The Link between miRNAs and PCKS9 in Atherosclerosis
- Authors: Macvanin M.1, Gluvic Z.2, Klisic A.3, Manojlovic M.4, Suri J.5, Rizzo M.6, Isenovic E.7
-
Affiliations:
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine,, University of Belgrade
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro- Faculty of Medicine
- Faculty of Medicine Novi Sad,, University of Novi Sad
- Stroke Monitoring and Diagnostic Division Monitoring and Diagnostic Division, AtheroPoint
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia,, University of Belgrade
- Issue: Vol 31, No 42 (2024)
- Pages: 6926-6956
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjsvd.com/0929-8673/article/view/645150
- DOI: https://doi.org/10.2174/0109298673262124231102042914
- ID: 645150
Cite item
Full Text
Abstract
:Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
About the authors
Mirjana Macvanin
Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade
Author for correspondence.
Email: info@benthamscience.net
Zoran Gluvic
Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine,, University of Belgrade
Email: info@benthamscience.net
Aleksandra Klisic
Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro- Faculty of Medicine
Email: info@benthamscience.net
Mia Manojlovic
Faculty of Medicine Novi Sad,, University of Novi Sad
Email: info@benthamscience.net
Jasjit Suri
Stroke Monitoring and Diagnostic Division Monitoring and Diagnostic Division, AtheroPoint
Email: info@benthamscience.net
Manfredi Rizzo
Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo
Email: info@benthamscience.net
Esma Isenovic
Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia,, University of Belgrade
Email: info@benthamscience.net
References
- Rotllan, N. The underlying pathology of atherosclerosis: Different players. Int. J. Mol. Sci., 2022, 23(6), 3235. doi: 10.3390/ijms23063235 PMID: 35328656
- Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: recent developments. Cell, 2022, 185(10), 1630-1645. doi: 10.1016/j.cell.2022.04.004 PMID: 35504280
- Klisic, A.; Kavaric, N.; Vujcic, S.; Mihajlovic, M.; Zeljkovic, A.; Ivanisevic, J.; Spasojevic-Kalimanovska, V.; Ninic, A.; Kotur-Stevuljevic, J.; Vekic, J. Inverse association between serum endocan levels and small LDL and HDL particles in patients with type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(15), 8127-8135. doi: 10.26355/eurrev_202008_22499 PMID: 32767341
- Salekeen, R.; Haider, A. N.; Akhter, F.; Billah, M. M.; Islam, M. E.; Didarul Islam, K. M. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. Int. J. Cardiol. Cardiovasc. Risk Prev., 2022, 14, 200143. doi: 10.1016/j.ijcrp.2022.200143
- Shao, W.; Wang, S.; Wang, X.; Yao, L.; Yuan, X.; Huang, D.; Lv, B.; Ye, Y.; Xue, H. miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway. Aging, 2022, 14(5), 2418-2431. doi: 10.18632/aging.203951 PMID: 35288486
- Javadifar, A.; Rastgoo, S.; Banach, M.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs. Int. J. Mol. Sci., 2021, 22(5), 2529. doi: 10.3390/ijms22052529 PMID: 33802600
- Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metabolism, 2019, 92, 71-81. doi: 10.1016/j.metabol.2018.11.005 PMID: 30447223
- Khalifeh, M.; Santos, R.D.; Oskuee, R.K.; Badiee, A.; Aghaee-Bakhtiari, S.H.; Sahebkar, A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog. Lipid Res., 2023, 89, 101197. doi: 10.1016/j.plipres.2022.101197 PMID: 36400247
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther., 2022, 7(1), 131. doi: 10.1038/s41392-022-00955-7 PMID: 35459215
- Yurtseven, E.; Ural, D.; Baysal, K.; Tokgözoğlu, L. An update on the role of PCSK9 in atherosclerosis. J. Atheroscler. Thromb., 2020, 27(9), 909-918. doi: 10.5551/jat.55400 PMID: 32713931
- D'Ardes, D.; Santilli, F.; Guagnano, M. T.; Bucci, M.; Cipollone, F. From endothelium to lipids, through microRNAs and PCSK9: A fascinating travel across atherosclerosis. High Blood Press Cardiovasc. Prev., 2020, 27(>1), 1-8. doi: 10.1007/s40292-019-00356-y
- Ricci, C.; Ruscica, M. PCSK9 induces a pro-inflammatory response in macrophages. Sci. Rep., 2018, 8(1), 2267. doi: 10.1038/s41598-018-20425-x
- Ferri, N.; Tibolla, G.; Pirillo, A.; Cipollone, F.; Mezzetti, A.; Pacia, S.; Corsini, A.; Catapano, A.L. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis, 2012, 220(2), 381-386. doi: 10.1016/j.atherosclerosis.2011.11.026 PMID: 22176652
- Ference, B.A.; Robinson, J.G.; Brook, R.D.; Catapano, A.L.; Chapman, M.J.; Neff, D.R.; Voros, S.; Giugliano, R.P.; Davey Smith, G.; Fazio, S.; Sabatine, M.S. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med., 2016, 375(22), 2144-2153. doi: 10.1056/NEJMoa1604304 PMID: 27959767
- Khan, S.U.; Yedlapati, S.H.; Lone, A.N.; Hao, Q.; Guyatt, G.; Delvaux, N.; Bekkering, G.E.T.; Vandvik, P.O.; Riaz, I.B.; Li, S.; Aertgeerts, B.; Rodondi, N. PCSK9 inhibitors and ezetimibe with or without statin therapy for cardiovascular risk reduction: A systematic review and network meta-analysis. BMJ, 2022, 377, e069116. doi: 10.1136/bmj-2021-069116 PMID: 35508321
- Banerjee, Y.; Pantea Stoian, A.; Cicero, A. F. G. Inclisiran: A small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin. Drug Saf., 2022, 21(1), 9-20. doi: 10.1080/14740338.2022.1988568
- Maulucci, G.; Cipriani, F.; Russo, D.; Casavecchia, G.; Di Staso, C.; Di Martino, L.; Ruggiero, A.; Di Biase, M.; Brunetti, N.D. Improved endothelial function after short-term therapy with evolocumab. J. Clin. Lipidol., 2018, 12(3), 669-673. doi: 10.1016/j.jacl.2018.02.004 PMID: 29544724
- Cicero, A.F.G.; Toth, P.P.; Fogacci, F.; Virdis, A.; Borghi, C. Improvement in arterial stiffness after short-term treatment with PCSK9 inhibitors. Nutr. Metab. Cardiovasc. Dis., 2019, 29(5), 527-529. doi: 10.1016/j.numecd.2019.01.010 PMID: 30954414
- Klisic, A.; Radoman Vujacic, I.; Munjas, J.; Ninic, A.; Kotur-Stevuljevic, J. Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus - a review article. Arch. Med. Sci., 2022, 18(4), 870-880. doi: 10.5114/aoms/146796 PMID: 35832702
- Xiang, Y.; Mao, L.; Zuo, M. L.; Song, G. L.; Tan, L. M.; Yang, Z. B. The role of MicroRNAs in hyperlipidemia: From pathogenesis to therapeutical application. Mediators Inflamm., 2022, 2022, 3101900. doi: 10.1155/2022/3101900
- Giglio, R. V.; Nikolic, D.; Volti, G. L. Liraglutide increases serum levels of microRNA-27b, -130a and -210 in patients with type 2 diabetes mellitus: A novel epigenetic effect. Metabolites, 2020, 10(10), 391. doi: 10.3390/metabo10100391
- Signorelli, S.S.; Volsi, G.L.; Pitruzzella, A.; Fiore, V.; Mangiafico, M.; Vanella, L.; Parenti, R.; Rizzo, M.; Volti, G.L. Circulating miR-130a, miR-27b, and miR-210 in patients with peripheral artery disease and their potential relationship with oxidative stress. Angiology, 2016, 67(10), 945-950. doi: 10.1177/0003319716638242 PMID: 26980776
- Macvanin, M.T.; Zafirovic, S.; Obradovic, M.; Isenovic, E.R. Editorial: Non-coding RNA in diabetes and cardiovascular diseases. Front. Endocrinol., 2023, 14, 1149857. doi: 10.3389/fendo.2023.1149857 PMID: 36814579
- Macvanin, M.; Obradovic, M.; Zafirovic, S.; Stanimirovic, J.; Isenovic, E.R. The role of miRNAs in metabolic diseases. Curr. Med. Chem., 2023, 30(17), 1922-1944. doi: 10.2174/0929867329666220801161536 PMID: 35927902
- Macvanin, M.T.; Gluvic, Z.; Radovanovic, J.; Essack, M.; Gao, X.; Isenovic, E.R. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front. Endocrinol., 2023, 14, 1124613. doi: 10.3389/fendo.2023.1124613 PMID: 36950696
- Aryal, B.; Rotllan, N.; Fernández-Hernando, C. Noncoding RNAs and atherosclerosis. Curr. Atheroscler. Rep., 2014, 16(5), 407. doi: 10.1007/s11883-014-0407-3 PMID: 24623179
- Jackson, A.O.; Regine, M.A.; Subrata, C.; Long, S. Molecular mechanisms and genetic regulation in atherosclerosis. Int. J. Cardiol. Heart Vasc., 2018, 21, 36-44. doi: 10.1016/j.ijcha.2018.09.006 PMID: 30276232
- Dong, J.; He, M.; Li, J.; Pessentheiner, A.; Wang, C.; Zhang, J.; Sun, Y.; Wang, W.T.; Zhang, Y.; Liu, J.; Wang, S.C.; Huang, P.H.; Gordts, P.L.S.M.; Yuan, Z.Y.; Tsimikas, S.; Shyy, J.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight, 2020, 5(23), e143812. doi: 10.1172/jci.insight.143812 PMID: 33119548
- Krittanawong, C.; Khawaja, M.; Rosenson, R.S.; Amos, C.I.; Nambi, V.; Lavie, C.J.; Virani, S.S. Association of PCSK9 variants with the risk of atherosclerotic cardiovascular disease and variable responses to PCSK9 inhibitor therapy. Curr. Probl. Cardiol., 2022, 47(7), 101043. doi: 10.1016/j.cpcardiol.2021.101043 PMID: 34780866
- Jeong, H.J.; Lee, H.S.; Kim, K.S.; Kim, Y.K.; Yoon, D.; Park, S.W. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J. Lipid Res., 2008, 49(2), 399-409. doi: 10.1194/jlr.M700443-JLR200 PMID: 17921436
- Cao, G.; Qian, Y.W.; Kowala, M.; Konrad, R. Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease. Endocr. Metab. Immune Disord. Drug Targets, 2008, 8(4), 238-243. doi: 10.2174/187153008786848286 PMID: 19075777
- Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(9), 2045-2051. doi: 10.1161/ATVBAHA.108.179705 PMID: 22895665
- Topper, J.N.; Cai, J.; Falb, D.; Gimbrone, M.A., Jr Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl. Acad. Sci., 1996, 93(19), 10417-10422. doi: 10.1073/pnas.93.19.10417 PMID: 8816815
- Ridker, P.M. Residual inflammatory risk: Addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J., 2016, 37(22), 1720-1722. doi: 10.1093/eurheartj/ehw024 PMID: 26908943
- Libby, P. Inflammation in atherosclerosis. Nature, 2002, 420(6917), 868-874. doi: 10.1038/nature01323 PMID: 12490960
- Libby, P. The changing landscape of atherosclerosis. Nature, 2021, 592(7855), 524-533. doi: 10.1038/s41586-021-03392-8 PMID: 33883728
- Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126. doi: 10.1056/NEJM199901143400207 PMID: 9887164
- Suwaidi, J.A.; Hamasaki, S.; Higano, S.T.; Nishimura, R.A.; Holmes, D.R., Jr; Lerman, A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation, 2000, 101(9), 948-954. doi: 10.1161/01.CIR.101.9.948 PMID: 10704159
- Schächinger, V.; Britten, M.B.; Zeiher, A.M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation, 2000, 101(16), 1899-1906. doi: 10.1161/01.CIR.101.16.1899 PMID: 10779454
- Félétou, M.; Vanhoutte, P.M. Endothelial dysfunction: A multifaceted disorder (The Wiggers Award Lecture). Am. J. Physiol. Heart Circ. Physiol., 2006, 291(3), H985-H1002. doi: 10.1152/ajpheart.00292.2006 PMID: 16632549
- Landmesser, U.; Drexler, H. The clinical significance of endothelial dysfunction. Curr. Opin. Cardiol., 2005, 20(6), 547-551. doi: 10.1097/01.hco.0000179821.11071.79 PMID: 16234629
- Zago, A.S.; Zanesco, A. Nitric oxide, cardiovascular disease and physical exercise. Arq. Bras. Cardiol., 2006, 87(6), e264-e270. doi: 10.1590/S0066-782X2006001900029 PMID: 17262101
- Flammer, A.J.; Lüscher, T.F. Three decades of endothelium research: From the detection of NO to the everyday implementation of endothelial function measurements in cardiovascular diseases. Swiss Med. Wkly., 2010, 140, w13122. doi: 10.4414/smw.2010.13122 PMID: 21120736
- Goldstein, J.L.; Brown, M.S. A century of cholesterol and coronaries: From plaques to genes to statins. Cell, 2015, 161(1), 161-172. doi: 10.1016/j.cell.2015.01.036 PMID: 25815993
- Gisterå, A.; Klement, M.L.; Polyzos, K.A.; Mailer, R.K.W.; Duhlin, A.; Karlsson, M.C.I.; Ketelhuth, D.F.J.; Hansson, G.K. Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation, 2018, 138(22), 2513-2526. doi: 10.1161/CIRCULATIONAHA.118.034076 PMID: 29997115
- Kruth, H.S. Sequestration of aggregated low-density lipoproteins by macrophages. Curr. Opin. Lipidol., 2002, 13(5), 483-488. doi: 10.1097/00041433-200210000-00003 PMID: 12352011
- Witztum, J.L.; Berliner, J.A. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr. Opin. Lipidol., 1998, 9(5), 441-448. doi: 10.1097/00041433-199810000-00008 PMID: 9812198
- Dichtl, W.; Nilsson, L.; Goncalves, I.; Ares, M.P.S.; Banfi, C.; Calara, F.; Hamsten, A.; Eriksson, P.; Nilsson, J. Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ. Res., 1999, 84(9), 1085-1094. doi: 10.1161/01.RES.84.9.1085 PMID: 10325246
- Kranzhöfer, R.; Schmidt, J.; Pfeiffer, C.A.H.; Hagl, S.; Libby, P.; Kübler, W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 1999, 19(7), 1623-1629. doi: 10.1161/01.ATV.19.7.1623 PMID: 10397679
- Yudkin, J.S.; Stehouwer, C.D.A.; Emeis, J.J.; Coppack, S.W. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol., 1999, 19(4), 972-978. doi: 10.1161/01.ATV.19.4.972 PMID: 10195925
- Karabulut, A. The role of microbiologic agents in the progression of the atherosclerosis: A comprehensive review. J. Saudi Heart Assoc., 2020, 32(3), 440-450. doi: 10.37616/2212-5043.1198 PMID: 33299789
- Zaric, B.L.; Radovanovic, J.N.; Gluvic, Z.; Stewart, A.J.; Essack, M.; Motwalli, O.; Gojobori, T.; Isenovic, E.R. Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Front. Immunol., 2020, 11, 551758. doi: 10.3389/fimmu.2020.551758 PMID: 33117340
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation, 2002, 105(9), 1135-1143. doi: 10.1161/hc0902.104353 PMID: 11877368
- Obradovic, M.; Zaric, B.; Sudar-Milovanovic, E.; Ilincic, B.; Stokic, E.; Perovic, M.; Isenovic, E.R. PCSK9 and hypercholesterolemia: Therapeutic approach. Curr. Drug Targets, 2018, 19(9), 1058-1067. doi: 10.2174/1389450119666171205101401 PMID: 29210646
- Davies, M.J. Stability and instability: Two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation, 1996, 94(8), 2013-2020. doi: 10.1161/01.CIR.94.8.2013 PMID: 8873680
- de Boer, O.; van der Wal, A.C.; Teeling, P.; Becker, A.E. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: A prominent role for neovascularization? Cardiovasc. Res., 1999, 41(2), 443-449. doi: 10.1016/S0008-6363(98)00255-7 PMID: 10341843
- Seidah, N. G.; Prat, A. The multifaceted biology of PCSK9. Endocr. Rev., 2022, 43(3), 558-582. doi: 10.1210/endrev/bnab035
- Banach, M.; Rizzo, M.; Obradovic, M.; Montalto, G.; Rysz, J.; Mikhailidis, D.P.; Isenovic, E.R. PCSK9 inhibition - a novel mechanism to treat lipid disorders? Curr. Pharm. Des., 2013, 19(21), 3869-3877. doi: 10.2174/13816128113199990303 PMID: 23286435
- Piper, D. E.; Jackson, S.; Liu, Q.; Romanow, W. G.; Shetterly, S.; Thibault, S. T.; Shan, B.; Walker, N. P. The crystal structure of PCSK9: A regulator of plasma LDL-cholesterol. Structure, 2007, 15(5), 545-552. doi: 10.1016/j.str.2007.04.004
- Salowe, S.P.; Zhang, L.; Zokian, H.J.; Gesell, J.J.; Zink, D.L.; Wiltsie, J.; Ai, X.; Kavana, M.; Pinto, S. In vitro assays for the discovery of PCSK9 autoprocessing inhibitors. SLAS Discov., 2016, 21(10), 1034-1041. doi: 10.1177/1087057116657312 PMID: 27412534
- Korneva, V.; Kuznetsova, T.; Julius, U. The state of the problem of achieving extremely low LDL levels. Curr. Pharm. Des., 2021, 27(37), 3841-3857. doi: 10.2174/1381612827999210111182030 PMID: 33430743
- Shapiro, M.D.; Tavori, H.; Fazio, S. PCSK9: From basic science discoveries to clinical trials. Circ. Res., 2018, 122(10), 1420-1438. doi: 10.1161/CIRCRESAHA.118.311227 PMID: 29748367
- Seidah, N.G.; Garçon, D. Expanding biology of PCSK9: Roles in atherosclerosis and beyond. Curr. Atheroscler. Rep., 2022, 24(10), 821-830. doi: 10.1007/s11883-022-01057-z PMID: 35904732
- Chorba, J.S.; Shokat, K.M. The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis. J. Biol. Chem., 2014, 289(42), 29030-29043. doi: 10.1074/jbc.M114.594861 PMID: 25210046
- Lin, X.L.; Xiao, L.L.; Tang, Z.H.; Jiang, Z.S.; Liu, M.H. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed. Pharmacother., 2018, 104, 36-44. doi: 10.1016/j.biopha.2018.05.024 PMID: 29758414
- Sun, L.; Yang, X.; Li, Q.; Zeng, P.; Liu, Y.; Liu, L.; Chen, Y.; Yu, M.; Ma, C.; Li, X.; Li, Y.; Zhang, R.; Zhu, Y.; Miao, Q.R.; Han, J.; Duan, Y. Activation of adiponectin receptor regulates proprotein convertase subtilisin/kexin type 9 expression and inhibits lesions in apoe-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2017, 37(7), 1290-1300. doi: 10.1161/ATVBAHA.117.309630 PMID: 28546220
- Schulz, R.; Schlüter, K.D.; Laufs, U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res. Cardiol., 2015, 110(2), 4. doi: 10.1007/s00395-015-0463-z PMID: 25600226
- Soskić, S.S.; Dobutović, B.D.; Sudar, E.M.; Obradović, M.M.; Nikolić, D.M.; Zarić, B.L.; Stojanović, S.Đ.; Stokić, E.J.; Mikhailidis, D.P.; Isenović, E.R. Peroxisome proliferator-activated receptors and atherosclerosis. Angiology, 2011, 62(7), 523-534. doi: 10.1177/0003319711401012 PMID: 21467121
- Sosnowska, B.; Mazidi, M.; Penson, P.; Gluba-Brzózka, A.; Rysz, J.; Banach, M. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 2017, 265, 275-282. doi: 10.1016/j.atherosclerosis.2017.08.027 PMID: 28870631
- Winnik, S.; Auwerx, J.; Sinclair, D.A.; Matter, C.M. Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. Eur. Heart J., 2015, 36(48), 3404-3412. doi: 10.1093/eurheartj/ehv290 PMID: 26112889
- Luquero, A.; Badimon, L.; Borrell-Pages, M. PCSK9 functions in atherosclerosis are not limited to plasmatic LDL-cholesterol regulation. Front. Cardiovasc. Med., 2021, 8, 639727. doi: 10.3389/fcvm.2021.639727 PMID: 33834043
- Stanimirovic, J.; Obradovic, M.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Pitt, S. J.; Stewart, A. J.; Isenovic, E. R. A high fat diet induces sex-specific differences in hepatic lipid metabolism and nitrite/nitrate in rats. Nitric Oxide : Biol. Chem., 2016, 54, 51-59. doi: 10.1016/j.niox.2016.02.007
- Seidah, N.G.; Pasquato, A.; Andréo, U. How do enveloped viruses exploit the secretory proprotein convertases to regulate infectivity and spread? Viruses, 2021, 13(7), 1229. doi: 10.3390/v13071229 PMID: 34202098
- Liu, X.; Bao, X.; Hu, M.; Chang, H.; Jiao, M.; Cheng, J.; Xie, L.; Huang, Q.; Li, F.; Li, C. Y. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature, 2020, 588(7839), 693-698. doi: 10.1038/s41586-020-2911-7
- Coppinger, C.; Movahed, M.R.; Azemawah, V.; Peyton, L.; Gregory, J.; Hashemzadeh, M. A comprehensive review of PCSK9 inhibitors. J. Cardiovasc. Pharmacol. Ther., 2022, 27, 10742484221100107. doi: 10.1177/10742484221100107 PMID: 35593194
- Tomic Naglic, D.; Manojlovic, M.; Pejakovic, S.; Stepanovic, K.; Prodanovic Simeunovic, J. Lipoprotein(a): Role in atherosclerosis and new treatment options. Biomol. Biomed., 2023, 23(4), 575-583. doi: 10.17305/bb.2023.8992
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; Jukema, J.W.; Lecorps, G.; Mahaffey, K.W.; Moryusef, A.; Pordy, R.; Quintero, K.; Roe, M.T.; Sasiela, W.J.; Tamby, J.F.; Tricoci, P.; White, H.D.; Zeiher, A.M. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med., 2018, 379(22), 2097-2107. doi: 10.1056/NEJMoa1801174 PMID: 30403574
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722. doi: 10.1056/NEJMoa1615664 PMID: 28304224
- Chen, H.; Chen, X. PCSK9 inhibitors for acute coronary syndrome: The era of early implementation. Front. Cardiovasc. Med., 2023, 10, 1138787. doi: 10.3389/fcvm.2023.1138787 PMID: 37200976
- Hao, Y.; Yang, Y.; Wang, Y.; Li, J. Effect of the early application of evolocumab on blood lipid profile and cardiovascular prognosis in patients with extremely high-risk acute coronary syndrome. Int. Heart J., 2022, 63(4), 669-677. doi: 10.1536/ihj.22-052 PMID: 35831153
- Blom, D.J.; Koren, M.J.; Roth, E.; Monsalvo, M.L.; Djedjos, C.S.; Nelson, P.; Elliott, M.; Wasserman, S.M.; Ballantyne, C.M.; Holman, R.R. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome. Diabetes Obes. Metab., 2017, 19(1), 98-107. doi: 10.1111/dom.12788 PMID: 27619750
- Giugliano, R.P.; Mach, F.; Zavitz, K.; Kurtz, C.; Im, K.; Kanevsky, E.; Schneider, J.; Wang, H.; Keech, A.; Pedersen, T.R.; Sabatine, M.S.; Sever, P.S.; Robinson, J.G.; Honarpour, N.; Wasserman, S.M.; Ott, B.R. Cognitive function in a randomized trial of evolocumab. N. Engl. J. Med., 2017, 377(7), 633-643. doi: 10.1056/NEJMoa1701131 PMID: 28813214
- Mehta, S.R.; Pare, G.; Lonn, E.M.; Jolly, S.S.; Natarajan, M.K.; Pinilla-Echeverri, N.; Schwalm, J.D.; Sheth, T.N.; Sibbald, M.; Tsang, M.; Valettas, N.; Velianou, J.L.; Lee, S.F.; Ferdous, T.; Nauman, S.; Nguyen, H.; McCready, T.; McQueen, M.J. Effects of routine early treatment with PCSK9 inhibitors in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: A randomised, double-blind, sham-controlled trial. EuroIntervention, 2022, 18(11), e888-e896. doi: 10.4244/EIJ-D-22-00735 PMID: 36349701
- Koskinas, K.C.; Windecker, S.; Pedrazzini, G.; Mueller, C.; Cook, S.; Matter, C.M.; Muller, O.; Häner, J.; Gencer, B.; Crljenica, C.; Amini, P.; Deckarm, O.; Iglesias, J.F.; Räber, L.; Heg, D.; Mach, F. Evolocumab for early reduction of LDL cholesterol levels in patients with acute coronary syndromes (EVOPACS). J. Am. Coll. Cardiol., 2019, 74(20), 2452-2462. doi: 10.1016/j.jacc.2019.08.010 PMID: 31479722
- Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; van Geuns, R.J.; Ondracek, A.S.; Radu Juul Jensen, M.D.; Zanchin, C.; Stortecky, S.; Spirk, D.; Siontis, G.C.M.; Saleh, L.; Matter, C.M.; Daemen, J.; Mach, F.; Heg, D.; Windecker, S.; Engstrøm, T.; Lang, I.M.; Koskinas, K.C.; Ambühl, M.; Bär, S.; Frenk, A.; Morf, L.U.; Inderkum, A.; Leuthard, S.; Kavaliauskaite, R.; Rexhaj, E.; Shibutani, H.; Mitter, V.R.; Kaiser, C.; Mayr, M.; Eberli, F.R.; OSullivan, C.J.; Templin, C.; von Eckardstein, A.; Ghandilyan, A.; Pawar, R.; Jonker, H.; Hofbauer, T.; Goliasch, G.; Bang, L.; Sørensen, R.; Tovar Forero, M.N.; Degrauwe, S.; Ten Cate, T. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction. JAMA, 2022, 327(18), 1771-1781. doi: 10.1001/jama.2022.5218 PMID: 35368058
- Gaba, P.; ODonoghue, M.L.; Park, J.G.; Wiviott, S.D.; Atar, D.; Kuder, J.F.; Im, K.; Murphy, S.A.; De Ferrari, G.M.; Gaciong, Z.A.; Toth, K.; Gouni-Berthold, I.; Lopez-Miranda, J.; Schiele, F.; Mach, F.; Flores-Arredondo, J.H.; López, J.A.G.; Elliott-Davey, M.; Wang, B.; Monsalvo, M.L.; Abbasi, S.; Giugliano, R.P.; Sabatine, M.S. Association between achieved low-density lipoprotein cholesterol levels and long-term cardiovascular and safety outcomes: An analysis of fourier-ole. Circulation, 2023, 147(16), 1192-1203. doi: 10.1161/CIRCULATIONAHA.122.063399 PMID: 36779348
- Kaufman, T.M.; Warden, B.A.; Minnier, J.; Miles, J.R.; Duell, P.B.; Purnell, J.Q.; Wojcik, C.; Fazio, S.; Shapiro, M.D. Application of PCSK9 inhibitors in practice. Circ. Res., 2019, 124(1), 32-37. doi: 10.1161/CIRCRESAHA.118.314191 PMID: 30605414
- ODonoghue, M.L.; Giugliano, R.P.; Wiviott, S.D.; Atar, D.; Keech, A.; Kuder, J.F.; Im, K.; Murphy, S.A.; Flores-Arredondo, J.H.; López, J.A.G.; Elliott-Davey, M.; Wang, B.; Monsalvo, M.L.; Abbasi, S.; Sabatine, M.S. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation, 2022, 146(15), 1109-1119. doi: 10.1161/CIRCULATIONAHA.122.061620 PMID: 36031810
- Ferrari, F.; Stein, R.; Motta, M.T.; Moriguchi, E.H. PCSK9 inhibitors: Clinical relevance, molecular mechanisms, and safety in clinical practice. Arq. Bras. Cardiol., 2019, 112(4), 453-460. doi: 10.5935/abc.20190029 PMID: 30843929
- Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab., 2009, 94(7), 2537-2543. doi: 10.1210/jc.2009-0141 PMID: 19351729
- Tóth, .; Fedačko, J.; Pekárová, T.; Hertelyová, Z.; Katz, M.; Mughees, A.; Kuzma, J.; tefanič, P.; Kopolovets, I.; Pella, D. Elevated circulating PCSK9 concentrations predict subclinical atherosclerotic changes in low risk obese and non-obese patients. Cardiol. Ther., 2017, 6(2), 281-289. doi: 10.1007/s40119-017-0092-8 PMID: 28623549
- Sotler, T.; ebetjen, M. PCSK9 as an atherothrombotic risk factor. Int. J. Mol. Sci., 2023, 24(3), 1966. doi: 10.3390/ijms24031966
- Zhu, Y.; Xian, X.; Wang, Z.; Bi, Y.; Chen, Q.; Han, X.; Tang, D.; Chen, R. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules, 2018, 8(3), 80. doi: 10.3390/biom8030080 PMID: 30142970
- Barale, C.; Melchionda, E.; Morotti, A. PCSK9 biology and its role in atherothrombosis. Int. J. Mol. Sci., 2021, 22(11), 5880. doi: 10.3390/ijms22115880
- Xia, X.; Peng, Z.; Gu, H.; Wang, M.; Wang, G.; Zhang, D. Regulation of PCSK9 expression and function: mechanisms and therapeutic implications. Front. Cardiovasc. Med., 2021, 8, 764038. doi: 10.3389/fcvm.2021.764038 PMID: 34782856
- Trpkovic, A.; Resanovic, I.; Stanimirovic, J.; Radak, D.; Mousa, S.A.; Cenic-Milosevic, D.; Jevremovic, D.; Isenovic, E.R. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci., 2015, 52(2), 70-85. doi: 10.3109/10408363.2014.992063 PMID: 25537066
- Ding, Z.; Liu, S.; Wang, X.; Theus, S.; Deng, X.; Fan, Y.; Zhou, S.; Mehta, J.L. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc. Res., 2018, 114(8), 1145-1153. doi: 10.1093/cvr/cvy079 PMID: 29617722
- Wu, N.Q.; Shi, H.W.; Li, J.J. Proprotein convertase subtilisin/kexin type 9 and inflammation: An updated review. Front. Cardiovasc. Med., 2022, 9, 763516. doi: 10.3389/fcvm.2022.763516 PMID: 35252378
- Shapiro, M.D.; Fazio, S. PCSK9 and atherosclerosis - lipids and beyond. J. Atheroscler. Thromb., 2017, 24(5), 462-472. doi: 10.5551/jat.RV17003 PMID: 28302950
- Xu, B.; Li, S.; Fang, Y.; Zou, Y.; Song, D.; Zhang, S.; Cai, Y. Proprotein convertase subtilisin/kexin type 9 promotes gastric cancer metastasis and suppresses apoptosis by facilitating MAPK signaling pathway through HSP70 up-regulation. Front. Oncol., 2021, 10, 609663. doi: 10.3389/fonc.2020.609663 PMID: 33489919
- Guijarro-Muñoz, I.; Compte, M.; Álvarez-Cienfuegos, A.; Álvarez-Vallina, L.; Sanz, L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J. Biol. Chem., 2014, 289(4), 2457-2468. doi: 10.1074/jbc.M113.521161 PMID: 24307174
- Liu, A.; Frostegård, J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J. Intern. Med., 2018, 284(2), 193-210. doi: 10.1111/joim.12758 PMID: 29617044
- Cammisotto, V.; Pastori, D.; Nocella, C.; Bartimoccia, S.; Castellani, V.; Marchese, C.; Sili Scavalli, A.; Ettorre, E.; Viceconte, N.; Violi, F.; Pignatelli, P.; Carnevale, R. PCSK9 regulates Nox2-mediated platelet activation via CD36 receptor in patients with atrial fibrillation. Antioxidants, 2020, 9(4), 296. doi: 10.3390/antiox9040296 PMID: 32252393
- Camera, M.; Rossetti, L.; Barbieri, S.S.; Zanotti, I.; Canciani, B.; Trabattoni, D.; Ruscica, M.; Tremoli, E.; Ferri, N. PCSK9 as a positive modulator of platelet activation. J. Am. Coll. Cardiol., 2018, 71(8), 952-954. doi: 10.1016/j.jacc.2017.11.069 PMID: 29471945
- Ochoa, E.; Iriondo, M.; Manzano, C.; Fullaondo, A.; Villar, I.; Ruiz-Irastorza, G.; Zubiaga, A.M.; Estonba, A. LDLR and PCSK9 are associated with the presence of antiphospholipid antibodies and the development of thrombosis in aPLA carriers. PLoS One, 2016, 11(1), e0146990. doi: 10.1371/journal.pone.0146990 PMID: 26820623
- Zulkapli, R.; Muid, S.A.; Wang, S.M.; Nawawi, H. PCSK9 inhibitors reduce PCSK9 and early atherogenic biomarkers in stimulated human coronary artery endothelial cells. Int. J. Mol. Sci., 2023, 24(6), 5098. doi: 10.3390/ijms24065098 PMID: 36982171
- Feingold, K.R.; Moser, A.; Shigenaga, J.K.; Grunfeld, C. Inflammation stimulates niacin receptor (GPR109A/HCA2) expression in adipose tissue and macrophages. J. Lipid Res., 2014, 55(12), 2501-2508. doi: 10.1194/jlr.M050955 PMID: 25320346
- Shah, P.K. Inflammation and plaque vulnerability. Cardiovasc. Drugs Ther., 2009, 23(1), 31-40. doi: 10.1007/s10557-008-6147-2 PMID: 18949542
- Grebe, A.; Hoss, F.; Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res., 2018, 122(12), 1722-1740. doi: 10.1161/CIRCRESAHA.118.311362 PMID: 29880500
- Wu, C.Y.; Tang, Z.H.; Jiang, L.; Li, X.F.; Jiang, Z.S.; Liu, L.S. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Baxcaspase9caspase3 pathway. Mol. Cell. Biochem., 2012, 359(1-2), 347-358. doi: 10.1007/s11010-011-1028-6 PMID: 21847580
- Li, J.; Liang, X.; Wang, Y.; Xu, Z.; Li, G. Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced endothelial cell apoptosis. Mol. Med. Rep., 2017, 16(2), 1817-1825. doi: 10.3892/mmr.2017.6803 PMID: 28656218
- Li, S.; Guo, Y.L.; Xu, R.X.; Zhang, Y.; Zhu, C.G.; Sun, J.; Qing, P.; Wu, N.Q.; Jiang, L.X.; Li, J.J. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis, 2014, 234(2), 441-445. doi: 10.1016/j.atherosclerosis.2014.04.001 PMID: 24769476
- Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Benderly, M.; Goldbourt, U.; Willeit, J.; Kiechl, S.; Yarnell, J.W.; Sweetnam, P.M.; Elwood, P.C.; Cushman, M.; Psaty, B.M.; Tracy, R.P.; Tybjaerg-Hansen, A.; Haverkate, F.; de Maat, M.P.; Fowkes, F.G.; Lee, A.J.; Smith, F.B.; Salomaa, V.; Harald, K.; Rasi, R.; Vahtera, E.; Jousilahti, P.; Pekkanen, J.; DAgostino, R.; Kannel, W.B.; Wilson, P.W.; Tofler, G.; Arocha-Piñango, C.L.; Rodriguez-Larralde, A.; Nagy, E.; Mijares, M.; Espinosa, R.; Rodriquez-Roa, E.; Ryder, E.; Diez-Ewald, M.P.; Campos, G.; Fernandez, V.; Torres, E.; Marchioli, R.; Valagussa, F.; Rosengren, A.; Wilhelmsen, L.; Lappas, G.; Eriksson, H.; Cremer, P.; Nagel, D.; Curb, J.D.; Rodriguez, B.; Yano, K.; Salonen, J.T.; Nyyssönen, K.; Tuomainen, T.P.; Hedblad, B.; Lind, P.; Loewel, H.; Koenig, W.; Meade, T.W.; Cooper, J.A.; De Stavola, B.; Knottenbelt, C.; Miller, G.J.; Cooper, J.A.; Bauer, K.A.; Rosenberg, R.D.; Sato, S.; Kitamura, A.; Naito, Y.; Palosuo, T.; Ducimetiere, P.; Amouyel, P.; Arveiler, D.; Evans, A.E.; Ferrieres, J.; Juhan-Vague, I.; Bingham, A.; Schulte, H.; Assmann, G.; Cantin, B.; Lamarche, B.; Després, J.P.; Dagenais, G.R.; Tunstall-Pedoe, H.; Woodward, M.; Ben-Shlomo, Y.; Davey Smith, G.; Palmieri, V.; Yeh, J.L.; Rudnicka, A.; Ridker, P.; Rodeghiero, F.; Tosetto, A.; Shepherd, J.; Ford, I.; Robertson, M.; Brunner, E.; Shipley, M.; Feskens, E.J.; Kromhout, D.; Dickinson, A.; Ireland, B.; Juzwishin, K.; Kaptoge, S.; Lewington, S.; Memon, A.; Sarwar, N.; Walker, M.; Wheeler, J.; White, I.; Wood, A. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA, 2005, 294(14), 1799-1809. doi: 10.1001/jama.294.14.1799 PMID: 16219884
- Zhang, Y.; Zhu, C.G.; Xu, R.X.; Li, S.; Guo, Y.L.; Sun, J.; Li, J.J. Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. J. Clin. Lipidol., 2014, 8(5), 494-500. doi: 10.1016/j.jacl.2014.07.001 PMID: 25234562
- Taechalertpaisarn, J.; Zhao, B.; Liang, X.; Burgess, K. Small molecule inhibitors of the PCSK9·LDLR interaction. J. Am. Chem. Soc., 2018, 140(9), 3242-3249. doi: 10.1021/jacs.7b09360
- Londregan, A.T.; Wei, L.; Xiao, J.; Lintner, N.G.; Petersen, D.; Dullea, R.G.; McClure, K.F.; Bolt, M.W.; Warmus, J.S.; Coffey, S.B.; Limberakis, C.; Genovino, J.; Thuma, B.A.; Hesp, K.D.; Aspnes, G.E.; Reidich, B.; Salatto, C.T.; Chabot, J.R.; Cate, J.H.D.; Liras, S.; Piotrowski, D.W. Small molecule proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Hit to lead optimization of systemic agents. J. Med. Chem., 2018, 61(13), 5704-5718. doi: 10.1021/acs.jmedchem.8b00650 PMID: 29878763
- Pettersen, D.; Fjellström, O. Small molecule modulators of PCSK9 - A literature and patent overview. Bioorg. Med. Chem. Lett., 2018, 28(7), 1155-1160. doi: 10.1016/j.bmcl.2018.02.046 PMID: 29519739
- Ahamad, S.; Mathew, S.; Khan, W.A.; Mohanan, K. Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov. Today, 2022, 27(5), 1332-1349. doi: 10.1016/j.drudis.2022.01.014 PMID: 35121175
- Lintner, N. G.; McClure, K. F.; Petersen, D.; Londregan, A. T.; Piotrowski, D. W.; Wei, L.; Xiao, J.; Bolt, M.; Loria, P. M.; Maguire, B. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol., 2017, 15(3), e2001882. doi: 10.1371/journal.pbio.2001882
- Petersen, D.N.; Hawkins, J.; Ruangsiriluk, W.; Stevens, K.A.; Maguire, B.A.; OConnell, T.N.; Rocke, B.N.; Boehm, M.; Ruggeri, R.B.; Rolph, T.; Hepworth, D.; Loria, P.M.; Carpino, P.A. A small-molecule anti-secretagogue of PCSK9 targets the 80S ribosome to inhibit PCSK9 protein translation. Cell Chem. Biol., 2016, 23(11), 1362-1371. doi: 10.1016/j.chembiol.2016.08.016 PMID: 27746128
- McClure, K.F.; Piotrowski, D.W.; Petersen, D.; Wei, L.; Xiao, J.; Londregan, A.T.; Kamlet, A.S.; Dechert-Schmitt, A.M.; Raymer, B.; Ruggeri, R.B.; Canterbury, D.; Limberakis, C.; Liras, S.; DaSilva-Jardine, P.; Dullea, R.G.; Loria, P.M.; Reidich, B.; Salatto, C.T.; Eng, H.; Kimoto, E.; Atkinson, K.; King-Ahmad, A.; Scott, D.; Beaumont, K.; Chabot, J.R.; Bolt, M.W.; Maresca, K.; Dahl, K.; Arakawa, R.; Takano, A.; Halldin, C. Liver-targeted small-molecule inhibitors of proprotein convertase subtilisin/kexin type 9 synthesis. Angew. Chem. Int. Ed., 2017, 56(51), 16218-16222. doi: 10.1002/anie.201708744 PMID: 29073340
- Zhang, Y.; Eigenbrot, C.; Zhou, L.; Shia, S.; Li, W.; Quan, C.; Tom, J.; Moran, P.; Di Lello, P.; Skelton, N.J.; Kong-Beltran, M.; Peterson, A.; Kirchhofer, D. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J. Biol. Chem., 2014, 289(2), 942-955. doi: 10.1074/jbc.M113.514067 PMID: 24225950
- Schroeder, C.I.; Swedberg, J.E.; Withka, J.M.; Rosengren, K.J.; Akcan, M.; Clayton, D.J.; Daly, N.L.; Cheneval, O.; Borzilleri, K.A.; Griffor, M.; Stock, I.; Colless, B.; Walsh, P.; Sunderland, P.; Reyes, A.; Dullea, R.; Ammirati, M.; Liu, S.; McClure, K.F.; Tu, M.; Bhattacharya, S.K.; Liras, S.; Price, D.A.; Craik, D.J. Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem. Biol., 2014, 21(2), 284-294. doi: 10.1016/j.chembiol.2013.11.014 PMID: 24440079
- Zhang, Y.; Ultsch, M.; Skelton, N. J.; Burdick, D. J.; Beresini, M. H.; Li, W.; Kong-Beltran, M.; Peterson, A.; Quinn, J.; Chiu, C. Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists. Nat. Struct. Mol. Biol., 2017, 24(10), 848-856. doi: 10.1038/nsmb.3453
- Evison, B.J.; Palmer, J.T.; Lambert, G.; Treutlein, H.; Zeng, J.; Nativel, B.; Chemello, K.; Zhu, Q.; Wang, J.; Teng, Y.; Tang, W.; Xu, Y.; Rathi, A.K.; Kumar, S.; Suchowerska, A.K.; Parmar, J.; Dixon, I.; Kelly, G.E.; Bonnar, J. A small molecule inhibitor of PCSK9 that antagonizes LDL receptor binding via interaction with a cryptic PCSK9 binding groove. Bioorg. Med. Chem., 2020, 28(6), 115344. doi: 10.1016/j.bmc.2020.115344 PMID: 32051094
- Min, D.K.; Lee, H.S.; Lee, N.; Lee, C.J.; Song, H.J.; Yang, G.E.; Yoon, D.; Park, S.W. In silico screening of chemical libraries to develop inhibitors that hamper the interaction of PCSK9 with the LDL receptor. Yonsei Med. J., 2015, 56(5), 1251-1257. doi: 10.3349/ymj.2015.56.5.1251 PMID: 26256967
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233. doi: 10.1016/j.cell.2009.01.002 PMID: 19167326
- Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297. doi: 10.1016/S0092-8674(04)00045-5 PMID: 14744438
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308), 835-840. doi: 10.1038/nature09267 PMID: 20703300
- Forman, J.J.; Legesse-Miller, A.; Coller, H.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci., 2008, 105(39), 14879-14884. doi: 10.1073/pnas.0803230105 PMID: 18812516
- Zhou, H.; Rigoutsos, I. MiR-103a-3p targets the 5′ UTR of GPRC5A in pancreatic cells. RNA, 2014, 20(9), 1431-1439. doi: 10.1261/rna.045757.114 PMID: 24984703
- Zhang, Y.; Fan, M.; Zhang, X.; Huang, F.; Wu, K.; Zhang, J.; Liu, J.; Huang, Z.; Luo, H.; Tao, L.; Zhang, H. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA, 2014, 20(12), 1878-1889. doi: 10.1261/rna.045633.114 PMID: 25336585
- Han, J.; Lee, Y.; Yeom, K.H.; Kim, Y.K.; Jin, H.; Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev., 2004, 18(24), 3016-3027. doi: 10.1101/gad.1262504 PMID: 15574589
- Siomi, H.; Siomi, M.C. Posttranscriptional regulation of microRNA biogenesis in animals. Mol. Cell, 2010, 38(3), 323-332. doi: 10.1016/j.molcel.2010.03.013 PMID: 20471939
- Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105. doi: 10.1101/gr.082701.108 PMID: 18955434
- Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(7209), 58-63. doi: 10.1038/nature07228 PMID: 18668040
- Grimson, A.; Farh, K.K.H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105. doi: 10.1016/j.molcel.2007.06.017 PMID: 17612493
- Doench, J.G.; Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev., 2004, 18(5), 504-511. doi: 10.1101/gad.1184404 PMID: 15014042
- Wang, R.; Dong, L.D.; Meng, X.B.; Shi, Q.; Sun, W.Y. Unique MicroRNA signatures associated with early coronary atherosclerotic plaques. Biochem. Biophys. Res. Commun., 2015, 464(2), 574-579. doi: 10.1016/j.bbrc.2015.07.010 PMID: 26159918
- Raitoharju, E.; Lyytikäinen, L.P.; Levula, M.; Oksala, N.; Mennander, A.; Tarkka, M.; Klopp, N.; Illig, T.; Kähönen, M.; Karhunen, P.J.; Laaksonen, R.; Lehtimäki, T. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis, 2011, 219(1), 211-217. doi: 10.1016/j.atherosclerosis.2011.07.020 PMID: 21820659
- Cipollone, F.; Felicioni, L.; Sarzani, R.; Ucchino, S.; Spigonardo, F.; Mandolini, C.; Malatesta, S.; Bucci, M.; Mammarella, C.; Santovito, D.; de Lutiis, F.; Marchetti, A.; Mezzetti, A.; Buttitta, F. A unique microRNA signature associated with plaque instability in humans. Stroke, 2011, 42(9), 2556-2563. doi: 10.1161/STROKEAHA.110.597575 PMID: 21817153
- Faccini, J.; Ruidavets, J.B.; Cordelier, P.; Martins, F.; Maoret, J.J.; Bongard, V.; Ferrières, J.; Roncalli, J.; Elbaz, M.; Vindis, C. Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci. Rep., 2017, 7(1), 42916. doi: 10.1038/srep42916 PMID: 28205634
- Fichtlscherer, S.; De Rosa, S.; Fox, H.; Schwietz, T.; Fischer, A.; Liebetrau, C.; Weber, M.; Hamm, C.W.; Röxe, T.; Müller-Ardogan, M.; Bonauer, A.; Zeiher, A.M.; Dimmeler, S. Circulating microRNAs in patients with coronary artery disease. Circ. Res., 2010, 107(5), 677-684. doi: 10.1161/CIRCRESAHA.109.215566 PMID: 20595655
- Weber, M.; Baker, M.B.; Patel, R.S.; Quyyumi, A.A.; Bao, G.; Searles, C.D. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol. Res. Pract., 2011, 2011, 1-5. doi: 10.4061/2011/532915 PMID: 21785714
- Zhu, G.; Yang, L.; Guo, R.; Liu, H.; Shi, Y.; Ye, J.; Yang, Z. microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the gensini score. Coron. Artery Dis., 2014, 25(4), 304-310. doi: 10.1097/MCA.0000000000000088 PMID: 24525789
- Zeller, T.; Keller, T.; Ojeda, F.; Reichlin, T.; Twerenbold, R.; Tzikas, S.; Wild, P.S.; Reiter, M.; Czyz, E.; Lackner, K.J.; Munzel, T.; Mueller, C.; Blankenberg, S. Assessment of microRNAs in patients with unstable angina pectoris. Eur. Heart J., 2014, 35(31), 2106-2114. doi: 10.1093/eurheartj/ehu151 PMID: 24727883
- Liu, K.; Xuekelati, S.; Zhou, K.; Yan, Z.; Yang, X.; Inayat, A.; Wu, J.; Guo, X. Expression profiles of six atherosclerosis-associated microRNAs that cluster in patients with hyperhomocysteinemia: A clinical study. DNA Cell Biol., 2018, 37(3), 189-198. doi: 10.1089/dna.2017.3845 PMID: 29461880
- Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636. doi: 10.1161/CIRCRESAHA.115.306301 PMID: 26892962
- Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res., 2016, 118(4), 703-720. doi: 10.1161/CIRCRESAHA.115.306300 PMID: 26892968
- Boon, R.A. Endothelial microRNA tells smooth muscle cells to proliferate. Circ. Res., 2013, 113(1), 7-8. doi: 10.1161/CIRCRESAHA.113.301636 PMID: 23788500
- Jaé, N.; Dimmeler, S. Noncoding RNAs in vascular diseases. Circ. Res., 2020, 126(9), 1127-1145. doi: 10.1161/CIRCRESAHA.119.315938 PMID: 32324505
- Fasolo, F.; Di Gregoli, K.; Maegdefessel, L.; Johnson, J.L. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc. Res., 2019, 115(12), 1732-1756. doi: 10.1093/cvr/cvz203 PMID: 31389987
- Fang, Y.; Davies, P.F. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler. Thromb. Vasc. Biol., 2012, 32(4), 979-987. doi: 10.1161/ATVBAHA.111.244053 PMID: 22267480
- Loyer, X.; Potteaux, S.; Vion, A.C.; Guérin, C.L.; Boulkroun, S.; Rautou, P.E.; Ramkhelawon, B.; Esposito, B.; Dalloz, M.; Paul, J.L.; Julia, P.; Maccario, J.; Boulanger, C.M.; Mallat, Z.; Tedgui, A. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ. Res., 2014, 114(3), 434-443. doi: 10.1161/CIRCRESAHA.114.302213 PMID: 24255059
- Hosen, M.R.; Goody, P.R.; Zietzer, A.; Nickenig, G.; Jansen, F. MicroRNAs as master regulators of atherosclerosis: From pathogenesis to novel therapeutic options. Antioxid. Redox Signal., 2020, 33(9), 621-644. doi: 10.1089/ars.2020.8107 PMID: 32408755
- Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721. doi: 10.1038/nri3520 PMID: 23995626
- Self-Fordham, J.B.; Naqvi, A.R.; Uttamani, J.R.; Kulkarni, V.; Nares, S. MicroRNA: Dynamic regulators of macrophage polarization and plasticity. Front. Immunol., 2017, 8, 1062. doi: 10.3389/fimmu.2017.01062 PMID: 28912781
- Curtale, G.; Rubino, M.; Locati, M. MicroRNAs as molecular switches in macrophage activation. Front. Immunol., 2019, 10, 799. doi: 10.3389/fimmu.2019.00799 PMID: 31057539
- Zhang, Y.; Zhang, M.; Zhong, M.; Suo, Q.; Lv, K. Expression profiles of miRNAs in polarized macrophages. Int. J. Mol. Med., 2013, 31(4), 797-802. doi: 10.3892/ijmm.2013.1260 PMID: 23443577
- Park, Y.M. CD36, a scavenger receptor implicated in atherosclerosis. Exp. Mol. Med., 2014, 46(6), e99. doi: 10.1038/emm.2014.38 PMID: 24903227
- Kuchibhotla, S.; Vanegas, D.; Kennedy, D.J.; Guy, E.; Nimako, G.; Morton, R.E.; Febbraio, M. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc. Res., 2008, 78(1), 185-196. doi: 10.1093/cvr/cvm093 PMID: 18065445
- Li, B.R.; Xia, L.Q.; Liu, J.; liao, L.L.; Zhang, Y.; Deng, M.; Zhong, H.J.; Feng, T.T.; He, P.P.; Ouyang, X.P. miR-758-5p regulates cholesterol uptake via targeting the CD36 3′UTR. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 384-389. doi: 10.1016/j.bbrc.2017.09.150 PMID: 28965954
- Chen, T.; Huang, Z.; Wang, L.; Wang, Y.; Wu, F.; Meng, S.; Wang, C. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc. Res., 2009, 83(1), 131-139. doi: 10.1093/cvr/cvp121 PMID: 19377067
- Banerjee, S.; Cui, H.; Xie, N.; Tan, Z.; Yang, S.; Icyuz, M.; Thannickal, V.J.; Abraham, E.; Liu, G. miR-125a-5p regulates differential activation of macrophages and inflammation. J. Biol. Chem., 2013, 288(49), 35428-35436. doi: 10.1074/jbc.M112.426866 PMID: 24151079
- Yang, K.; He, Y.S.; Wang, X.Q.; Lu, L.; Chen, Q.J.; Liu, J.; Sun, Z.; Shen, W.F. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett., 2011, 585(6), 854-860. doi: 10.1016/j.febslet.2011.02.009 PMID: 21329689
- Zhang, M.; Wu, J.F.; Chen, W.J.; Tang, S.L.; Mo, Z.C.; Tang, Y.Y.; Li, Y.; Wang, J.L.; Liu, X.Y.; Peng, J.; Chen, K.; He, P.P.; Lv, Y.C.; Ouyang, X.P.; Yao, F.; Tang, D.P.; Cayabyab, F.S.; Zhang, D.W.; Zheng, X.L.; Tian, G.P.; Tang, C.K. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis, 2014, 234(1), 54-64. doi: 10.1016/j.atherosclerosis.2014.02.008 PMID: 24608080
- Xie, W.; Li, L.; Zhang, M.; Cheng, H.P.; Gong, D.; Lv, Y.C.; Yao, F.; He, P.P.; Ouyang, X.P.; Lan, G.; Liu, D.; Zhao, Z.W.; Tan, Y.L.; Zheng, X.L.; Yin, W.D.; Tang, C.K. MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS One, 2016, 11(6), e0157085. doi: 10.1371/journal.pone.0157085 PMID: 27257686
- Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Done, S.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis, 2015, 242(2), 595-604. doi: 10.1016/j.atherosclerosis.2015.08.023 PMID: 26318398
- Canfrán-Duque, A.; Lin, C.S.; Goedeke, L.; Suárez, Y.; Fernández-Hernando, C. Micro-RNAs and high-density lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol., 2016, 36(6), 1076-1084. doi: 10.1161/ATVBAHA.116.307028 PMID: 27079881
- Nishiga, M.; Horie, T.; Kuwabara, Y.; Nagao, K.; Baba, O.; Nakao, T.; Nishino, T.; Hakuno, D.; Nakashima, Y.; Nishi, H.; Nakazeki, F.; Ide, Y.; Koyama, S.; Kimura, M.; Hanada, R.; Nakamura, T.; Inada, T.; Hasegawa, K.; Conway, S.J.; Kita, T.; Kimura, T.; Ono, K. MicroRNA-33 controls adaptive fibrotic response in the remodeling heart by preserving lipid raft cholesterol. Circ. Res., 2017, 120(5), 835-847. doi: 10.1161/CIRCRESAHA.116.309528 PMID: 27920122
- Karunakaran, D.; Thrush, A.B.; Nguyen, M.A.; Richards, L.; Geoffrion, M.; Singaravelu, R.; Ramphos, E.; Shangari, P.; Ouimet, M.; Pezacki, J.P.; Moore, K.J.; Perisic, L.; Maegdefessel, L.; Hedin, U.; Harper, M.E.; Rayner, K.J. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-mir33 in atherosclerosis. Circ. Res., 2015, 117(3), 266-278. doi: 10.1161/CIRCRESAHA.117.305624 PMID: 26002865
- Ouimet, M.; Ediriweera, H.N.; Gundra, U.M.; Sheedy, F.J.; Ramkhelawon, B.; Hutchison, S.B.; Rinehold, K.; van Solingen, C.; Fullerton, M.D.; Cecchini, K.; Rayner, K.J.; Steinberg, G.R.; Zamore, P.D.; Fisher, E.A.; Loke, P.; Moore, K.J. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest., 2015, 125(12), 4334-4348. doi: 10.1172/JCI81676 PMID: 26517695
- Rayner, K.J.; Suárez, Y.; Dávalos, A.; Parathath, S.; Fitzgerald, M.L.; Tamehiro, N.; Fisher, E.A.; Moore, K.J.; Fernández-Hernando, C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010, 328(5985), 1570-1573. doi: 10.1126/science.1189862 PMID: 20466885
- Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; Fernandez-Hernando, C.; Fisher, E.A.; Moore, K.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest., 2011, 121(7), 2921-2931. doi: 10.1172/JCI57275 PMID: 21646721
- Goedeke, L.; Rotllan, N.; Canfrán-Duque, A.; Aranda, J.F.; Ramírez, C.M.; Araldi, E.; Lin, C.S.; Anderson, N.N.; Wagschal, A.; de Cabo, R.; Horton, J.D.; Lasunción, M.A.; Näär, A.M.; Suárez, Y.; Fernández-Hernando, C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med., 2015, 21(11), 1280-1289. doi: 10.1038/nm.3949 PMID: 26437365
- de Aguiar Vallim, T.Q.; Tarling, E.J.; Kim, T.; Civelek, M.; Baldán, Á.; Esau, C.; Edwards, P.A. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ. Res., 2013, 112(12), 1602-1612. doi: 10.1161/CIRCRESAHA.112.300648 PMID: 23519696
- Ramírez, C.M.; Goedeke, L.; Rotllan, N.; Yoon, J.H.; Cirera-Salinas, D.; Mattison, J.A.; Suárez, Y.; de Cabo, R.; Gorospe, M.; Fernández-Hernando, C. MicroRNA 33 regulates glucose metabolism. Mol. Cell. Biol., 2013, 33(15), 2891-2902. doi: 10.1128/MCB.00016-13 PMID: 23716591
- Ouimet, M.; Ediriweera, H.; Afonso, M.S.; Ramkhelawon, B.; Singaravelu, R.; Liao, X.; Bandler, R.C.; Rahman, K.; Fisher, E.A.; Rayner, K.J.; Pezacki, J.P.; Tabas, I.; Moore, K.J. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2017, 37(6), 1058-1067. doi: 10.1161/ATVBAHA.116.308916 PMID: 28428217
- Afonso, M.S.; Sharma, M.; Schlegel, M.; van Solingen, C.; Koelwyn, G.J.; Shanley, L.C.; Beckett, L.; Peled, D.; Rahman, K.; Giannarelli, C.; Li, H.; Brown, E.J.; Khodadadi-Jamayran, A.; Fisher, E.A.; Moore, K.J. miR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ. Res., 2021, 128(8), 1122-1138. doi: 10.1161/CIRCRESAHA.120.317914 PMID: 33593073
- Zhang, X.; Rotllan, N.; Canfrán-Duque, A.; Sun, J.; Toczek, J.; Moshnikova, A. Targeted suppression of miRNA-33 using pHLIP improves atherosclerosis regression. Circ Res., 2022, 131(11), 77-90. doi: 10.1161/CIRCRESAHA.121.320296
- Canfrán-Duque, A.; Ramírez, C.M.; Goedeke, L.; Lin, C.S.; Fernández-Hernando, C. microRNAs and HDL life cycle. Cardiovasc. Res., 2014, 103(3), 414-422. doi: 10.1093/cvr/cvu140 PMID: 24895349
- Najafi-Shoushtari, S.H.; Kristo, F.; Li, Y.; Shioda, T.; Cohen, D.E.; Gerszten, R.E.; Näär, A.M. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 2010, 328(5985), 1566-1569. doi: 10.1126/science.1189123 PMID: 20466882
- Marquart, T.J.; Allen, R.M.; Ory, D.S.; Baldán, Á. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci., 2010, 107(27), 12228-12232. doi: 10.1073/pnas.1005191107 PMID: 20566875
- Sidorkiewicz, M. Is microRNA-33 an appropriate target in the treatment of atherosclerosis? Nutrients, 2023, 15(4), 902. doi: 10.3390/nu15040902 PMID: 36839260
- Horie, T.; Baba, O.; Kuwabara, Y.; Chujo, Y.; Watanabe, S.; Kinoshita, M.; Horiguchi, M.; Nakamura, T.; Chonabayashi, K.; Hishizawa, M.; Hasegawa, K.; Kume, N.; Yokode, M.; Kita, T.; Kimura, T.; Ono, K. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc., 2012, 1(6), e003376. doi: 10.1161/JAHA.112.003376 PMID: 23316322
- Ramírez, C.M.; Rotllan, N.; Vlassov, A.V.; Dávalos, A.; Li, M.; Goedeke, L.; Aranda, J.F.; Cirera-Salinas, D.; Araldi, E.; Salerno, A.; Wanschel, A.; Zavadil, J.; Castrillo, A.; Kim, J.; Suárez, Y.; Fernández-Hernando, C. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ. Res., 2013, 112(12), 1592-1601. doi: 10.1161/CIRCRESAHA.112.300626 PMID: 23519695
- Tabet, F.; Vickers, K.C.; Cuesta Torres, L.F.; Wiese, C.B.; Shoucri, B.M.; Lambert, G.; Catherinet, C.; Prado-Lourenco, L.; Levin, M.G.; Thacker, S.; Sethupathy, P.; Barter, P.J.; Remaley, A.T.; Rye, K.A. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun., 2014, 5(1), 3292. doi: 10.1038/ncomms4292 PMID: 24576947
- Rossi-Herring, G.; Belmonte, T.; Rivas-Urbina, A.; Benítez, S.; Rotllan, N.; Crespo, J.; Llorente-Cortés, V.; Sánchez-Quesada, J.L.; de Gonzalo-Calvo, D. Circulating lipoprotein-carried miRNome analysis reveals novel VLDL-enriched microRNAs that strongly correlate with the HDL-microRNA profile. Biomed. Pharmacother., 2023, 162, 114623. doi: 10.1016/j.biopha.2023.114623 PMID: 37023624
- Zhang, X.; Price, N.L.; Fernández-Hernando, C. Non-coding RNAs in lipid metabolism. Vascul. Pharmacol., 2019, 114, 93-102. doi: 10.1016/j.vph.2018.06.011 PMID: 29929012
- Tsai, W.C.; Hsu, S.D.; Hsu, C.S.; Lai, T.C.; Chen, S.J.; Shen, R.; Huang, Y.; Chen, H.C.; Lee, C.H.; Tsai, T.F.; Hsu, M.T.; Wu, J.C.; Huang, H.D.; Shiao, M.S.; Hsiao, M.; Tsou, A.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest., 2012, 122(8), 2884-2897. doi: 10.1172/JCI63455 PMID: 22820290
- Agbu, P.; Carthew, R.W. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat. Rev. Mol. Cell Biol., 2021, 22(6), 425-438. doi: 10.1038/s41580-021-00354-w PMID: 33772227
- Naeli, P.; Mirzadeh Azad, F.; Malakootian, M.; Seidah, N.G.; Mowla, S.J. Post-transcriptional regulation of PCSK9 by miR-191, miR-222, and miR-224. Front. Genet., 2017, 8, 189. doi: 10.3389/fgene.2017.00189 PMID: 29230236
- Bai, J.; Na, H.; Hua, X.; Wei, Y.; Ye, T.; Zhang, Y.; Jian, G.; Zeng, W.; Yan, L.; Tang, Q. A retrospective study of NENs and miR-224 promotes apoptosis of BON-1 cells by targeting PCSK9 inhibition. Oncotarget, 2017, 8(4), 6929-6939. doi: 10.18632/oncotarget.14322 PMID: 28036293
- Salerno, A.G.; van Solingen, C.; Scotti, E.; Wanschel, A.C.B.A.; Afonso, M.S.; Oldebeken, S.R.; Spiro, W.; Tontonoz, P.; Rayner, K.J.; Moore, K.J. LDL receptor pathway regulation by miR-224 and miR-520d. Front. Cardiovasc. Med., 2020, 7, 81. doi: 10.3389/fcvm.2020.00081 PMID: 32528976
- Chandra, A.; Sharma, K.; Pratap, K.; Singh, V.; Saini, N. Inhibition of microRNA-128-3p attenuates hypercholesterolemia in mouse model. Life Sci., 2021, 264, 118633. doi: 10.1016/j.lfs.2020.118633 PMID: 33190783
- Wang, N.; He, L. MicroRNA-148a regulates low-density lipoprotein metabolism by repressing the (pro)renin receptor. PLoS One, 2020, 15(5), e0225356. doi: 10.1371/journal.pone.0225356
- Shibata, C.; Kishikawa, T.; Otsuka, M.; Ohno, M.; Yoshikawa, T.; Takata, A.; Yoshida, H.; Koike, K. Inhibition of microRNA122 decreases SREBP1 expression by modulating suppressor of cytokine signaling 3 expression. Biochem. Biophys. Res. Commun., 2013, 438(1), 230-235. doi: 10.1016/j.bbrc.2013.07.064 PMID: 23891753
- Menon, B.; Gulappa, T.; Menon, K.M.J. miR-122 regulates LH receptor expression by activating sterol response element binding protein in rat ovaries. Endocrinology, 2015, 156(9), 3370-3380. doi: 10.1210/en.2015-1121 PMID: 26125464
- Irani, S.; Pan, X.; Peck, B.C.E.; Iqbal, J.; Sethupathy, P.; Hussain, M.M. MicroRNA-30c mimic mitigates hypercholesterolemia and atherosclerosis in mice. J. Biol. Chem., 2016, 291(35), 18397-18409. doi: 10.1074/jbc.M116.728451 PMID: 27365390
- Li, X.; Feng, S.; Luo, Y.; Long, K.; Lin, Z.; Ma, J.; Jiang, A.; Jin, L.; Tang, Q.; Li, M.; Wang, X. Expression profiles of microRNAs in oxidized low-density lipoprotein-stimulated RAW 264.7 cells. In vitro Cell. Dev. Biol. Anim., 2018, 54(2), 99-110. doi: 10.1007/s11626-017-0225-3 PMID: 29322359
- Ataei, S.; Ganjali, S.; Banach, M.; Karimi, E.; Sahebkar, A. The effect of PCSK9 immunization on the hepatic level of microRNAs associated with PCSK9/LDLR pathway. Arch. Med. Sci., 2022, 19(1), 203-208. doi: 10.5114/aoms/152000 PMID: 36817686
- van Solingen, C.; Oldebeken, S.R.; Salerno, A.G.; Wanschel, A.C.B.A.; Moore, K.J. High-throughput screening identifies MicroRNAs regulating human PCSK9 and hepatic low-density lipoprotein receptor expression. Front. Cardiovasc. Med., 2021, 8, 667298. doi: 10.3389/fcvm.2021.667298 PMID: 34322524
- Los, B.; Borges, J.B.; Oliveira, V.F.; Freitas, R.C.C.; Dagli-Hernandez, C.; Bortolin, R.H.; Gonçalves, R.M.; Faludi, A.A.; Rodrigues, A.C.; Bastos, G.M.; Jannes, C.E.; Pereira, A.C.; Hirata, R.D.C.; Hirata, M.H. Functional analysis of PCSK9 3′UTR variants and mRNAmiRNA interactions in patients with familial hypercholesterolemia. Epigenomics, 2021, 13(10), 779-791. doi: 10.2217/epi-2020-0462 PMID: 33899508
- Gupta, N.; Fisker, N.; Asselin, M.C.; Lindholm, M.; Rosenbohm, C.; Ørum, H.; Elmén, J.; Seidah, N.G.; Straarup, E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One, 2010, 5(5), e10682. doi: 10.1371/journal.pone.0010682 PMID: 20498851
- Dong, B.; Li, H.; Singh, A.B.; Cao, A.; Liu, J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J. Biol. Chem., 2015, 290(7), 4047-4058. doi: 10.1074/jbc.M114.597229 PMID: 25540198
- Ni, Y.G.; Di Marco, S.; Condra, J.H.; Peterson, L.B.; Wang, W.; Wang, F.; Pandit, S.; Hammond, H.A.; Rosa, R.; Cummings, R.T.; Wood, D.D.; Liu, X.; Bottomley, M.J.; Shen, X.; Cubbon, R.M.; Wang, S.; Johns, D.G.; Volpari, C.; Hamuro, L.; Chin, J.; Huang, L.; Zhao, J.Z.; Vitelli, S.; Haytko, P.; Wisniewski, D.; Mitnaul, L.J.; Sparrow, C.P.; Hubbard, B.; Carfí, A.; Sitlani, A. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J. Lipid Res., 2011, 52(1), 78-86. doi: 10.1194/jlr.M011445 PMID: 20959675
- Banerjee, Y.; Santos, R.D.; Al-Rasadi, K.; Rizzo, M. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns? Atherosclerosis, 2016, 248, 62-75. doi: 10.1016/j.atherosclerosis.2016.02.018 PMID: 26987067
- Chan, J.C.Y.; Piper, D.E.; Cao, Q.; Liu, D.; King, C.; Wang, W.; Tang, J.; Liu, Q.; Higbee, J.; Xia, Z.; Di, Y.; Shetterly, S.; Arimura, Z.; Salomonis, H.; Romanow, W.G.; Thibault, S.T.; Zhang, R.; Cao, P.; Yang, X.P.; Yu, T.; Lu, M.; Retter, M.W.; Kwon, G.; Henne, K.; Pan, O.; Tsai, M.M.; Fuchslocher, B.; Yang, E.; Zhou, L.; Lee, K.J.; Daris, M.; Sheng, J.; Wang, Y.; Shen, W.D.; Yeh, W.C.; Emery, M.; Walker, N.P.C.; Shan, B.; Schwarz, M.; Jackson, S.M. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl. Acad. Sci., 2009, 106(24), 9820-9825. doi: 10.1073/pnas.0903849106 PMID: 19443683
- Stein, E.A.; Mellis, S.; Yancopoulos, G.D.; Stahl, N.; Logan, D.; Smith, W.B.; Lisbon, E.; Gutierrez, M.; Webb, C.; Wu, R.; Du, Y.; Kranz, T.; Gasparino, E.; Swergold, G.D. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med., 2012, 366(12), 1108-1118. doi: 10.1056/NEJMoa1105803 PMID: 22435370
- Liang, H.; Chaparro-Riggers, J.; Strop, P.; Geng, T.; Sutton, J.E.; Tsai, D.; Bai, L.; Abdiche, Y.; Dilley, J.; Yu, J.; Wu, S.; Chin, S.M.; Lee, N.A.; Rossi, A.; Lin, J.C.; Rajpal, A.; Pons, J.; Shelton, D.L. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J. Pharmacol. Exp. Ther., 2012, 340(2), 228-236. doi: 10.1124/jpet.111.187419 PMID: 22019884
- Park, S.W.; Moon, Y.A.; Horton, J.D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem., 2004, 279(48), 50630-50638. doi: 10.1074/jbc.M410077200 PMID: 15385538
- Mayer, G.; Poirier, S.; Seidah, N.G. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J. Biol. Chem., 2008, 283(46), 31791-31801. doi: 10.1074/jbc.M805971200 PMID: 18799458
- Gouni-Berthold, I.; Berthold, H.K. Antisense oligonucleotides for the treatment of dyslipidemia. Curr. Pharm. Des., 2011, 17(9), 950-960. doi: 10.2174/138161211795428830 PMID: 21418033
- Frank-Kamenetsky, M.; Grefhorst, A.; Anderson, N.N.; Racie, T.S.; Bramlage, B.; Akinc, A.; Butler, D.; Charisse, K.; Dorkin, R.; Fan, Y.; Gamba-Vitalo, C.; Hadwiger, P.; Jayaraman, M.; John, M.; Jayaprakash, K.N.; Maier, M.; Nechev, L.; Rajeev, K.G.; Read, T.; Röhl, I.; Soutschek, J.; Tan, P.; Wong, J.; Wang, G.; Zimmermann, T.; de Fougerolles, A.; Vornlocher, H.P.; Langer, R.; Anderson, D.G.; Manoharan, M.; Koteliansky, V.; Horton, J.D.; Fitzgerald, K. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci., 2008, 105(33), 11915-11920. doi: 10.1073/pnas.0805434105 PMID: 18695239
- Ni, Y.G.; Condra, J.H.; Orsatti, L.; Shen, X.; Di Marco, S.; Pandit, S.; Bottomley, M.J.; Ruggeri, L.; Cummings, R.T.; Cubbon, R.M.; Santoro, J.C.; Ehrhardt, A.; Lewis, D.; Fisher, T.S.; Ha, S.; Njimoluh, L.; Wood, D.D.; Hammond, H.A.; Wisniewski, D.; Volpari, C.; Noto, A.; Lo Surdo, P.; Hubbard, B.; Carfí, A.; Sitlani, A. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J. Biol. Chem., 2010, 285(17), 12882-12891. doi: 10.1074/jbc.M110.113035 PMID: 20172854
- Akram, O.N.; Bernier, A.; Petrides, F.; Wong, G.; Lambert, G. Beyond LDL cholesterol, a new role for PCSK9. Arterioscler. Thromb. Vasc. Biol., 2010, 30(7), 1279-1281. doi: 10.1161/ATVBAHA.110.209007 PMID: 20554949
- Squizzato, A.; Suter, M.B.; Nerone, M.; Giugliano, R.P.; Dentali, F.; Maresca, A.M.; Campiotti, L.; Grandi, A.M.; Guasti, L. PCSK9 inhibitors for treating dyslipidemia in patients at different cardiovascular risk: A systematic review and a meta-analysis. Intern. Emerg. Med., 2017, 12(7), 1043-1053. doi: 10.1007/s11739-017-1708-7 PMID: 28695455
- Banach, M.; Penson, P.E.; Vrablik, M.; Bunc, M.; Dyrbus, K.; Fedacko, J.; Gaita, D.; Gierlotka, M.; Jarai, Z.; Magda, S.L.; Margetic, E.; Margoczy, R.; Durak-Nalbantic, A.; Ostadal, P.; Pella, D.; Trbusic, M.; Udroiu, C.A.; Vlachopoulos, C.; Vulic, D.; Fras, Z.; Dudek, D.; Reiner, . Optimal use of lipid-lowering therapy after acute coronary syndromes: A Position Paper endorsed by the International Lipid Expert Panel (ILEP). Pharmacol. Res., 2021, 166, 105499. doi: 10.1016/j.phrs.2021.105499 PMID: 33607265
- Rallidis, L.S.; Skoumas, I.; Liberopoulos, E.N.; Vlachopoulos, C.; Kiouri, E.; Koutagiar, I.; Anastasiou, G.; Kosmas, N.; Elisaf, M.S.; Tousoulis, D.; Iliodromitis, E. PCSK9 inhibitors in clinical practice: Novel directions and new experiences. Hellenic J. Cardiol., 2020, 61(4), 241-245. doi: 10.1016/j.hjc.2019.10.003 PMID: 31783124
- Han, Y.; Chen, J.; Chopra, V.K.; Zhang, S.; Su, G.; Ma, C.; Huang, Z.; Ma, Y.; Yao, Z.; Yuan, Z.; Zhao, Q.; Kuanprasert, S.; Baccara-Dinet, M.T.; Manvelian, G.; Li, J.; Chen, R. ODYSSEY EAST: Alirocumab efficacy and safety vs ezetimibe in high cardiovascular risk patients with hypercholesterolemia and on maximally tolerated statin in China, India, and Thailand. J. Clin. Lipidol., 2020, 14(1), 98-108.e8. doi: 10.1016/j.jacl.2019.10.015 PMID: 31882376
- Cho, L.; Dent, R.; Stroes, E.S.G.; Stein, E.A.; Sullivan, D.; Ruzza, A.; Flower, A.; Somaratne, R.; Rosenson, R.S. Persistent safety and efficacy of evolocumab in patients with statin intolerance: A subset analysis of the OSLER open-label extension studies. Cardiovasc. Drugs Ther., 2018, 32(4), 365-372. doi: 10.1007/s10557-018-6817-7 PMID: 30073585
- Watts, G.F.; Chan, D.C.; Dent, R.; Somaratne, R.; Wasserman, S.M.; Scott, R.; Burrows, S.; R Barrett, P.H. Factorial effects of evolocumab and atorvastatin on lipoprotein metabolism. Circulation, 2017, 135(4), 338-351. doi: 10.1161/CIRCULATIONAHA.116.025080 PMID: 27941065
- Rane, P. B.; Patel, J.; Harrison, D. J.; Shepherd, J.; Leith, A.; Bailey, H.; Piercy, J. Patient characteristics and real-world treatment patterns among early users of PCSK9 inhibitors. Am. J. Cardiovasc. Drugs., 2018, 18(2), 103-108. doi: 10.1007/s40256-017-0246-z
- Arrieta, A.; Hong, J.C.; Khera, R.; Virani, S.S.; Krumholz, H.M.; Nasir, K. Updated cost-effectiveness assessments of PCSK9 inhibitors from the perspectives of the health system and private payers. JAMA Cardiol., 2017, 2(12), 1369-1374. doi: 10.1001/jamacardio.2017.3655 PMID: 29049467
- Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; Bruckert, E.; Cho, L.; Dent, R.; Knusel, B.; Xue, A.; Scott, R.; Wasserman, S.M.; Rocco, M. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol., 2014, 63(23), 2541-2548. doi: 10.1016/j.jacc.2014.03.019 PMID: 24694531
- Koba, S.; Inoue, I.; Cyrille, M.; Lu, C.; Inomata, H.; Shimauchi, J.; Kajinami, K. Evolocumab vs. ezetimibe in statin-intolerant hyperlipidemic Japanese patients: Phase 3 GAUSS-4 trial. J. Atheroscler. Thromb., 2020, 27(5), 471-484. doi: 10.5551/jat.50963 PMID: 31748467
- Nissen, S.E.; Stroes, E.; Dent-Acosta, R.E.; Rosenson, R.S.; Lehman, S.J.; Sattar, N.; Preiss, D.; Bruckert, E.; Ceka, R.; Lepor, N.; Ballantyne, C.M.; Gouni-Berthold, I.; Elliott, M.; Brennan, D.M.; Wasserman, S.M.; Somaratne, R.; Scott, R.; Stein, E.A. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance. JAMA, 2016, 315(15), 1580-1590. doi: 10.1001/jama.2016.3608 PMID: 27039291
- Moriarty, P.M.; Thompson, P.D.; Cannon, C.P.; Guyton, J.R.; Bergeron, J.; Zieve, F.J.; Bruckert, E.; Jacobson, T.A.; Kopecky, S.L.; Baccara-Dinet, M.T.; Du, Y.; Pordy, R.; Gipe, D.A. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J. Clin. Lipidol., 2015, 9(6), 758-769. doi: 10.1016/j.jacl.2015.08.006 PMID: 26687696
- Raal, F.J.; Honarpour, N.; Blom, D.J.; Hovingh, G.K.; Xu, F.; Scott, R.; Wasserman, S.M.; Stein, E.A. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): A randomised, double-blind, placebo-controlled trial. Lancet, 2015, 385(9965), 341-350. doi: 10.1016/S0140-6736(14)61374-X PMID: 25282520
- Kastelein, J.J.P.; Ginsberg, H.N.; Langslet, G.; Hovingh, G.K.; Ceska, R.; Dufour, R.; Blom, D.; Civeira, F.; Krempf, M.; Lorenzato, C.; Zhao, J.; Pordy, R.; Baccara-Dinet, M.T.; Gipe, D.A.; Geiger, M.J.; Farnier, M. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur. Heart J., 2015, 36(43), ehv370. doi: 10.1093/eurheartj/ehv370 PMID: 26330422
- Cupido, A.J.; Reeskamp, L.F.; Kastelein, J.J.P. Novel lipid modifying drugs to lower LDL cholesterol. Curr. Opin. Lipidol., 2017, 28(4), 367-373. doi: 10.1097/MOL.0000000000000428 PMID: 28445176
- Fitzgerald, K.; Frank-Kamenetsky, M.; Shulga-Morskaya, S.; Liebow, A.; Bettencourt, B.R.; Sutherland, J.E.; Hutabarat, R.M.; Clausen, V.A.; Karsten, V.; Cehelsky, J.; Nochur, S.V.; Kotelianski, V.; Horton, J.; Mant, T.; Chiesa, J.; Ritter, J.; Munisamy, M.; Vaishnaw, A.K.; Gollob, J.A.; Simon, A. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: A randomised, single-blind, placebo-controlled, phase 1 trial. Lancet, 2014, 383(9911), 60-68. doi: 10.1016/S0140-6736(13)61914-5 PMID: 24094767
- Sahebkar, A.; Watts, G.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: What can the clinician expect? Cardiovasc. Drugs Ther., 2013, 27(6), 559-567. doi: 10.1007/s10557-013-6479-4 PMID: 23913122
- Gaudet, D.; Kereiakes, D.J.; McKenney, J.M.; Roth, E.M.; Hanotin, C.; Gipe, D.; Du, Y.; Ferrand, A.C.; Ginsberg, H.N.; Stein, E.A. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am. J. Cardiol., 2014, 114(5), 711-715. doi: 10.1016/j.amjcard.2014.05.060 PMID: 25060413
- Momtazi, A.A.; Banach, M.; Pirro, M.; Stein, E.A.; Sahebkar, A. PCSK9 and diabetes: Is there a link? Drug Discov. Today, 2017, 22(6), 883-895. doi: 10.1016/j.drudis.2017.01.006 PMID: 28111330
- Roth, E.M.; Taskinen, M.R.; Ginsberg, H.N.; Kastelein, J.J.P.; Colhoun, H.M.; Robinson, J.G.; Merlet, L.; Pordy, R.; Baccara-Dinet, M.T. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24week, double-blind, randomized Phase 3 trial. Int. J. Cardiol., 2014, 176(1), 55-61. doi: 10.1016/j.ijcard.2014.06.049 PMID: 25037695
- Ota, H.; Omori, H.; Kawasaki, M.; Hirakawa, A.; Matsuo, H. Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: A near-infrared spectroscopy study. Eur. Heart J. Cardiovasc. Imaging, 2022, 23(2), 217-228. doi: 10.1093/ehjci/jeab034 PMID: 33637979
- Wu, Z.; Gao, L.; Lin, Z. Can proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors regress coronary atherosclerotic plaque? A systematic review and meta-analysis. Am. J. Transl. Res., 2023, 15(1), 452-465. PMID: 36777825
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; Wasserman, S.M.; Scott, R.; Ungi, I.; Podolec, J.; Ophuis, A.O.; Cornel, J.H.; Borgman, M.; Brennan, D.M.; Nissen, S.E. Effect of evolocumab on progression of coronary disease in statin-treated patients. JAMA, 2016, 316(22), 2373-2384. doi: 10.1001/jama.2016.16951 PMID: 27846344
- Koren, M.J.; Sabatine, M.S.; Giugliano, R.P.; Langslet, G.; Wiviott, S.D.; Kassahun, H.; Ruzza, A.; Ma, Y.; Somaratne, R.; Raal, F.J. Long-term low-density lipoprotein cholesterollowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolemia. JAMA Cardiol., 2017, 2(6), 598-607. doi: 10.1001/jamacardio.2017.0747 PMID: 28291870
- Durairaj, A.; Sabates, A.; Nieves, J.; Moraes, B.; Baum, S. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and its inhibitors: A review of physiology, biology, and clinical data. Curr. Treat. Options Cardiovasc. Med., 2017, 19(8), 58. doi: 10.1007/s11936-017-0556-0 PMID: 28639183
- Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.T.; Turner, T.; Visseren, F.L.J.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J.P. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440. doi: 10.1056/NEJMoa1615758 PMID: 28306389
- Turgeon, R.D.; Tsuyuki, R.T.; Gyenes, G.T.; Pearson, G.J. Cardiovascular efficacy and safety of PCSK9 inhibitors: Systematic review and meta-analysis including the ODYSSEY outcomes trial. Can. J. Cardiol., 2018, 34(12), 1600-1605. doi: 10.1016/j.cjca.2018.04.002 PMID: 30527147
- Tavori, H.; Giunzioni, I.; Fazio, S. PCSK9 inhibition to reduce cardiovascular disease risk. Curr. Opin. Endocrinol. Diabetes Obes., 2015, 22(2), 126-132. doi: 10.1097/MED.0000000000000137 PMID: 25692926
- Rallidis, L.S.; Fountoulaki, K.; Anastasiou-Nana, M. Managing the underestimated risk of statin-associated myopathy. Int. J. Cardiol., 2012, 159(3), 169-176. doi: 10.1016/j.ijcard.2011.07.048 PMID: 21813193
- Trpkovic, A.; Stanimirovic, J.; Rizzo, M.; Resanovic, I.; Soskic, S.; Jevremovic, D.; Isenovic, E.R. High-sensitivity C-reactive protein and statin initiation. Angiology, 2015, 66(6), 503-507. doi: 10.1177/0003319714543000 PMID: 25053677
- Jellinger, P. S.; Handelsman, Y.; Rosenblit, P. D.; Bloomgarden, Z. T.; Fonseca, V. A.; Garber, A. J.; Grunberger, G.; Guerin, C. K.; Bell, D. S. H.; Mechanick, J. I. American association of clinical endocrinologists and american college of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr. Pract., 2017, 23(S2), 1-87. doi: 10.4158/EP171764.APPGL
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M.R.; Tokgozoglu, L.; Wiklund, O.; Mueller, C.; Drexel, H.; Aboyans, V.; Corsini, A.; Doehner, W.; Farnier, M.; Gigante, B.; Kayikcioglu, M.; Krstacic, G.; Lambrinou, E.; Lewis, B.S.; Masip, J.; Moulin, P.; Petersen, S.; Petronio, A.S.; Piepoli, M.F.; Pintó, X.; Räber, L.; Ray, K.K.; Reiner, .; Riesen, W.F.; Roffi, M.; Schmid, J-P.; Shlyakhto, E.; Simpson, I.A.; Stroes, E.; Sudano, I.; Tselepis, A.D.; Viigimaa, M.; Vindis, C.; Vonbank, A.; Vrablik, M.; Vrsalovic, M.; Zamorano, J.L.; Collet, J-P.; Koskinas, K.C.; Casula, M.; Badimon, L.; John Chapman, M.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Nibouche, D.; Zelveian, P.H.; Siostrzonek, P.; Najafov, R.; van de Borne, P.; Pojskic, B.; Postadzhiyan, A.; Kypris, L.; pinar, J.; Larsen, M.L.; Eldin, H.S.; Viigimaa, M.; Strandberg, T.E.; Ferrières, J.; Agladze, R.; Laufs, U.; Rallidis, L.; Bajnok, L.; Gudjónsson, T.; Maher, V.; Henkin, Y.; Gulizia, M.M.; Mussagaliyeva, A.; Bajraktari, G.; Kerimkulova, A.; Latkovskis, G.; Hamoui, O.; Slapikas, R.; Visser, L.; Dingli, P.; Ivanov, V.; Boskovic, A.; Nazzi, M.; Visseren, F.; Mitevska, I.; Retterstøl, K.; Jankowski, P.; Fontes-Carvalho, R.; Gaita, D.; Ezhov, M.; Foscoli, M.; Giga, V.; Pella, D.; Fras, Z.; de Isla, L.P.; Hagström, E.; Lehmann, R.; Abid, L.; Ozdogan, O.; Mitchenko, O.; Patel, R.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188. doi: 10.1093/eurheartj/ehz455 PMID: 31504418
- Avis, H.J.; Hutten, B.A.; Gagné, C.; Langslet, G.; McCrindle, B.W.; Wiegman, A.; Hsia, J.; Kastelein, J.J.P.; Stein, E.A. Efficacy and safety of rosuvastatin therapy for children with familial hypercholesterolemia. J. Am. Coll. Cardiol., 2010, 55(11), 1121-1126. doi: 10.1016/j.jacc.2009.10.042 PMID: 20223367
- Zhang, X.L.; Zhu, Q.Q.; Zhu, L.; Chen, J.Z.; Chen, Q.H.; Li, G.N.; Xie, J.; Kang, L.N.; Xu, B. Safety and efficacy of anti-PCSK9 antibodies: A meta-analysis of 25 randomized, controlled trials. BMC Med., 2015, 13(1), 123. doi: 10.1186/s12916-015-0358-8 PMID: 26099511
- Nishikido, T. Clinical potential of inclisiran for patients with a high risk of atherosclerotic cardiovascular disease. Cardiovasc. Diabetol., 2023, 22(1), 20. doi: 10.1186/s12933-023-01752-4 PMID: 36717882
- Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; Kastelein, J.J.P. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med., 2020, 382(16), 1507-1519. doi: 10.1056/NEJMoa1912387 PMID: 32187462
- Casula, M.; Olmastroni, E.; Boccalari, M.T.; Tragni, E.; Pirillo, A.; Catapano, A.L. Cardiovascular events with PCSK9 inhibitors: An updated meta-analysis of randomised controlled trials. Pharmacol. Res., 2019, 143, 143-150. doi: 10.1016/j.phrs.2019.03.021 PMID: 30926528
- Gouni-Berthold, I.; Descamps, O. S.; Fraass, U.; Hartfield, E.; Allcott, K. Systematic review of published phase 3 data on anti-PCSK9 monoclonal antibodies in patients with hypercholesterolaemia. Br. J. Clin. Pharmacol., 2016, 82(6), 1412-1443. doi: 10.1111/bcp.13066
- Karatasakis, A.; Danek, B.A.; Karacsonyi, J.; Rangan, B.V.; Roesle, M.K.; Knickelbine, T.; Miedema, M.D.; Khalili, H.; Ahmad, Z.; Abdullah, S.; Banerjee, S.; Brilakis, E.S. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: A meta-analysis of 35 randomized controlled trials. J. Am. Heart Assoc., 2017, 6(12), e006910. doi: 10.1161/JAHA.117.006910 PMID: 29223954
- AlTurki, A.; Marafi, M.; Dawas, A.; Dube, M.P.; Vieira, L.; Sherman, M.H.; Gregoire, J.; Thanassoulis, G.; Tardif, J.C.; Huynh, T. Meta-analysis of randomized controlled trials assessing the impact of proprotein convertase subtilisin/kexin type 9 antibodies on mortality and cardiovascular outcomes. Am. J. Cardiol., 2019, 124(12), 1869-1875. doi: 10.1016/j.amjcard.2019.09.011 PMID: 31679643
- Choi, H.D.; Kim, J.H. An updated meta-analysis for safety evaluation of alirocumab and evolocumab as PCSK9 inhibitors. Cardiovasc. Ther., 2023, 2023, 1-11. doi: 10.1155/2023/7362551 PMID: 36704607
- Bielecka-Dabrowa, A.; Mikhailidis, D.P.; Hannam, S.; Aronow, W.S.; Rysz, J.; Banach, M. Statins and dilated cardiomyopathy: Do we have enough data? Expert Opin. Investig. Drugs, 2011, 20(3), 315-323. doi: 10.1517/13543784.2011.550570 PMID: 21210757
- Wierzbicki, A.S.; Hardman, T.C.; Viljoen, A. Inhibition of pro-protein convertase subtilisin kexin 9 corrected (PCSK-9) as a treatment for hyperlipidaemia. Expert Opin. Investig. Drugs, 2012, 21(5), 667-676. doi: 10.1517/13543784.2012.679340 PMID: 22493980
- Lambert, G.; Charlton, F.; Rye, K.A.; Piper, D.E. Molecular basis of PCSK9 function. Atherosclerosis, 2009, 203(1), 1-7. doi: 10.1016/j.atherosclerosis.2008.06.010 PMID: 18649882
- Tibolla, G.; Norata, G.D.; Artali, R.; Meneghetti, F.; Catapano, A.L. Proprotein convertase subtilisin/kexin type 9 (PCSK9): From structurefunction relation to therapeutic inhibition. Nutr. Metab. Cardiovasc. Dis., 2011, 21(11), 835-843. doi: 10.1016/j.numecd.2011.06.002 PMID: 21943799
- Qian, Y.W.; Schmidt, R.J.; Zhang, Y.; Chu, S.; Lin, A.; Wang, H.; Wang, X.; Beyer, T.P.; Bensch, W.R.; Li, W.; Ehsani, M.E.; Lu, D.; Konrad, R.J.; Eacho, P.I.; Moller, D.E.; Karathanasis, S.K.; Cao, G. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J. Lipid Res., 2007, 48(7), 1488-1498. doi: 10.1194/jlr.M700071-JLR200 PMID: 17449864
- Lagace, T.A.; Curtis, D.E.; Garuti, R.; McNutt, M.C.; Park, S.W.; Prather, H.B.; Anderson, N.N.; Ho, Y.K.; Hammer, R.E.; Horton, J.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice. J. Clin. Invest., 2006, 116(11), 2995-3005. doi: 10.1172/JCI29383 PMID: 17080197
- Nassoury, N.; Blasiole, D.A.; Tebon Oler, A.; Benjannet, S.; Hamelin, J.; Poupon, V.; McPherson, P.S.; Attie, A.D.; Prat, A.; Seidah, N.G. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic, 2007, 8(6), 718-732. doi: 10.1111/j.1600-0854.2007.00562.x PMID: 17461796
- Zhang, D.W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; McDonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612. doi: 10.1074/jbc.M702027200 PMID: 17452316
- Fisher, T.S.; Surdo, P.L.; Pandit, S.; Mattu, M.; Santoro, J.C.; Wisniewski, D.; Cummings, R.T.; Calzetta, A.; Cubbon, R.M.; Fischer, P.A.; Tarachandani, A.; De Francesco, R.; Wright, S.D.; Sparrow, C.P.; Carfi, A.; Sitlani, A. Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation. J. Biol. Chem., 2007, 282(28), 20502-20512. doi: 10.1074/jbc.M701634200 PMID: 17493938
- Alborn, W.E.; Cao, G.; Careskey, H.E.; Qian, Y.W.; Subramaniam, D.R.; Davies, J.; Conner, E.M.; Konrad, R.J. Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin. Chem., 2007, 53(10), 1814-1819. doi: 10.1373/clinchem.2007.091280 PMID: 17702855
- Cariou, B.; Le May, C.; Costet, P. Clinical aspects of PCSK9. Atherosclerosis, 2011, 216(2), 258-265. doi: 10.1016/j.atherosclerosis.2011.04.018 PMID: 21596380
- Sullivan, D.; Olsson, A.G.; Scott, R.; Kim, J.B.; Xue, A.; Gebski, V.; Wasserman, S.M.; Stein, E.A. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: The GAUSS randomized trial. JAMA, 2012, 308(23), 2497-2506. doi: 10.1001/jama.2012.25790 PMID: 23128163
- Troutt, J.S.; Alborn, W.E.; Cao, G.; Konrad, R.J. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J. Lipid Res., 2010, 51(2), 345-351. doi: 10.1194/jlr.M000620 PMID: 19738285
- Chernogubova, E.; Strawbridge, R.; Mahdessian, H.; Mälarstig, A.; Krapivner, S.; Gigante, B.; Hellénius, M.L.; de Faire, U.; Franco-Cereceda, A.; Syvänen, A.C.; Troutt, J.S.; Konrad, R.J.; Eriksson, P.; Hamsten, A.; van t Hooft, F.M. Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler. Thromb. Vasc. Biol., 2012, 32(6), 1526-1534. doi: 10.1161/ATVBAHA.111.240549 PMID: 22460556
- Basak, A.; Palmer-Smith, H.; Mishra, P. Proprotein convertase subtilisin kexin9 (PCSK9): A novel target for cholesterol regulation. Protein Pept. Lett., 2012, 19(6), 575-585. doi: 10.2174/092986612800494020 PMID: 22519528
- Levenson, A.E.; Shah, A.S.; Khoury, P.R.; Kimball, T.R.; Urbina, E.M.; de Ferranti, S.D.; Maahs, D.M.; Dolan, L.M.; Wadwa, R.P.; Biddinger, S.B. Obesity and type 2 diabetes are associated with elevated PCSK9 levels in young women. Pediatr. Diabetes, 2017, 18(8), 755-760. doi: 10.1111/pedi.12490 PMID: 28093849
- Xu, L.; Zhao, G.; Zhu, H.; Wang, S. Peroxisome proliferator-activated receptor-γ antagonizes LOX-1-mediated endothelial injury by transcriptional activation of miR-590-5p. PPAR Res., 2019, 2019, 2715176. doi: 10.1155/2019/2715176
- Jiang, H.; Fan, C.; Lu, Y.; Cui, X.; Liu, J. Astragaloside regulates lncRNA LOC100912373 and the miR-17-5p/PDK1 axis to inhibit the proliferation of fibroblast-like synoviocytes in rats with rheumatoid arthritis. Int. J. Mol. Med., 2021, 48(1), 130. doi: 10.3892/ijmm.2021.4963 PMID: 34013364
- Zhao, J.; Cui, L.; Sun, J.; Xie, Z.; Zhang, L.; Ding, Z.; Quan, X. Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell. Signal., 2020, 76, 109781. doi: 10.1016/j.cellsig.2020.109781 PMID: 32947021
- Ren, K.; Jiang, T.; Zhou, H. F.; Liang, Y.; Zhao, G. J. apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell Physiol. Biochem., 2018, 47(5), 2170-2184. doi: 10.1159/000491528
- Yuan, X.; Chen, J.; Dai, M. Paeonol promotes microRNA-126 expression to inhibit monocyte adhesion to ox-LDL-injured vascular endothelial cells and block the activation of the PI3K/Akt/NF-κB pathway. Int. J. Mol. Med., 2016, 38(6), 1871-1878. doi: 10.3892/ijmm.2016.2778 PMID: 27748840
- Bai, Y.; Liu, X.; Chen, Q.; Chen, T.; Jiang, N.; Guo, Z. Myricetin ameliorates ox-LDL-induced HUVECs apoptosis and inflammation via lncRNA GAS5 upregulating the expression of miR-29a-3p. Sci. Rep., 2021, 11(1), 19637. doi: 10.1038/s41598-021-98916-7 PMID: 34608195
- Abdollahi, E.; Keyhanfar, F.; Delbandi, A.A.; Falak, R.; Hajimiresmaiel, S.J.; Shafiei, M. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur. J. Pharmacol., 2022, 918, 174715. doi: 10.1016/j.ejphar.2021.174715 PMID: 35026193
- Cao, G.; Xuan, X.; Zhang, R.; Hu, J.; Dong, H. Gene therapy for cardiovascular disease: Basic research and clinical prospects. Front. Cardiovasc. Med., 2021, 8, 760140. doi: 10.3389/fcvm.2021.760140 PMID: 34805315
- Wu, Z.; Asokan, A.; Samulski, R. J. Adeno-associated virus serotypes: Vector toolkit for human gene therapy. Mol. Ther., 2006, 14(3), 316-27. doi: 10.1016/j.ymthe.2006.05.009
- Grieger, J.C.; Samulski, R.J. Packaging capacity of adeno-associated virus serotypes: Impact of larger genomes on infectivity and postentry steps. J. Virol., 2005, 79(15), 9933-9944. doi: 10.1128/JVI.79.15.9933-9944.2005 PMID: 16014954
- Dong, J.Y.; Fan, P.D.; Frizzell, R.A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther., 1996, 7(17), 2101-2112. doi: 10.1089/hum.1996.7.17-2101 PMID: 8934224
- Athanasopoulos, T.; Munye, M.M.; Yáñez-Muñoz, R.J. Nonintegrating gene therapy vectors. Hematol. Oncol. Clin. North Am., 2017, 31(5), 753-770. doi: 10.1016/j.hoc.2017.06.007 PMID: 28895845
- Zhen, S.; Li, X. Liposomal delivery of CRISPR/Cas9. Cancer Gene Ther., 2020, 27(7-8), 515-527. doi: 10.1038/s41417-019-0141-7 PMID: 31676843
- Qi, Y.; Song, H.; Xiao, H.; Cheng, G.; Yu, B.; Xu, F.J. Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids. Small, 2018, 14(42), 1803061. doi: 10.1002/smll.201803061 PMID: 30238691
- Zhang, X.; Xu, C.; Gao, S.; Li, P.; Kong, Y.; Li, T.; Li, Y.; Xu, F. J. CRISPR/Cas9 delivery mediated with hydroxyl-rich nanosystems for gene editing in aorta. Adv. Sci., 2019, 6(12), 1900386. doi: 10.1002/advs.201900386
- Charbe, N.B.; Lagos, C.F.; Ortiz, C.A.V.; Tambuwala, M.; Palakurthi, S.S.; Zacconi, F.C. PCSK9 conjugated liposomes for targeted delivery of paclitaxel to the cancer cell: A proof-of-concept study. Biomed. Pharmacother., 2022, 153, 113428. doi: 10.1016/j.biopha.2022.113428 PMID: 36076548
- Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet., 2022, 23(5), 265-280. doi: 10.1038/s41576-021-00439-4 PMID: 34983972
- Vartak, T.; Kumaresan, S.; Brennan, E. Decoding microRNA drivers in atherosclerosis. Biosci. Rep., 2022, 42(7), BSR20212355. doi: 10.1042/BSR20212355
- Segal, M.; Slack, F.J. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin. Drug Discov., 2020, 15(9), 987-991. doi: 10.1080/17460441.2020.1765770 PMID: 32421364
- Dosta, P.; Tamargo, I.; Ramos, V.; Kumar, S.; Kang, D. W.; Borrós, S. Delivery of anti-microRNA-712 to inflamed endothelial cells using poly(β-amino ester) nanoparticles conjugated with vcam-1 targeting peptide. Adv. Healthc. Mater., 2021, 10(15), e2001894. doi: 10.1002/adhm.202001894
- Kamaly, N.; Fredman, G.; Subramanian, M.; Gadde, S.; Pesic, A.; Cheung, L.; Fayad, Z.A.; Langer, R.; Tabas, I.; Cameron Farokhzad, O. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc. Natl. Acad. Sci., 2013, 110(16), 6506-6511. doi: 10.1073/pnas.1303377110 PMID: 23533277
- Kamaly, N.; Fredman, G.; Fojas, J.J.R.; Subramanian, M.; Choi, W.I.I.; Zepeda, K.; Vilos, C.; Yu, M.; Gadde, S.; Wu, J.; Milton, J.; Carvalho Leitao, R.; Rosa Fernandes, L.; Hasan, M.; Gao, H.; Nguyen, V.; Harris, J.; Tabas, I.; Farokhzad, O.C. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano, 2016, 10(5), 5280-5292. doi: 10.1021/acsnano.6b01114 PMID: 27100066
- Fredman, G.; Kamaly, N.; Spolitu, S.; Milton, J.; Ghorpade, D.; Chiasson, R.; Kuriakose, G.; Perretti, M.; Farokhzad, O.; Tabas, I. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med., 2015, 7(275), 275ra20. doi: 10.1126/scitranslmed.aaa1065 PMID: 25695999
- Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98. doi: 10.1016/j.cmet.2006.01.005 PMID: 16459310
- Yaman, S.O.; Orem, A.; Yucesan, F.B.; Kural, B.V.; Orem, C. Evaluation of circulating miR-122, miR-30c and miR-33a levels and their association with lipids, lipoproteins in postprandial lipemia. Life Sci., 2021, 264, 118585. doi: 10.1016/j.lfs.2020.118585 PMID: 33058914
Supplementary files
