191 PMID: 30605414
  88. O’Donoghue, M.L.; Giugliano, R.P.; Wiviott, S.D.; Atar, D.; Keech, A.; Kuder, J.F.; Im, K.; Murphy, S.A.; Flores-Arredondo, J.H.; López, J.A.G.; Elliott-Davey, M.; Wang, B.; Monsalvo, M.L.; Abbasi, S.; Sabatine, M.S. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation, 2022, 146(15), 1109-1119. doi: 10.1161/CIRCULATIONAHA.122.061620 PMID: 36031810
  89. Ferrari, F.; Stein, R.; Motta, M.T.; Moriguchi, E.H. PCSK9 inhibitors: Clinical relevance, molecular mechanisms, and safety in clinical practice. Arq. Bras. Cardiol., 2019, 112(4), 453-460. doi: 10.5935/abc.20190029 PMID: 30843929
  90. Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab., 2009, 94(7), 2537-2543. doi: 10.1210/jc.2009-0141 PMID: 19351729
  91. Tóth, Š.; Fedačko, J.; Pekárová, T.; Hertelyová, Z.; Katz, M.; Mughees, A.; Kuzma, J.; Štefanič, P.; Kopolovets, I.; Pella, D. Elevated circulating PCSK9 concentrations predict subclinical atherosclerotic changes in low risk obese and non-obese patients. Cardiol. Ther., 2017, 6(2), 281-289. doi: 10.1007/s40119-017-0092-8 PMID: 28623549
  92. Sotler, T.; Šebeštjen, M. PCSK9 as an atherothrombotic risk factor. Int. J. Mol. Sci., 2023, 24(3), 1966. doi: 10.3390/ijms24031966
  93. Zhu, Y.; Xian, X.; Wang, Z.; Bi, Y.; Chen, Q.; Han, X.; Tang, D.; Chen, R. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules, 2018, 8(3), 80. doi: 10.3390/biom8030080 PMID: 30142970
  94. Barale, C.; Melchionda, E.; Morotti, A. PCSK9 biology and its role in atherothrombosis. Int. J. Mol. Sci., 2021, 22(11), 5880. doi: 10.3390/ijms22115880
  95. Xia, X.; Peng, Z.; Gu, H.; Wang, M.; Wang, G.; Zhang, D. Regulation of PCSK9 expression and function: mechanisms and therapeutic implications. Front. Cardiovasc. Med., 2021, 8, 764038. doi: 10.3389/fcvm.2021.764038 PMID: 34782856
  96. Trpkovic, A.; Resanovic, I.; Stanimirovic, J.; Radak, D.; Mousa, S.A.; Cenic-Milosevic, D.; Jevremovic, D.; Isenovic, E.R. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci., 2015, 52(2), 70-85. doi: 10.3109/10408363.2014.992063 PMID: 25537066
  97. Ding, Z.; Liu, S.; Wang, X.; Theus, S.; Deng, X.; Fan, Y.; Zhou, S.; Mehta, J.L. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc. Res., 2018, 114(8), 1145-1153. doi: 10.1093/cvr/cvy079 PMID: 29617722
  98. Wu, N.Q.; Shi, H.W.; Li, J.J. Proprotein convertase subtilisin/kexin type 9 and inflammation: An updated review. Front. Cardiovasc. Med., 2022, 9, 763516. doi: 10.3389/fcvm.2022.763516 PMID: 35252378
  99. Shapiro, M.D.; Fazio, S. PCSK9 and atherosclerosis - lipids and beyond. J. Atheroscler. Thromb., 2017, 24(5), 462-472. doi: 10.5551/jat.RV17003 PMID: 28302950
  100. Xu, B.; Li, S.; Fang, Y.; Zou, Y.; Song, D.; Zhang, S.; Cai, Y. Proprotein convertase subtilisin/kexin type 9 promotes gastric cancer metastasis and suppresses apoptosis by facilitating MAPK signaling pathway through HSP70 up-regulation. Front. Oncol., 2021, 10, 609663. doi: 10.3389/fonc.2020.609663 PMID: 33489919
  101. Guijarro-Muñoz, I.; Compte, M.; Álvarez-Cienfuegos, A.; Álvarez-Vallina, L.; Sanz, L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J. Biol. Chem., 2014, 289(4), 2457-2468. doi: 10.1074/jbc.M113.521161 PMID: 24307174
  102. Liu, A.; Frostegård, J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J. Intern. Med., 2018, 284(2), 193-210. doi: 10.1111/joim.12758 PMID: 29617044
  103. Cammisotto, V.; Pastori, D.; Nocella, C.; Bartimoccia, S.; Castellani, V.; Marchese, C.; Sili Scavalli, A.; Ettorre, E.; Viceconte, N.; Violi, F.; Pignatelli, P.; Carnevale, R. PCSK9 regulates Nox2-mediated platelet activation via CD36 receptor in patients with atrial fibrillation. Antioxidants, 2020, 9(4), 296. doi: 10.3390/antiox9040296 PMID: 32252393
  104. Camera, M.; Rossetti, L.; Barbieri, S.S.; Zanotti, I.; Canciani, B.; Trabattoni, D.; Ruscica, M.; Tremoli, E.; Ferri, N. PCSK9 as a positive modulator of platelet activation. J. Am. Coll. Cardiol., 2018, 71(8), 952-954. doi: 10.1016/j.jacc.2017.11.069 PMID: 29471945
  105. Ochoa, E.; Iriondo, M.; Manzano, C.; Fullaondo, A.; Villar, I.; Ruiz-Irastorza, G.; Zubiaga, A.M.; Estonba, A. LDLR and PCSK9 are associated with the presence of antiphospholipid antibodies and the development of thrombosis in aPLA carriers. PLoS One, 2016, 11(1), e0146990. doi: 10.1371/journal.pone.0146990 PMID: 26820623
  106. Zulkapli, R.; Muid, S.A.; Wang, S.M.; Nawawi, H. PCSK9 inhibitors reduce PCSK9 and early atherogenic biomarkers in stimulated human coronary artery endothelial cells. Int. J. Mol. Sci., 2023, 24(6), 5098. doi: 10.3390/ijms24065098 PMID: 36982171
  107. Feingold, K.R.; Moser, A.; Shigenaga, J.K.; Grunfeld, C. Inflammation stimulates niacin receptor (GPR109A/HCA2) expression in adipose tissue and macrophages. J. Lipid Res., 2014, 55(12), 2501-2508. doi: 10.1194/jlr.M050955 PMID: 25320346
  108. Shah, P.K. Inflammation and plaque vulnerability. Cardiovasc. Drugs Ther., 2009, 23(1), 31-40. doi: 10.1007/s10557-008-6147-2 PMID: 18949542
  109. Grebe, A.; Hoss, F.; Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res., 2018, 122(12), 1722-1740. doi: 10.1161/CIRCRESAHA.118.311362 PMID: 29880500
  110. Wu, C.Y.; Tang, Z.H.; Jiang, L.; Li, X.F.; Jiang, Z.S.; Liu, L.S. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax–caspase9–caspase3 pathway. Mol. Cell. Biochem., 2012, 359(1-2), 347-358. doi: 10.1007/s11010-011-1028-6 PMID: 21847580
  111. Li, J.; Liang, X.; Wang, Y.; Xu, Z.; Li, G. Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced endothelial cell apoptosis. Mol. Med. Rep., 2017, 16(2), 1817-1825. doi: 10.3892/mmr.2017.6803 PMID: 28656218
  112. Li, S.; Guo, Y.L.; Xu, R.X.; Zhang, Y.; Zhu, C.G.; Sun, J.; Qing, P.; Wu, N.Q.; Jiang, L.X.; Li, J.J. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis, 2014, 234(2), 441-445. doi: 10.1016/j.atherosclerosis.2014.04.001 PMID: 24769476
  113. Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Benderly, M.; Goldbourt, U.; Willeit, J.; Kiechl, S.; Yarnell, J.W.; Sweetnam, P.M.; Elwood, P.C.; Cushman, M.; Psaty, B.M.; Tracy, R.P.; Tybjaerg-Hansen, A.; Haverkate, F.; de Maat, M.P.; Fowkes, F.G.; Lee, A.J.; Smith, F.B.; Salomaa, V.; Harald, K.; Rasi, R.; Vahtera, E.; Jousilahti, P.; Pekkanen, J.; D’Agostino, R.; Kannel, W.B.; Wilson, P.W.; Tofler, G.; Arocha-Piñango, C.L.; Rodriguez-Larralde, A.; Nagy, E.; Mijares, M.; Espinosa, R.; Rodriquez-Roa, E.; Ryder, E.; Diez-Ewald, M.P.; Campos, G.; Fernandez, V.; Torres, E.; Marchioli, R.; Valagussa, F.; Rosengren, A.; Wilhelmsen, L.; Lappas, G.; Eriksson, H.; Cremer, P.; Nagel, D.; Curb, J.D.; Rodriguez, B.; Yano, K.; Salonen, J.T.; Nyyssönen, K.; Tuomainen, T.P.; Hedblad, B.; Lind, P.; Loewel, H.; Koenig, W.; Meade, T.W.; Cooper, J.A.; De Stavola, B.; Knottenbelt, C.; Miller, G.J.; Cooper, J.A.; Bauer, K.A.; Rosenberg, R.D.; Sato, S.; Kitamura, A.; Naito, Y.; Palosuo, T.; Ducimetiere, P.; Amouyel, P.; Arveiler, D.; Evans, A.E.; Ferrieres, J.; Juhan-Vague, I.; Bingham, A.; Schulte, H.; Assmann, G.; Cantin, B.; Lamarche, B.; Després, J.P.; Dagenais, G.R.; Tunstall-Pedoe, H.; Woodward, M.; Ben-Shlomo, Y.; Davey Smith, G.; Palmieri, V.; Yeh, J.L.; Rudnicka, A.; Ridker, P.; Rodeghiero, F.; Tosetto, A.; Shepherd, J.; Ford, I.; Robertson, M.; Brunner, E.; Shipley, M.; Feskens, E.J.; Kromhout, D.; Dickinson, A.; Ireland, B.; Juzwishin, K.; Kaptoge, S.; Lewington, S.; Memon, A.; Sarwar, N.; Walker, M.; Wheeler, J.; White, I.; Wood, A. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA, 2005, 294(14), 1799-1809. doi: 10.1001/jama.294.14.1799 PMID: 16219884
  114. Zhang, Y.; Zhu, C.G.; Xu, R.X.; Li, S.; Guo, Y.L.; Sun, J.; Li, J.J. Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. J. Clin. Lipidol., 2014, 8(5), 494-500. doi: 10.1016/j.jacl.2014.07.001 PMID: 25234562
  115. Taechalertpaisarn, J.; Zhao, B.; Liang, X.; Burgess, K. Small molecule inhibitors of the PCSK9·LDLR interaction. J. Am. Chem. Soc., 2018, 140(9), 3242-3249. doi: 10.1021/jacs.7b09360
  116. Londregan, A.T.; Wei, L.; Xiao, J.; Lintner, N.G.; Petersen, D.; Dullea, R.G.; McClure, K.F.; Bolt, M.W.; Warmus, J.S.; Coffey, S.B.; Limberakis, C.; Genovino, J.; Thuma, B.A.; Hesp, K.D.; Aspnes, G.E.; Reidich, B.; Salatto, C.T.; Chabot, J.R.; Cate, J.H.D.; Liras, S.; Piotrowski, D.W. Small molecule proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Hit to lead optimization of systemic agents. J. Med. Chem., 2018, 61(13), 5704-5718. doi: 10.1021/acs.jmedchem.8b00650 PMID: 29878763
  117. Pettersen, D.; Fjellström, O. Small molecule modulators of PCSK9 - A literature and patent overview. Bioorg. Med. Chem. Lett., 2018, 28(7), 1155-1160. doi: 10.1016/j.bmcl.2018.02.046 PMID: 29519739
  118. Ahamad, S.; Mathew, S.; Khan, W.A.; Mohanan, K. Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov. Today, 2022, 27(5), 1332-1349. doi: 10.1016/j.drudis.2022.01.014 PMID: 35121175
  119. Lintner, N. G.; McClure, K. F.; Petersen, D.; Londregan, A. T.; Piotrowski, D. W.; Wei, L.; Xiao, J.; Bolt, M.; Loria, P. M.; Maguire, B. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol., 2017, 15(3), e2001882. doi: 10.1371/journal.pbio.2001882
  120. Petersen, D.N.; Hawkins, J.; Ruangsiriluk, W.; Stevens, K.A.; Maguire, B.A.; O’Connell, T.N.; Rocke, B.N.; Boehm, M.; Ruggeri, R.B.; Rolph, T.; Hepworth, D.; Loria, P.M.; Carpino, P.A. A small-molecule anti-secretagogue of PCSK9 targets the 80S ribosome to inhibit PCSK9 protein translation. Cell Chem. Biol., 2016, 23(11), 1362-1371. doi: 10.1016/j.chembiol.2016.08.016 PMID: 27746128
  121. McClure, K.F.; Piotrowski, D.W.; Petersen, D.; Wei, L.; Xiao, J.; Londregan, A.T.; Kamlet, A.S.; Dechert-Schmitt, A.M.; Raymer, B.; Ruggeri, R.B.; Canterbury, D.; Limberakis, C.; Liras, S.; DaSilva-Jardine, P.; Dullea, R.G.; Loria, P.M.; Reidich, B.; Salatto, C.T.; Eng, H.; Kimoto, E.; Atkinson, K.; King-Ahmad, A.; Scott, D.; Beaumont, K.; Chabot, J.R.; Bolt, M.W.; Maresca, K.; Dahl, K.; Arakawa, R.; Takano, A.; Halldin, C. Liver-targeted small-molecule inhibitors of proprotein convertase subtilisin/kexin type 9 synthesis. Angew. Chem. Int. Ed., 2017, 56(51), 16218-16222. doi: 10.1002/anie.201708744 PMID: 29073340
  122. Zhang, Y.; Eigenbrot, C.; Zhou, L.; Shia, S.; Li, W.; Quan, C.; Tom, J.; Moran, P.; Di Lello, P.; Skelton, N.J.; Kong-Beltran, M.; Peterson, A.; Kirchhofer, D. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J. Biol. Chem., 2014, 289(2), 942-955. doi: 10.1074/jbc.M113.514067 PMID: 24225950
  123. Schroeder, C.I.; Swedberg, J.E.; Withka, J.M.; Rosengren, K.J.; Akcan, M.; Clayton, D.J.; Daly, N.L.; Cheneval, O.; Borzilleri, K.A.; Griffor, M.; Stock, I.; Colless, B.; Walsh, P.; Sunderland, P.; Reyes, A.; Dullea, R.; Ammirati, M.; Liu, S.; McClure, K.F.; Tu, M.; Bhattacharya, S.K.; Liras, S.; Price, D.A.; Craik, D.J. Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem. Biol., 2014, 21(2), 284-294. doi: 10.1016/j.chembiol.2013.11.014 PMID: 24440079
  124. Zhang, Y.; Ultsch, M.; Skelton, N. J.; Burdick, D. J.; Beresini, M. H.; Li, W.; Kong-Beltran, M.; Peterson, A.; Quinn, J.; Chiu, C. Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists. Nat. Struct. Mol. Biol., 2017, 24(10), 848-856. doi: 10.1038/nsmb.3453
  125. Evison, B.J.; Palmer, J.T.; Lambert, G.; Treutlein, H.; Zeng, J.; Nativel, B.; Chemello, K.; Zhu, Q.; Wang, J.; Teng, Y.; Tang, W.; Xu, Y.; Rathi, A.K.; Kumar, S.; Suchowerska, A.K.; Parmar, J.; Dixon, I.; Kelly, G.E.; Bonnar, J. A small molecule inhibitor of PCSK9 that antagonizes LDL receptor binding via interaction with a cryptic PCSK9 binding groove. Bioorg. Med. Chem., 2020, 28(6), 115344. doi: 10.1016/j.bmc.2020.115344 PMID: 32051094
  126. Min, D.K.; Lee, H.S.; Lee, N.; Lee, C.J.; Song, H.J.; Yang, G.E.; Yoon, D.; Park, S.W. In silico screening of chemical libraries to develop inhibitors that hamper the interaction of PCSK9 with the LDL receptor. Yonsei Med. J., 2015, 56(5), 1251-1257. doi: 10.3349/ymj.2015.56.5.1251 PMID: 26256967
  127. Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233. doi: 10.1016/j.cell.2009.01.002 PMID: 19167326
  128. Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297. doi: 10.1016/S0092-8674(04)00045-5 PMID: 14744438
  129. Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308), 835-840. doi: 10.1038/nature09267 PMID: 20703300
  130. Forman, J.J.; Legesse-Miller, A.; Coller, H.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci., 2008, 105(39), 14879-14884. doi: 10.1073/pnas.0803230105 PMID: 18812516
  131. Zhou, H.; Rigoutsos, I. MiR-103a-3p targets the 5′ UTR of GPRC5A in pancreatic cells. RNA, 2014, 20(9), 1431-1439. doi: 10.1261/rna.045757.114 PMID: 24984703
  132. Zhang, Y.; Fan, M.; Zhang, X.; Huang, F.; Wu, K.; Zhang, J.; Liu, J.; Huang, Z.; Luo, H.; Tao, L.; Zhang, H. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA, 2014, 20(12), 1878-1889. doi: 10.1261/rna.045633.114 PMID: 25336585
  133. Han, J.; Lee, Y.; Yeom, K.H.; Kim, Y.K.; Jin, H.; Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev., 2004, 18(24), 3016-3027. doi: 10.1101/gad.1262504 PMID: 15574589
  134. Siomi, H.; Siomi, M.C. Posttranscriptional regulation of microRNA biogenesis in animals. Mol. Cell, 2010, 38(3), 323-332. doi: 10.1016/j.molcel.2010.03.013 PMID: 20471939
  135. Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105. doi: 10.1101/gr.082701.108 PMID: 18955434
  136. Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(7209), 58-63. doi: 10.1038/nature07228 PMID: 18668040
  137. Grimson, A.; Farh, K.K.H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105. doi: 10.1016/j.molcel.2007.06.017 PMID: 17612493
  138. Doench, J.G.; Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev., 2004, 18(5), 504-511. doi: 10.1101/gad.1184404 PMID: 15014042
  139. Wang, R.; Dong, L.D.; Meng, X.B.; Shi, Q.; Sun, W.Y. Unique MicroRNA signatures associated with early coronary atherosclerotic plaques. Biochem. Biophys. Res. Commun., 2015, 464(2), 574-579. doi: 10.1016/j.bbrc.2015.07.010 PMID: 26159918
  140. Raitoharju, E.; Lyytikäinen, L.P.; Levula, M.; Oksala, N.; Mennander, A.; Tarkka, M.; Klopp, N.; Illig, T.; Kähönen, M.; Karhunen, P.J.; Laaksonen, R.; Lehtimäki, T. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis, 2011, 219(1), 211-217. doi: 10.1016/j.atherosclerosis.2011.07.020 PMID: 21820659
  141. Cipollone, F.; Felicioni, L.; Sarzani, R.; Ucchino, S.; Spigonardo, F.; Mandolini, C.; Malatesta, S.; Bucci, M.; Mammarella, C.; Santovito, D.; de Lutiis, F.; Marchetti, A.; Mezzetti, A.; Buttitta, F. A unique microRNA signature associated with plaque instability in humans. Stroke, 2011, 42(9), 2556-2563. doi: 10.1161/STROKEAHA.110.597575 PMID: 21817153
  142. Faccini, J.; Ruidavets, J.B.; Cordelier, P.; Martins, F.; Maoret, J.J.; Bongard, V.; Ferrières, J.; Roncalli, J.; Elbaz, M.; Vindis, C. Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci. Rep., 2017, 7(1), 42916. doi: 10.1038/srep42916 PMID: 28205634
  143. Fichtlscherer, S.; De Rosa, S.; Fox, H.; Schwietz, T.; Fischer, A.; Liebetrau, C.; Weber, M.; Hamm, C.W.; Röxe, T.; Müller-Ardogan, M.; Bonauer, A.; Zeiher, A.M.; Dimmeler, S. Circulating microRNAs in patients with coronary artery disease. Circ. Res., 2010, 107(5), 677-684. doi: 10.1161/CIRCRESAHA.109.215566 PMID: 20595655
  144. Weber, M.; Baker, M.B.; Patel, R.S.; Quyyumi, A.A.; Bao, G.; Searles, C.D. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol. Res. Pract., 2011, 2011, 1-5. doi: 10.4061/2011/532915 PMID: 21785714
  145. Zhu, G.; Yang, L.; Guo, R.; Liu, H.; Shi, Y.; Ye, J.; Yang, Z. microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the gensini score. Coron. Artery Dis., 2014, 25(4), 304-310. doi: 10.1097/MCA.0000000000000088 PMID: 24525789
  146. Zeller, T.; Keller, T.; Ojeda, F.; Reichlin, T.; Twerenbold, R.; Tzikas, S.; Wild, P.S.; Reiter, M.; Czyz, E.; Lackner, K.J.; Munzel, T.; Mueller, C.; Blankenberg, S. Assessment of microRNAs in patients with unstable angina pectoris. Eur. Heart J., 2014, 35(31), 2106-2114. doi: 10.1093/eurheartj/ehu151 PMID: 24727883
  147. Liu, K.; Xuekelati, S.; Zhou, K.; Yan, Z.; Yang, X.; Inayat, A.; Wu, J.; Guo, X. Expression profiles of six atherosclerosis-associated microRNAs that cluster in patients with hyperhomocysteinemia: A clinical study. DNA Cell Biol., 2018, 37(3), 189-198. doi: 10.1089/dna.2017.3845 PMID: 29461880
  148. Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636. doi: 10.1161/CIRCRESAHA.115.306301 PMID: 26892962
  149. Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res., 2016, 118(4), 703-720. doi: 10.1161/CIRCRESAHA.115.306300 PMID: 26892968
  150. Boon, R.A. Endothelial microRNA tells smooth muscle cells to proliferate. Circ. Res., 2013, 113(1), 7-8. doi: 10.1161/CIRCRESAHA.113.301636 PMID: 23788500
  151. Jaé, N.; Dimmeler, S. Noncoding RNAs in vascular diseases. Circ. Res., 2020, 126(9), 1127-1145. doi: 10.1161/CIRCRESAHA.119.315938 PMID: 32324505
  152. Fasolo, F.; Di Gregoli, K.; Maegdefessel, L.; Johnson, J.L. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc. Res., 2019, 115(12), 1732-1756. doi: 10.1093/cvr/cvz203 PMID: 31389987
  153. Fang, Y.; Davies, P.F. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler. Thromb. Vasc. Biol., 2012, 32(4), 979-987. doi: 10.1161/ATVBAHA.111.244053 PMID: 22267480
  154. Loyer, X.; Potteaux, S.; Vion, A.C.; Guérin, C.L.; Boulkroun, S.; Rautou, P.E.; Ramkhelawon, B.; Esposito, B.; Dalloz, M.; Paul, J.L.; Julia, P.; Maccario, J.; Boulanger, C.M.; Mallat, Z.; Tedgui, A. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ. Res., 2014, 114(3), 434-443. doi: 10.1161/CIRCRESAHA.114.302213 PMID: 24255059
  155. Hosen, M.R.; Goody, P.R.; Zietzer, A.; Nickenig, G.; Jansen, F. MicroRNAs as master regulators of atherosclerosis: From pathogenesis to novel therapeutic options. Antioxid. Redox Signal., 2020, 33(9), 621-644. doi: 10.1089/ars.2020.8107 PMID: 32408755
  156. Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721. doi: 10.1038/nri3520 PMID: 23995626
  157. Self-Fordham, J.B.; Naqvi, A.R.; Uttamani, J.R.; Kulkarni, V.; Nares, S. MicroRNA: Dynamic regulators of macrophage polarization and plasticity. Front. Immunol., 2017, 8, 1062. doi: 10.3389/fimmu.2017.01062 PMID: 28912781
  158. Curtale, G.; Rubino, M.; Locati, M. MicroRNAs as molecular switches in macrophage activation. Front. Immunol., 2019, 10, 799. doi: 10.3389/fimmu.2019.00799 PMID: 31057539
  159. Zhang, Y.; Zhang, M.; Zhong, M.; Suo, Q.; Lv, K. Expression profiles of miRNAs in polarized macrophages. Int. J. Mol. Med., 2013, 31(4), 797-802. doi: 10.3892/ijmm.2013.1260 PMID: 23443577
  160. Park, Y.M. CD36, a scavenger receptor implicated in atherosclerosis. Exp. Mol. Med., 2014, 46(6), e99. doi: 10.1038/emm.2014.38 PMID: 24903227
  161. Kuchibhotla, S.; Vanegas, D.; Kennedy, D.J.; Guy, E.; Nimako, G.; Morton, R.E.; Febbraio, M. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc. Res., 2008, 78(1), 185-196. doi: 10.1093/cvr/cvm093 PMID: 18065445
  162. Li, B.R.; Xia, L.Q.; Liu, J.; liao, L.L.; Zhang, Y.; Deng, M.; Zhong, H.J.; Feng, T.T.; He, P.P.; Ouyang, X.P. miR-758-5p regulates cholesterol uptake via targeting the CD36 3′UTR. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 384-389. doi: 10.1016/j.bbrc.2017.09.150 PMID: 28965954
  163. Chen, T.; Huang, Z.; Wang, L.; Wang, Y.; Wu, F.; Meng, S.; Wang, C. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc. Res., 2009, 83(1), 131-139. doi: 10.1093/cvr/cvp121 PMID: 19377067
  164. Banerjee, S.; Cui, H.; Xie, N.; Tan, Z.; Yang, S.; Icyuz, M.; Thannickal, V.J.; Abraham, E.; Liu, G. miR-125a-5p regulates differential activation of macrophages and inflammation. J. Biol. Chem., 2013, 288(49), 35428-35436. doi: 10.1074/jbc.M112.426866 PMID: 24151079
  165. Yang, K.; He, Y.S.; Wang, X.Q.; Lu, L.; Chen, Q.J.; Liu, J.; Sun, Z.; Shen, W.F. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett., 2011, 585(6), 854-860. doi: 10.1016/j.febslet.2011.02.009 PMID: 21329689
  166. Zhang, M.; Wu, J.F.; Chen, W.J.; Tang, S.L.; Mo, Z.C.; Tang, Y.Y.; Li, Y.; Wang, J.L.; Liu, X.Y.; Peng, J.; Chen, K.; He, P.P.; Lv, Y.C.; Ouyang, X.P.; Yao, F.; Tang, D.P.; Cayabyab, F.S.; Zhang, D.W.; Zheng, X.L.; Tian, G.P.; Tang, C.K. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis, 2014, 234(1), 54-64. doi: 10.1016/j.atherosclerosis.2014.02.008 PMID: 24608080
  167. Xie, W.; Li, L.; Zhang, M.; Cheng, H.P.; Gong, D.; Lv, Y.C.; Yao, F.; He, P.P.; Ouyang, X.P.; Lan, G.; Liu, D.; Zhao, Z.W.; Tan, Y.L.; Zheng, X.L.; Yin, W.D.; Tang, C.K. MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS One, 2016, 11(6), e0157085. doi: 10.1371/journal.pone.0157085 PMID: 27257686
  168. Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Done, S.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis, 2015, 242(2), 595-604. doi: 10.1016/j.atherosclerosis.2015.08.023 PMID: 26318398
  169. Canfrán-Duque, A.; Lin, C.S.; Goedeke, L.; Suárez, Y.; Fernández-Hernando, C. Micro-RNAs and high-density lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol., 2016, 36(6), 1076-1084. doi: 10.1161/ATVBAHA.116.307028 PMID: 27079881
  170. Nishiga, M.; Horie, T.; Kuwabara, Y.; Nagao, K.; Baba, O.; Nakao, T.; Nishino, T.; Hakuno, D.; Nakashima, Y.; Nishi, H.; Nakazeki, F.; Ide, Y.; Koyama, S.; Kimura, M.; Hanada, R.; Nakamura, T.; Inada, T.; Hasegawa, K.; Conway, S.J.; Kita, T.; Kimura, T.; Ono, K. MicroRNA-33 controls adaptive fibrotic response in the remodeling heart by preserving lipid raft cholesterol. Circ. Res., 2017, 120(5), 835-847. doi: 10.1161/CIRCRESAHA.116.309528 PMID: 27920122
  171. Karunakaran, D.; Thrush, A.B.; Nguyen, M.A.; Richards, L.; Geoffrion, M.; Singaravelu, R.; Ramphos, E.; Shangari, P.; Ouimet, M.; Pezacki, J.P.; Moore, K.J.; Perisic, L.; Maegdefessel, L.; Hedin, U.; Harper, M.E.; Rayner, K.J. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-mir33 in atherosclerosis. Circ. Res., 2015, 117(3), 266-278. doi: 10.1161/CIRCRESAHA.117.305624 PMID: 26002865
  172. Ouimet, M.; Ediriweera, H.N.; Gundra, U.M.; Sheedy, F.J.; Ramkhelawon, B.; Hutchison, S.B.; Rinehold, K.; van Solingen, C.; Fullerton, M.D.; Cecchini, K.; Rayner, K.J.; Steinberg, G.R.; Zamore, P.D.; Fisher, E.A.; Loke, P.; Moore, K.J. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest., 2015, 125(12), 4334-4348. doi: 10.1172/JCI81676 PMID: 26517695
  173. Rayner, K.J.; Suárez, Y.; Dávalos, A.; Parathath, S.; Fitzgerald, M.L.; Tamehiro, N.; Fisher, E.A.; Moore, K.J.; Fernández-Hernando, C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010, 328(5985), 1570-1573. doi: 10.1126/science.1189862 PMID: 20466885
  174. Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; Fernandez-Hernando, C.; Fisher, E.A.; Moore, K.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest., 2011, 121(7), 2921-2931. doi: 10.1172/JCI57275 PMID: 21646721
  175. Goedeke, L.; Rotllan, N.; Canfrán-Duque, A.; Aranda, J.F.; Ramírez, C.M.; Araldi, E.; Lin, C.S.; Anderson, N.N.; Wagschal, A.; de Cabo, R.; Horton, J.D.; Lasunción, M.A.; Näär, A.M.; Suárez, Y.; Fernández-Hernando, C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med., 2015, 21(11), 1280-1289. doi: 10.1038/nm.3949 PMID: 26437365
  176. de Aguiar Vallim, T.Q.; Tarling, E.J.; Kim, T.; Civelek, M.; Baldán, Á.; Esau, C.; Edwards, P.A. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ. Res., 2013, 112(12), 1602-1612. doi: 10.1161/CIRCRESAHA.112.300648 PMID: 23519696
  177. Ramírez, C.M.; Goedeke, L.; Rotllan, N.; Yoon, J.H.; Cirera-Salinas, D.; Mattison, J.A.; Suárez, Y.; de Cabo, R.; Gorospe, M.; Fernández-Hernando, C. MicroRNA 33 regulates glucose metabolism. Mol. Cell. Biol., 2013, 33(15), 2891-2902. doi: 10.1128/MCB.00016-13 PMID: 23716591
  178. Ouimet, M.; Ediriweera, H.; Afonso, M.S.; Ramkhelawon, B.; Singaravelu, R.; Liao, X.; Bandler, R.C.; Rahman, K.; Fisher, E.A.; Rayner, K.J.; Pezacki, J.P.; Tabas, I.; Moore, K.J. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2017, 37(6), 1058-1067. doi: 10.1161/ATVBAHA.116.308916 PMID: 28428217
  179. Afonso, M.S.; Sharma, M.; Schlegel, M.; van Solingen, C.; Koelwyn, G.J.; Shanley, L.C.; Beckett, L.; Peled, D.; Rahman, K.; Giannarelli, C.; Li, H.; Brown, E.J.; Khodadadi-Jamayran, A.; Fisher, E.A.; Moore, K.J. miR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ. Res., 2021, 128(8), 1122-1138. doi: 10.1161/CIRCRESAHA.120.317914 PMID: 33593073
  180. Zhang, X.; Rotllan, N.; Canfrán-Duque, A.; Sun, J.; Toczek, J.; Moshnikova, A. Targeted suppression of miRNA-33 using pHLIP improves atherosclerosis regression. Circ Res., 2022, 131(11), 77-90. doi: 10.1161/CIRCRESAHA.121.320296
  181. Canfrán-Duque, A.; Ramírez, C.M.; Goedeke, L.; Lin, C.S.; Fernández-Hernando, C. microRNAs and HDL life cycle. Cardiovasc. Res., 2014, 103(3), 414-422. doi: 10.1093/cvr/cvu140 PMID: 24895349
  182. Najafi-Shoushtari, S.H.; Kristo, F.; Li, Y.; Shioda, T.; Cohen, D.E.; Gerszten, R.E.; Näär, A.M. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 2010, 328(5985), 1566-1569. doi: 10.1126/science.1189123 PMID: 20466882
  183. Marquart, T.J.; Allen, R.M.; Ory, D.S.; Baldán, Á. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci., 2010, 107(27), 12228-12232. doi: 10.1073/pnas.1005191107 PMID: 20566875
  184. Sidorkiewicz, M. Is microRNA-33 an appropriate target in the treatment of atherosclerosis? Nutrients, 2023, 15(4), 902. doi: 10.3390/nu15040902 PMID: 36839260
  185. Horie, T.; Baba, O.; Kuwabara, Y.; Chujo, Y.; Watanabe, S.; Kinoshita, M.; Horiguchi, M.; Nakamura, T.; Chonabayashi, K.; Hishizawa, M.; Hasegawa, K.; Kume, N.; Yokode, M.; Kita, T.; Kimura, T.; Ono, K. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc., 2012, 1(6), e003376. doi: 10.1161/JAHA.112.003376 PMID: 23316322
  186. Ramírez, C.M.; Rotllan, N.; Vlassov, A.V.; Dávalos, A.; Li, M.; Goedeke, L.; Aranda, J.F.; Cirera-Salinas, D.; Araldi, E.; Salerno, A.; Wanschel, A.; Zavadil, J.; Castrillo, A.; Kim, J.; Suárez, Y.; Fernández-Hernando, C. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ. Res., 2013, 112(12), 1592-1601. doi: 10.1161/CIRCRESAHA.112.300626 PMID: 23519695
  187. Tabet, F.; Vickers, K.C.; Cuesta Torres, L.F.; Wiese, C.B.; Shoucri, B.M.; Lambert, G.; Catherinet, C.; Prado-Lourenco, L.; Levin, M.G.; Thacker, S.; Sethupathy, P.; Barter, P.J.; Remaley, A.T.; Rye, K.A. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun., 2014, 5(1), 3292. doi: 10.1038/ncomms4292 PMID: 24576947
  188. Rossi-Herring, G.; Belmonte, T.; Rivas-Urbina, A.; Benítez, S.; Rotllan, N.; Crespo, J.; Llorente-Cortés, V.; Sánchez-Quesada, J.L.; de Gonzalo-Calvo, D. Circulating lipoprotein-carried miRNome analysis reveals novel VLDL-enriched microRNAs that strongly correlate with the HDL-microRNA profile. Biomed. Pharmacother., 2023, 162, 114623. doi: 10.1016/j.biopha.2023.114623 PMID: 37023624
  189. Zhang, X.; Price, N.L.; Fernández-Hernando, C. Non-coding RNAs in lipid metabolism. Vascul. Pharmacol., 2019, 114, 93-102. doi: 10.1016/j.vph.2018.06.011 PMID: 29929012
  190. Tsai, W.C.; Hsu, S.D.; Hsu, C.S.; Lai, T.C.; Chen, S.J.; Shen, R.; Huang, Y.; Chen, H.C.; Lee, C.H.; Tsai, T.F.; Hsu, M.T.; Wu, J.C.; Huang, H.D.; Shiao, M.S.; Hsiao, M.; Tsou, A.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest., 2012, 122(8), 2884-2897. doi: 10.1172/JCI63455 PMID: 22820290
  191. Agbu, P.; Carthew, R.W. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat. Rev. Mol. Cell Biol., 2021, 22(6), 425-438. doi: 10.1038/s41580-021-00354-w PMID: 33772227
  192. Naeli, P.; Mirzadeh Azad, F.; Malakootian, M.; Seidah, N.G.; Mowla, S.J. Post-transcriptional regulation of PCSK9 by miR-191, miR-222, and miR-224. Front. Genet., 2017, 8, 189. doi: 10.3389/fgene.2017.00189 PMID: 29230236
  193. Bai, J.; Na, H.; Hua, X.; Wei, Y.; Ye, T.; Zhang, Y.; Jian, G.; Zeng, W.; Yan, L.; Tang, Q. A retrospective study of NENs and miR-224 promotes apoptosis of BON-1 cells by targeting PCSK9 inhibition. Oncotarget, 2017, 8(4), 6929-6939. doi: 10.18632/oncotarget.14322 PMID: 28036293
  194. Salerno, A.G.; van Solingen, C.; Scotti, E.; Wanschel, A.C.B.A.; Afonso, M.S.; Oldebeken, S.R.; Spiro, W.; Tontonoz, P.; Rayner, K.J.; Moore, K.J. LDL receptor pathway regulation by miR-224 and miR-520d. Front. Cardiovasc. Med., 2020, 7, 81. doi: 10.3389/fcvm.2020.00081 PMID: 32528976
  195. Chandra, A.; Sharma, K.; Pratap, K.; Singh, V.; Saini, N. Inhibition of microRNA-128-3p attenuates hypercholesterolemia in mouse model. Life Sci., 2021, 264, 118633. doi: 10.1016/j.lfs.2020.118633 PMID: 33190783
  196. Wang, N.; He, L. MicroRNA-148a regulates low-density lipoprotein metabolism by repressing the (pro)renin receptor. PLoS One, 2020, 15(5), e0225356. doi: 10.1371/journal.pone.0225356
  197. Shibata, C.; Kishikawa, T.; Otsuka, M.; Ohno, M.; Yoshikawa, T.; Takata, A.; Yoshida, H.; Koike, K. Inhibition of microRNA122 decreases SREBP1 expression by modulating suppressor of cytokine signaling 3 expression. Biochem. Biophys. Res. Commun., 2013, 438(1), 230-235. doi: 10.1016/j.bbrc.2013.07.064 PMID: 23891753
  198. Menon, B.; Gulappa, T.; Menon, K.M.J. miR-122 regulates LH receptor expression by activating sterol response element binding protein in rat ovaries. Endocrinology, 2015, 156(9), 3370-3380. doi: 10.1210/en.2015-1121 PMID: 26125464
  199. Irani, S.; Pan, X.; Peck, B.C.E.; Iqbal, J.; Sethupathy, P.; Hussain, M.M. MicroRNA-30c mimic mitigates hypercholesterolemia and atherosclerosis in mice. J. Biol. Chem., 2016, 291(35), 18397-18409. doi: 10.1074/jbc.M116.728451 PMID: 27365390
  200. Li, X.; Feng, S.; Luo, Y.; Long, K.; Lin, Z.; Ma, J.; Jiang, A.; Jin, L.; Tang, Q.; Li, M.; Wang, X. Expression profiles of microRNAs in oxidized low-density lipoprotein-stimulated RAW 264.7 cells. In vitro Cell. Dev. Biol. Anim., 2018, 54(2), 99-110. doi: 10.1007/s11626-017-0225-3 PMID: 29322359
  201. Ataei, S.; Ganjali, S.; Banach, M.; Karimi, E.; Sahebkar, A. The effect of PCSK9 immunization on the hepatic level of microRNAs associated with PCSK9/LDLR pathway. Arch. Med. Sci., 2022, 19(1), 203-208. doi: 10.5114/aoms/152000 PMID: 36817686
  202. van Solingen, C.; Oldebeken, S.R.; Salerno, A.G.; Wanschel, A.C.B.A.; Moore, K.J. High-throughput screening identifies MicroRNAs regulating human PCSK9 and hepatic low-density lipoprotein receptor expression. Front. Cardiovasc. Med., 2021, 8, 667298. doi: 10.3389/fcvm.2021.667298 PMID: 34322524
  203. Los, B.; Borges, J.B.; Oliveira, V.F.; Freitas, R.C.C.; Dagli-Hernandez, C.; Bortolin, R.H.; Gonçalves, R.M.; Faludi, A.A.; Rodrigues, A.C.; Bastos, G.M.; Jannes, C.E.; Pereira, A.C.; Hirata, R.D.C.; Hirata, M.H. Functional analysis of PCSK9 3′UTR variants and mRNA–miRNA interactions in patients with familial hypercholesterolemia. Epigenomics, 2021, 13(10), 779-791. doi: 10.2217/epi-2020-0462 PMID: 33899508
  204. Gupta, N.; Fisker, N.; Asselin, M.C.; Lindholm, M.; Rosenbohm, C.; Ørum, H.; Elmén, J.; Seidah, N.G.; Straarup, E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One, 2010, 5(5), e10682. doi: 10.1371/journal.pone.0010682 PMID: 20498851
  205. Dong, B.; Li, H.; Singh, A.B.; Cao, A.; Liu, J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J. Biol. Chem., 2015, 290(7), 4047-4058. doi: 10.1074/jbc.M114.597229 PMID: 25540198
  206. Ni, Y.G.; Di Marco, S.; Condra, J.H.; Peterson, L.B.; Wang, W.; Wang, F.; Pandit, S.; Hammond, H.A.; Rosa, R.; Cummings, R.T.; Wood, D.D.; Liu, X.; Bottomley, M.J.; Shen, X.; Cubbon, R.M.; Wang, S.; Johns, D.G.; Volpari, C.; Hamuro, L.; Chin, J.; Huang, L.; Zhao, J.Z.; Vitelli, S.; Haytko, P.; Wisniewski, D.; Mitnaul, L.J.; Sparrow, C.P.; Hubbard, B.; Carfí, A.; Sitlani, A. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J. Lipid Res., 2011, 52(1), 78-86. doi: 10.1194/jlr.M011445 PMID: 20959675
  207. Banerjee, Y.; Santos, R.D.; Al-Rasadi, K.; Rizzo, M. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns? Atherosclerosis, 2016, 248, 62-75. doi: 10.1016/j.atherosclerosis.2016.02.018 PMID: 26987067
  208. Chan, J.C.Y.; Piper, D.E.; Cao, Q.; Liu, D.; King, C.; Wang, W.; Tang, J.; Liu, Q.; Higbee, J.; Xia, Z.; Di, Y.; Shetterly, S.; Arimura, Z.; Salomonis, H.; Romanow, W.G.; Thibault, S.T.; Zhang, R.; Cao, P.; Yang, X.P.; Yu, T.; Lu, M.; Retter, M.W.; Kwon, G.; Henne, K.; Pan, O.; Tsai, M.M.; Fuchslocher, B.; Yang, E.; Zhou, L.; Lee, K.J.; Daris, M.; Sheng, J.; Wang, Y.; Shen, W.D.; Yeh, W.C.; Emery, M.; Walker, N.P.C.; Shan, B.; Schwarz, M.; Jackson, S.M. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl. Acad. Sci., 2009, 106(24), 9820-9825. doi: 10.1073/pnas.0903849106 PMID: 19443683
  209. Stein, E.A.; Mellis, S.; Yancopoulos, G.D.; Stahl, N.; Logan, D.; Smith, W.B.; Lisbon, E.; Gutierrez, M.; Webb, C.; Wu, R.; Du, Y.; Kranz, T.; Gasparino, E.; Swergold, G.D. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med., 2012, 366(12), 1108-1118. doi: 10.1056/NEJMoa1105803 PMID: 22435370
  210. Liang, H.; Chaparro-Riggers, J.; Strop, P.; Geng, T.; Sutton, J.E.; Tsai, D.; Bai, L.; Abdiche, Y.; Dilley, J.; Yu, J.; Wu, S.; Chin, S.M.; Lee, N.A.; Rossi, A.; Lin, J.C.; Rajpal, A.; Pons, J.; Shelton, D.L. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J. Pharmacol. Exp. Ther., 2012, 340(2), 228-236. doi: 10.1124/jpet.111.187419 PMID: 22019884
  211. Park, S.W.; Moon, Y.A.; Horton, J.D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem., 2004, 279(48), 50630-50638. doi: 10.1074/jbc.M410077200 PMID: 15385538
  212. Mayer, G.; Poirier, S.; Seidah, N.G. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J. Biol. Chem., 2008, 283(46), 31791-31801. doi: 10.1074/jbc.M805971200 PMID: 18799458
  213. Gouni-Berthold, I.; Berthold, H.K. Antisense oligonucleotides for the treatment of dyslipidemia. Curr. Pharm. Des., 2011, 17(9), 950-960. doi: 10.2174/138161211795428830 PMID: 21418033
  214. Frank-Kamenetsky, M.; Grefhorst, A.; Anderson, N.N.; Racie, T.S.; Bramlage, B.; Akinc, A.; Butler, D.; Charisse, K.; Dorkin, R.; Fan, Y.; Gamba-Vitalo, C.; Hadwiger, P.; Jayaraman, M.; John, M.; Jayaprakash, K.N.; Maier, M.; Nechev, L.; Rajeev, K.G.; Read, T.; Röhl, I.; Soutschek, J.; Tan, P.; Wong, J.; Wang, G.; Zimmermann, T.; de Fougerolles, A.; Vornlocher, H.P.; Langer, R.; Anderson, D.G.; Manoharan, M.; Koteliansky, V.; Horton, J.D.; Fitzgerald, K. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci., 2008, 105(33), 11915-11920. doi: 10.1073/pnas.0805434105 PMID: 18695239
  215. Ni, Y.G.; Condra, J.H.; Orsatti, L.; Shen, X.; Di Marco, S.; Pandit, S.; Bottomley, M.J.; Ruggeri, L.; Cummings, R.T.; Cubbon, R.M.; Santoro, J.C.; Ehrhardt, A.; Lewis, D.; Fisher, T.S.; Ha, S.; Njimoluh, L.; Wood, D.D.; Hammond, H.A.; Wisniewski, D.; Volpari, C.; Noto, A.; Lo Surdo, P.; Hubbard, B.; Carfí, A.; Sitlani, A. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J. Biol. Chem., 2010, 285(17), 12882-12891. doi: 10.1074/jbc.M110.113035 PMID: 20172854
  216. Akram, O.N.; Bernier, A.; Petrides, F.; Wong, G.; Lambert, G. Beyond LDL cholesterol, a new role for PCSK9. Arterioscler. Thromb. Vasc. Biol., 2010, 30(7), 1279-1281. doi: 10.1161/ATVBAHA.110.209007 PMID: 20554949
  217. Squizzato, A.; Suter, M.B.; Nerone, M.; Giugliano, R.P.; Dentali, F.; Maresca, A.M.; Campiotti, L.; Grandi, A.M.; Guasti, L. PCSK9 inhibitors for treating dyslipidemia in patients at different cardiovascular risk: A systematic review and a meta-analysis. Intern. Emerg. Med., 2017, 12(7), 1043-1053. doi: 10.1007/s11739-017-1708-7 PMID: 28695455
  218. Banach, M.; Penson, P.E.; Vrablik, M.; Bunc, M.; Dyrbus, K.; Fedacko, J.; Gaita, D.; Gierlotka, M.; Jarai, Z.; Magda, S.L.; Margetic, E.; Margoczy, R.; Durak-Nalbantic, A.; Ostadal, P.; Pella, D.; Trbusic, M.; Udroiu, C.A.; Vlachopoulos, C.; Vulic, D.; Fras, Z.; Dudek, D.; Reiner, Ž. Optimal use of lipid-lowering therapy after acute coronary syndromes: A Position Paper endorsed by the International Lipid Expert Panel (ILEP). Pharmacol. Res., 2021, 166, 105499. doi: 10.1016/j.phrs.2021.105499 PMID: 33607265
  219. Rallidis, L.S.; Skoumas, I.; Liberopoulos, E.N.; Vlachopoulos, C.; Kiouri, E.; Koutagiar, I.; Anastasiou, G.; Kosmas, N.; Elisaf, M.S.; Tousoulis, D.; Iliodromitis, E. PCSK9 inhibitors in clinical practice: Novel directions and new experiences. Hellenic J. Cardiol., 2020, 61(4), 241-245. doi: 10.1016/j.hjc.2019.10.003 PMID: 31783124
  220. Han, Y.; Chen, J.; Chopra, V.K.; Zhang, S.; Su, G.; Ma, C.; Huang, Z.; Ma, Y.; Yao, Z.; Yuan, Z.; Zhao, Q.; Kuanprasert, S.; Baccara-Dinet, M.T.; Manvelian, G.; Li, J.; Chen, R. ODYSSEY EAST: Alirocumab efficacy and safety vs ezetimibe in high cardiovascular risk patients with hypercholesterolemia and on maximally tolerated statin in China, India, and Thailand. J. Clin. Lipidol., 2020, 14(1), 98-108.e8. doi: 10.1016/j.jacl.2019.10.015 PMID: 31882376
  221. Cho, L.; Dent, R.; Stroes, E.S.G.; Stein, E.A.; Sullivan, D.; Ruzza, A.; Flower, A.; Somaratne, R.; Rosenson, R.S. Persistent safety and efficacy of evolocumab in patients with statin intolerance: A subset analysis of the OSLER open-label extension studies. Cardiovasc. Drugs Ther., 2018, 32(4), 365-372. doi: 10.1007/s10557-018-6817-7 PMID: 30073585
  222. Watts, G.F.; Chan, D.C.; Dent, R.; Somaratne, R.; Wasserman, S.M.; Scott, R.; Burrows, S.; R Barrett, P.H. Factorial effects of evolocumab and atorvastatin on lipoprotein metabolism. Circulation, 2017, 135(4), 338-351. doi: 10.1161/CIRCULATIONAHA.116.025080 PMID: 27941065
  223. Rane, P. B.; Patel, J.; Harrison, D. J.; Shepherd, J.; Leith, A.; Bailey, H.; Piercy, J. Patient characteristics and real-world treatment patterns among early users of PCSK9 inhibitors. Am. J. Cardiovasc. Drugs., 2018, 18(2), 103-108. doi: 10.1007/s40256-017-0246-z
  224. Arrieta, A.; Hong, J.C.; Khera, R.; Virani, S.S.; Krumholz, H.M.; Nasir, K. Updated cost-effectiveness assessments of PCSK9 inhibitors from the perspectives of the health system and private payers. JAMA Cardiol., 2017, 2(12), 1369-1374. doi: 10.1001/jamacardio.2017.3655 PMID: 29049467
  225. Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; Bruckert, E.; Cho, L.; Dent, R.; Knusel, B.; Xue, A.; Scott, R.; Wasserman, S.M.; Rocco, M. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol., 2014, 63(23), 2541-2548. doi: 10.1016/j.jacc.2014.03.019 PMID: 24694531
  226. Koba, S.; Inoue, I.; Cyrille, M.; Lu, C.; Inomata, H.; Shimauchi, J.; Kajinami, K. Evolocumab vs. ezetimibe in statin-intolerant hyperlipidemic Japanese patients: Phase 3 GAUSS-4 trial. J. Atheroscler. Thromb., 2020, 27(5), 471-484. doi: 10.5551/jat.50963 PMID: 31748467
  227. Nissen, S.E.; Stroes, E.; Dent-Acosta, R.E.; Rosenson, R.S.; Lehman, S.J.; Sattar, N.; Preiss, D.; Bruckert, E.; Ceška, R.; Lepor, N.; Ballantyne, C.M.; Gouni-Berthold, I.; Elliott, M.; Brennan, D.M.; Wasserman, S.M.; Somaratne, R.; Scott, R.; Stein, E.A. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance. JAMA, 2016, 315(15), 1580-1590. doi: 10.1001/jama.2016.3608 PMID: 27039291
  228. Moriarty, P.M.; Thompson, P.D.; Cannon, C.P.; Guyton, J.R.; Bergeron, J.; Zieve, F.J.; Bruckert, E.; Jacobson, T.A.; Kopecky, S.L.; Baccara-Dinet, M.T.; Du, Y.; Pordy, R.; Gipe, D.A. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J. Clin. Lipidol., 2015, 9(6), 758-769. doi: 10.1016/j.jacl.2015.08.006 PMID: 26687696
  229. Raal, F.J.; Honarpour, N.; Blom, D.J.; Hovingh, G.K.; Xu, F.; Scott, R.; Wasserman, S.M.; Stein, E.A. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): A randomised, double-blind, placebo-controlled trial. Lancet, 2015, 385(9965), 341-350. doi: 10.1016/S0140-6736(14)61374-X PMID: 25282520
  230. Kastelein, J.J.P.; Ginsberg, H.N.; Langslet, G.; Hovingh, G.K.; Ceska, R.; Dufour, R.; Blom, D.; Civeira, F.; Krempf, M.; Lorenzato, C.; Zhao, J.; Pordy, R.; Baccara-Dinet, M.T.; Gipe, D.A.; Geiger, M.J.; Farnier, M. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur. Heart J., 2015, 36(43), ehv370. doi: 10.1093/eurheartj/ehv370 PMID: 26330422
  231. Cupido, A.J.; Reeskamp, L.F.; Kastelein, J.J.P. Novel lipid modifying drugs to lower LDL cholesterol. Curr. Opin. Lipidol., 2017, 28(4), 367-373. doi: 10.1097/MOL.0000000000000428 PMID: 28445176
  232. Fitzgerald, K.; Frank-Kamenetsky, M.; Shulga-Morskaya, S.; Liebow, A.; Bettencourt, B.R.; Sutherland, J.E.; Hutabarat, R.M.; Clausen, V.A.; Karsten, V.; Cehelsky, J.; Nochur, S.V.; Kotelianski, V.; Horton, J.; Mant, T.; Chiesa, J.; Ritter, J.; Munisamy, M.; Vaishnaw, A.K.; Gollob, J.A.; Simon, A. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: A randomised, single-blind, placebo-controlled, phase 1 trial. Lancet, 2014, 383(9911), 60-68. doi: 10.1016/S0140-6736(13)61914-5 PMID: 24094767
  233. Sahebkar, A.; Watts, G.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: What can the clinician expect? Cardiovasc. Drugs Ther., 2013, 27(6), 559-567. doi: 10.1007/s10557-013-6479-4 PMID: 23913122
  234. Gaudet, D.; Kereiakes, D.J.; McKenney, J.M.; Roth, E.M.; Hanotin, C.; Gipe, D.; Du, Y.; Ferrand, A.C.; Ginsberg, H.N.; Stein, E.A. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am. J. Cardiol., 2014, 114(5), 711-715. doi: 10.1016/j.amjcard.2014.05.060 PMID: 25060413
  235. Momtazi, A.A.; Banach, M.; Pirro, M.; Stein, E.A.; Sahebkar, A. PCSK9 and diabetes: Is there a link? Drug Discov. Today, 2017, 22(6), 883-895. doi: 10.1016/j.drudis.2017.01.006 PMID: 28111330
  236. Roth, E.M.; Taskinen, M.R.; Ginsberg, H.N.; Kastelein, J.J.P.; Colhoun, H.M.; Robinson, J.G.; Merlet, L.; Pordy, R.; Baccara-Dinet, M.T. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24week, double-blind, randomized Phase 3 trial. Int. J. Cardiol., 2014, 176(1), 55-61. doi: 10.1016/j.ijcard.2014.06.049 PMID: 25037695
  237. Ota, H.; Omori, H.; Kawasaki, M.; Hirakawa, A.; Matsuo, H. Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: A near-infrared spectroscopy study. Eur. Heart J. Cardiovasc. Imaging, 2022, 23(2), 217-228. doi: 10.1093/ehjci/jeab034 PMID: 33637979
  238. Wu, Z.; Gao, L.; Lin, Z. Can proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors regress coronary atherosclerotic plaque? A systematic review and meta-analysis. Am. J. Transl. Res., 2023, 15(1), 452-465. PMID: 36777825
  239. Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; Wasserman, S.M.; Scott, R.; Ungi, I.; Podolec, J.; Ophuis, A.O.; Cornel, J.H.; Borgman, M.; Brennan, D.M.; Nissen, S.E. Effect of evolocumab on progression of coronary disease in statin-treated patients. JAMA, 2016, 316(22), 2373-2384. doi: 10.1001/jama.2016.16951 PMID: 27846344
  240. Koren, M.J.; Sabatine, M.S.; Giugliano, R.P.; Langslet, G.; Wiviott, S.D.; Kassahun, H.; Ruzza, A.; Ma, Y.; Somaratne, R.; Raal, F.J. Long-term low-density lipoprotein cholesterol–lowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolemia. JAMA Cardiol., 2017, 2(6), 598-607. doi: 10.1001/jamacardio.2017.0747 PMID: 28291870
  241. Durairaj, A.; Sabates, A.; Nieves, J.; Moraes, B.; Baum, S. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and its inhibitors: A review of physiology, biology, and clinical data. Curr. Treat. Options Cardiovasc. Med., 2017, 19(8), 58. doi: 10.1007/s11936-017-0556-0 PMID: 28639183
  242. Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.T.; Turner, T.; Visseren, F.L.J.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J.P. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440. doi: 10.1056/NEJMoa1615758 PMID: 28306389
  243. Turgeon, R.D.; Tsuyuki, R.T.; Gyenes, G.T.; Pearson, G.J. Cardiovascular efficacy and safety of PCSK9 inhibitors: Systematic review and meta-analysis including the ODYSSEY outcomes trial. Can. J. Cardiol., 2018, 34(12), 1600-1605. doi: 10.1016/j.cjca.2018.04.002 PMID: 30527147
  244. Tavori, H.; Giunzioni, I.; Fazio, S. PCSK9 inhibition to reduce cardiovascular disease risk. Curr. Opin. Endocrinol. Diabetes Obes., 2015, 22(2), 126-132. doi: 10.1097/MED.0000000000000137 PMID: 25692926
  245. Rallidis, L.S.; Fountoulaki, K.; Anastasiou-Nana, M. Managing the underestimated risk of statin-associated myopathy. Int. J. Cardiol., 2012, 159(3), 169-176. doi: 10.1016/j.ijcard.2011.07.048 PMID: 21813193
  246. Trpkovic, A.; Stanimirovic, J.; Rizzo, M.; Resanovic, I.; Soskic, S.; Jevremovic, D.; Isenovic, E.R. High-sensitivity C-reactive protein and statin initiation. Angiology, 2015, 66(6), 503-507. doi: 10.1177/0003319714543000 PMID: 25053677
  247. Jellinger, P. S.; Handelsman, Y.; Rosenblit, P. D.; Bloomgarden, Z. T.; Fonseca, V. A.; Garber, A. J.; Grunberger, G.; Guerin, C. K.; Bell, D. S. H.; Mechanick, J. I. American association of clinical endocrinologists and american college of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr. Pract., 2017, 23(S2), 1-87. doi: 10.4158/EP171764.APPGL
  248. Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M.R.; Tokgozoglu, L.; Wiklund, O.; Mueller, C.; Drexel, H.; Aboyans, V.; Corsini, A.; Doehner, W.; Farnier, M.; Gigante, B.; Kayikcioglu, M.; Krstacic, G.; Lambrinou, E.; Lewis, B.S.; Masip, J.; Moulin, P.; Petersen, S.; Petronio, A.S.; Piepoli, M.F.; Pintó, X.; Räber, L.; Ray, K.K.; Reiner, Ž.; Riesen, W.F.; Roffi, M.; Schmid, J-P.; Shlyakhto, E.; Simpson, I.A.; Stroes, E.; Sudano, I.; Tselepis, A.D.; Viigimaa, M.; Vindis, C.; Vonbank, A.; Vrablik, M.; Vrsalovic, M.; Zamorano, J.L.; Collet, J-P.; Koskinas, K.C.; Casula, M.; Badimon, L.; John Chapman, M.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Nibouche, D.; Zelveian, P.H.; Siostrzonek, P.; Najafov, R.; van de Borne, P.; Pojskic, B.; Postadzhiyan, A.; Kypris, L.; Špinar, J.; Larsen, M.L.; Eldin, H.S.; Viigimaa, M.; Strandberg, T.E.; Ferrières, J.; Agladze, R.; Laufs, U.; Rallidis, L.; Bajnok, L.; Gudjónsson, T.; Maher, V.; Henkin, Y.; Gulizia, M.M.; Mussagaliyeva, A.; Bajraktari, G.; Kerimkulova, A.; Latkovskis, G.; Hamoui, O.; Slapikas, R.; Visser, L.; Dingli, P.; Ivanov, V.; Boskovic, A.; Nazzi, M.; Visseren, F.; Mitevska, I.; Retterstøl, K.; Jankowski, P.; Fontes-Carvalho, R.; Gaita, D.; Ezhov, M.; Foscoli, M.; Giga, V.; Pella, D.; Fras, Z.; de Isla, L.P.; Hagström, E.; Lehmann, R.; Abid, L.; Ozdogan, O.; Mitchenko, O.; Patel, R.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188. doi: 10.1093/eurheartj/ehz455 PMID: 31504418
  249. Avis, H.J.; Hutten, B.A.; Gagné, C.; Langslet, G.; McCrindle, B.W.; Wiegman, A.; Hsia, J.; Kastelein, J.J.P.; Stein, E.A. Efficacy and safety of rosuvastatin therapy for children with familial hypercholesterolemia. J. Am. Coll. Cardiol., 2010, 55(11), 1121-1126. doi: 10.1016/j.jacc.2009.10.042 PMID: 20223367
  250. Zhang, X.L.; Zhu, Q.Q.; Zhu, L.; Chen, J.Z.; Chen, Q.H.; Li, G.N.; Xie, J.; Kang, L.N.; Xu, B. Safety and efficacy of anti-PCSK9 antibodies: A meta-analysis of 25 randomized, controlled trials. BMC Med., 2015, 13(1), 123. doi: 10.1186/s12916-015-0358-8 PMID: 26099511
  251. Nishikido, T. Clinical potential of inclisiran for patients with a high risk of atherosclerotic cardiovascular disease. Cardiovasc. Diabetol., 2023, 22(1), 20. doi: 10.1186/s12933-023-01752-4 PMID: 36717882
  252. Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; Kastelein, J.J.P. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med., 2020, 382(16), 1507-1519. doi: 10.1056/NEJMoa1912387 PMID: 32187462
  253. Casula, M.; Olmastroni, E.; Boccalari, M.T.; Tragni, E.; Pirillo, A.; Catapano, A.L. Cardiovascular events with PCSK9 inhibitors: An updated meta-analysis of randomised controlled trials. Pharmacol. Res., 2019, 143, 143-150. doi: 10.1016/j.phrs.2019.03.021 PMID: 30926528
  254. Gouni-Berthold, I.; Descamps, O. S.; Fraass, U.; Hartfield, E.; Allcott, K. Systematic review of published phase 3 data on anti-PCSK9 monoclonal antibodies in patients with hypercholesterolaemia. Br. J. Clin. Pharmacol., 2016, 82(6), 1412-1443. doi: 10.1111/bcp.13066
  255. Karatasakis, A.; Danek, B.A.; Karacsonyi, J.; Rangan, B.V.; Roesle, M.K.; Knickelbine, T.; Miedema, M.D.; Khalili, H.; Ahmad, Z.; Abdullah, S.; Banerjee, S.; Brilakis, E.S. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: A meta-analysis of 35 randomized controlled trials. J. Am. Heart Assoc., 2017, 6(12), e006910. doi: 10.1161/JAHA.117.006910 PMID: 29223954
  256. AlTurki, A.; Marafi, M.; Dawas, A.; Dube, M.P.; Vieira, L.; Sherman, M.H.; Gregoire, J.; Thanassoulis, G.; Tardif, J.C.; Huynh, T. Meta-analysis of randomized controlled trials assessing the impact of proprotein convertase subtilisin/kexin type 9 antibodies on mortality and cardiovascular outcomes. Am. J. Cardiol., 2019, 124(12), 1869-1875. doi: 10.1016/j.amjcard.2019.09.011 PMID: 31679643
  257. Choi, H.D.; Kim, J.H. An updated meta-analysis for safety evaluation of alirocumab and evolocumab as PCSK9 inhibitors. Cardiovasc. Ther., 2023, 2023, 1-11. doi: 10.1155/2023/7362551 PMID: 36704607
  258. Bielecka-Dabrowa, A.; Mikhailidis, D.P.; Hannam, S.; Aronow, W.S.; Rysz, J.; Banach, M. Statins and dilated cardiomyopathy: Do we have enough data? Expert Opin. Investig. Drugs, 2011, 20(3), 315-323. doi: 10.1517/13543784.2011.550570 PMID: 21210757
  259. Wierzbicki, A.S.; Hardman, T.C.; Viljoen, A. Inhibition of pro-protein convertase subtilisin kexin 9 corrected (PCSK-9) as a treatment for hyperlipidaemia. Expert Opin. Investig. Drugs, 2012, 21(5), 667-676. doi: 10.1517/13543784.2012.679340 PMID: 22493980
  260. Lambert, G.; Charlton, F.; Rye, K.A.; Piper, D.E. Molecular basis of PCSK9 function. Atherosclerosis, 2009, 203(1), 1-7. doi: 10.1016/j.atherosclerosis.2008.06.010 PMID: 18649882
  261. Tibolla, G.; Norata, G.D.; Artali, R.; Meneghetti, F.; Catapano, A.L. Proprotein convertase subtilisin/kexin type 9 (PCSK9): From structure–function relation to therapeutic inhibition. Nutr. Metab. Cardiovasc. Dis., 2011, 21(11), 835-843. doi: 10.1016/j.numecd.2011.06.002 PMID: 21943799
  262. Qian, Y.W.; Schmidt, R.J.; Zhang, Y.; Chu, S.; Lin, A.; Wang, H.; Wang, X.; Beyer, T.P.; Bensch, W.R.; Li, W.; Ehsani, M.E.; Lu, D.; Konrad, R.J.; Eacho, P.I.; Moller, D.E.; Karathanasis, S.K.; Cao, G. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J. Lipid Res., 2007, 48(7), 1488-1498. doi: 10.1194/jlr.M700071-JLR200 PMID: 17449864
  263. Lagace, T.A.; Curtis, D.E.; Garuti, R.; McNutt, M.C.; Park, S.W.; Prather, H.B.; Anderson, N.N.; Ho, Y.K.; Hammer, R.E.; Horton, J.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice. J. Clin. Invest., 2006, 116(11), 2995-3005. doi: 10.1172/JCI29383 PMID: 17080197
  264. Nassoury, N.; Blasiole, D.A.; Tebon Oler, A.; Benjannet, S.; Hamelin, J.; Poupon, V.; McPherson, P.S.; Attie, A.D.; Prat, A.; Seidah, N.G. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic, 2007, 8(6), 718-732. doi: 10.1111/j.1600-0854.2007.00562.x PMID: 17461796
  265. Zhang, D.W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; McDonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612. doi: 10.1074/jbc.M702027200 PMID: 17452316
  266. Fisher, T.S.; Surdo, P.L.; Pandit, S.; Mattu, M.; Santoro, J.C.; Wisniewski, D.; Cummings, R.T.; Calzetta, A.; Cubbon, R.M.; Fischer, P.A.; Tarachandani, A.; De Francesco, R.; Wright, S.D.; Sparrow, C.P.; Carfi, A.; Sitlani, A. Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation. J. Biol. Chem., 2007, 282(28), 20502-20512. doi: 10.1074/jbc.M701634200 PMID: 17493938
  267. Alborn, W.E.; Cao, G.; Careskey, H.E.; Qian, Y.W.; Subramaniam, D.R.; Davies, J.; Conner, E.M.; Konrad, R.J. Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin. Chem., 2007, 53(10), 1814-1819. doi: 10.1373/clinchem.2007.091280 PMID: 17702855
  268. Cariou, B.; Le May, C.; Costet, P. Clinical aspects of PCSK9. Atherosclerosis, 2011, 216(2), 258-265. doi: 10.1016/j.atherosclerosis.2011.04.018 PMID: 21596380
  269. Sullivan, D.; Olsson, A.G.; Scott, R.; Kim, J.B.; Xue, A.; Gebski, V.; Wasserman, S.M.; Stein, E.A. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: The GAUSS randomized trial. JAMA, 2012, 308(23), 2497-2506. doi: 10.1001/jama.2012.25790 PMID: 23128163
  270. Troutt, J.S.; Alborn, W.E.; Cao, G.; Konrad, R.J. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J. Lipid Res., 2010, 51(2), 345-351. doi: 10.1194/jlr.M000620 PMID: 19738285
  271. Chernogubova, E.; Strawbridge, R.; Mahdessian, H.; Mälarstig, A.; Krapivner, S.; Gigante, B.; Hellénius, M.L.; de Faire, U.; Franco-Cereceda, A.; Syvänen, A.C.; Troutt, J.S.; Konrad, R.J.; Eriksson, P.; Hamsten, A.; van ’t Hooft, F.M. Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler. Thromb. Vasc. Biol., 2012, 32(6), 1526-1534. doi: 10.1161/ATVBAHA.111.240549 PMID: 22460556
  272. Basak, A.; Palmer-Smith, H.; Mishra, P. Proprotein convertase subtilisin kexin9 (PCSK9): A novel target for cholesterol regulation. Protein Pept. Lett., 2012, 19(6), 575-585. doi: 10.2174/092986612800494020 PMID: 22519528
  273. Levenson, A.E.; Shah, A.S.; Khoury, P.R.; Kimball, T.R.; Urbina, E.M.; de Ferranti, S.D.; Maahs, D.M.; Dolan, L.M.; Wadwa, R.P.; Biddinger, S.B. Obesity and type 2 diabetes are associated with elevated PCSK9 levels in young women. Pediatr. Diabetes, 2017, 18(8), 755-760. doi: 10.1111/pedi.12490 PMID: 28093849
  274. Xu, L.; Zhao, G.; Zhu, H.; Wang, S. Peroxisome proliferator-activated receptor-γ antagonizes LOX-1-mediated endothelial injury by transcriptional activation of miR-590-5p. PPAR Res., 2019, 2019, 2715176. doi: 10.1155/2019/2715176
  275. Jiang, H.; Fan, C.; Lu, Y.; Cui, X.; Liu, J. Astragaloside regulates lncRNA LOC100912373 and the miR-17-5p/PDK1 axis to inhibit the proliferation of fibroblast-like synoviocytes in rats with rheumatoid arthritis. Int. J. Mol. Med., 2021, 48(1), 130. doi: 10.3892/ijmm.2021.4963 PMID: 34013364
  276. Zhao, J.; Cui, L.; Sun, J.; Xie, Z.; Zhang, L.; Ding, Z.; Quan, X. Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell. Signal., 2020, 76, 109781. doi: 10.1016/j.cellsig.2020.109781 PMID: 32947021
  277. Ren, K.; Jiang, T.; Zhou, H. F.; Liang, Y.; Zhao, G. J. apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell Physiol. Biochem., 2018, 47(5), 2170-2184. doi: 10.1159/000491528
  278. Yuan, X.; Chen, J.; Dai, M. Paeonol promotes microRNA-126 expression to inhibit monocyte adhesion to ox-LDL-injured vascular endothelial cells and block the activation of the PI3K/Akt/NF-κB pathway. Int. J. Mol. Med., 2016, 38(6), 1871-1878. doi: 10.3892/ijmm.2016.2778 PMID: 27748840
  279. Bai, Y.; Liu, X.; Chen, Q.; Chen, T.; Jiang, N.; Guo, Z. Myricetin ameliorates ox-LDL-induced HUVECs apoptosis and inflammation via lncRNA GAS5 upregulating the expression of miR-29a-3p. Sci. Rep., 2021, 11(1), 19637. doi: 10.1038/s41598-021-98916-7 PMID: 34608195
  280. Abdollahi, E.; Keyhanfar, F.; Delbandi, A.A.; Falak, R.; Hajimiresmaiel, S.J.; Shafiei, M. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur. J. Pharmacol., 2022, 918, 174715. doi: 10.1016/j.ejphar.2021.174715 PMID: 35026193
  281. Cao, G.; Xuan, X.; Zhang, R.; Hu, J.; Dong, H. Gene therapy for cardiovascular disease: Basic research and clinical prospects. Front. Cardiovasc. Med., 2021, 8, 760140. doi: 10.3389/fcvm.2021.760140 PMID: 34805315
  282. Wu, Z.; Asokan, A.; Samulski, R. J. Adeno-associated virus serotypes: Vector toolkit for human gene therapy. Mol. Ther., 2006, 14(3), 316-27. doi: 10.1016/j.ymthe.2006.05.009
  283. Grieger, J.C.; Samulski, R.J. Packaging capacity of adeno-associated virus serotypes: Impact of larger genomes on infectivity and postentry steps. J. Virol., 2005, 79(15), 9933-9944. doi: 10.1128/JVI.79.15.9933-9944.2005 PMID: 16014954
  284. Dong, J.Y.; Fan, P.D.; Frizzell, R.A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther., 1996, 7(17), 2101-2112. doi: 10.1089/hum.1996.7.17-2101 PMID: 8934224
  285. Athanasopoulos, T.; Munye, M.M.; Yáñez-Muñoz, R.J. Nonintegrating gene therapy vectors. Hematol. Oncol. Clin. North Am., 2017, 31(5), 753-770. doi: 10.1016/j.hoc.2017.06.007 PMID: 28895845
  286. Zhen, S.; Li, X. Liposomal delivery of CRISPR/Cas9. Cancer Gene Ther., 2020, 27(7-8), 515-527. doi: 10.1038/s41417-019-0141-7 PMID: 31676843
  287. Qi, Y.; Song, H.; Xiao, H.; Cheng, G.; Yu, B.; Xu, F.J. Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids. Small, 2018, 14(42), 1803061. doi: 10.1002/smll.201803061 PMID: 30238691
  288. Zhang, X.; Xu, C.; Gao, S.; Li, P.; Kong, Y.; Li, T.; Li, Y.; Xu, F. J. CRISPR/Cas9 delivery mediated with hydroxyl-rich nanosystems for gene editing in aorta. Adv. Sci., 2019, 6(12), 1900386. doi: 10.1002/advs.201900386
  289. Charbe, N.B.; Lagos, C.F.; Ortiz, C.A.V.; Tambuwala, M.; Palakurthi, S.S.; Zacconi, F.C. PCSK9 conjugated liposomes for targeted delivery of paclitaxel to the cancer cell: A proof-of-concept study. Biomed. Pharmacother., 2022, 153, 113428. doi: 10.1016/j.biopha.2022.113428 PMID: 36076548
  290. Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet., 2022, 23(5), 265-280. doi: 10.1038/s41576-021-00439-4 PMID: 34983972
  291. Vartak, T.; Kumaresan, S.; Brennan, E. Decoding microRNA drivers in atherosclerosis. Biosci. Rep., 2022, 42(7), BSR20212355. doi: 10.1042/BSR20212355
  292. Segal, M.; Slack, F.J. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin. Drug Discov., 2020, 15(9), 987-991. doi: 10.1080/17460441.2020.1765770 PMID: 32421364
  293. Dosta, P.; Tamargo, I.; Ramos, V.; Kumar, S.; Kang, D. W.; Borrós, S. Delivery of anti-microRNA-712 to inflamed endothelial cells using poly(β-amino ester) nanoparticles conjugated with vcam-1 targeting peptide. Adv. Healthc. Mater., 2021, 10(15), e2001894. doi: 10.1002/adhm.202001894
  294. Kamaly, N.; Fredman, G.; Subramanian, M.; Gadde, S.; Pesic, A.; Cheung, L.; Fayad, Z.A.; Langer, R.; Tabas, I.; Cameron Farokhzad, O. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc. Natl. Acad. Sci., 2013, 110(16), 6506-6511. doi: 10.1073/pnas.1303377110 PMID: 23533277
  295. Kamaly, N.; Fredman, G.; Fojas, J.J.R.; Subramanian, M.; Choi, W.I.I.; Zepeda, K.; Vilos, C.; Yu, M.; Gadde, S.; Wu, J.; Milton, J.; Carvalho Leitao, R.; Rosa Fernandes, L.; Hasan, M.; Gao, H.; Nguyen, V.; Harris, J.; Tabas, I.; Farokhzad, O.C. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano, 2016, 10(5), 5280-5292. doi: 10.1021/acsnano.6b01114 PMID: 27100066
  296. Fredman, G.; Kamaly, N.; Spolitu, S.; Milton, J.; Ghorpade, D.; Chiasson, R.; Kuriakose, G.; Perretti, M.; Farokhzad, O.; Tabas, I. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med., 2015, 7(275), 275ra20. doi: 10.1126/scitranslmed.aaa1065 PMID: 25695999
  297. Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98. doi: 10.1016/j.cmet.2006.01.005 PMID: 16459310
  298. Yaman, S.O.; Orem, A.; Yucesan, F.B.; Kural, B.V.; Orem, C. Evaluation of circulating miR-122, miR-30c and miR-33a levels and their association with lipids, lipoproteins in postprandial lipemia. Life Sci., 2021, 264, 118585. doi: 10.1016/j.lfs.2020.118585 PMID: 33058914

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers