Potential Role of Bone Metabolism Markers in Kidney Transplant Recipients


Cite item

Full Text

Abstract

Background:The impact of treatments, suppressing the immune system, persistent hyperparathyroidism, and other risk factors on mineral and bone disorder (MBD) after kidney transplantation is well-known. However, there is limited knowledge about their effect on bone metabolism biomarkers. This study aimed to investigate the influence of kidney transplant on these markers, comparing them to patients undergoing hemodialysis and healthy individuals.

Methods:In this cross-sectional study, three groups were included: kidney transplant patients (n = 57), hemodialysis patients (n = 26), and healthy controls (n = 31). Plasma concentrations of various bone metabolism biomarkers, including Dickkopf-related protein 1, osteoprotegerin, osteocalcin, osteopontin, sclerostin, and fibroblast growth factor 23, were measured. Associations between these biomarkers and clinical and laboratory data were evaluated.

Results:A total of 114 patients participated. Transplant recipients had significantly lower levels of Dickkopf-related protein 1, osteoprotegerin, osteocalcin, osteopontin, sclerostin, and fibroblast growth factor 23 compared to hemodialysis patients. Alkaline phosphatase levels positively correlated with osteopontin (r = 0.572, p < 0.001), while fibroblast growth factor 23 negatively correlated with 25-hydroxyvitamin D (r = -0.531, p = 0.019). The panel of bone biomarkers successfully predicted hypercalcemia (area under the curve [AUC] = 0.852, 95% confidence interval [CI] = 0.679-1.000) and dyslipidemia (AUC = 0.811, 95% CI 0.640-0.982) in transplant recipients.

Conclusion:Kidney transplantation significantly improves mineral and bone disorders associated with end-stage kidney disease by modulating MBD markers and reducing bone metabolism markers, such as Dickkopf-related protein 1, osteoprotegerin, osteocalcin, osteopontin, and sclerostin. Moreover, the panel of bone biomarkers effectively predicted hypercalcemia and dyslipidemia in transplant recipients.

About the authors

Flávia Vigil

Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine,, Federal University of Minas Gerais (UFMG),

Email: info@benthamscience.net

Pedro Castro

Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine,, Federal University of Minas Gerais (UFMG

Email: info@benthamscience.net

Ursula Hasparyk

Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine,, Federal University of Minas Gerais (UFMG)

Email: info@benthamscience.net

Victória Bartolomei

Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine,, Federal University of Minas Gerais (UFMG)

Email: info@benthamscience.net

Ana Silva

nterdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine,, Federal University of Minas Gerais (UFMG)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kidney disease: Improving global outcomes (KDIGO) CKD-MBD update work group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. Suppl., 2011, 2017(7), 1-59.
  2. Bouquegneau, A.; Salam, S.; Delanaye, P.; Eastell, R.; Khwaja, A. Bone disease after kidney transplantation. Clin. J. Am. Soc. Nephrol., 2016, 11(7), 1282-1296. doi: 10.2215/CJN.11371015 PMID: 26912549
  3. Moe, S.M.; Chen, N.X. Mechanisms of vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol., 2008, 19(2), 213-216. doi: 10.1681/ASN.2007080854 PMID: 18094365
  4. Mazzaferro, S.; Pasquali, M.; Taggi, F.; Baldinelli, M.; Conte, C.; Muci, M.L.; Pirozzi, N.; Carbone, I.; Francone, M.; Pugliese, F. Progression of coronary artery calcification in renal transplantation and the role of secondary hyperparathyroidism and inflammation. Clin. J. Am. Soc. Nephrol., 2009, 4(3), 685-690. doi: 10.2215/CJN.03930808 PMID: 19211668
  5. Mazzaferro, S.; Pasquali, M.; Pugliese, F.; Barresi, G.; Carbone, I.; Francone, M.; Sardella, D.; Taggi, F. Serum levels of calcification inhibition proteins and coronary artery calcium score: Comparison between transplantation and dialysis. Am. J. Nephrol., 2007, 27(1), 75-83. doi: 10.1159/000099095 PMID: 17259697
  6. Elias, R.M.; Moysés, R.M.A. Elderly patients with chronic kidney disease have higher risk of hyperparathyroidism. Int. Urol. Nephrol., 2017, 49(10), 1815-1821. doi: 10.1007/s11255-017-1650-7 PMID: 28695313
  7. Evenepoel, P.; Claes, K.; Kuypers, D.; Maes, B.; Bammens, B.; Vanrenterghem, Y. Natural history of parathyroid function and calcium metabolism after kidney transplantation: A single-centre study. Nephrol. Dial. Transplant., 2004, 19(5), 1281-1287. doi: 10.1093/ndt/gfh128 PMID: 14993493
  8. Reinhardt, W.; Bartelworth, H.; JockenhA vel, F.; Schmidt-Gayk, H.; Witzke, O.; Wagner, K.; Heemann, U.W.; Reinwein, D.; Philipp, T.; Mann, K. Sequential changes of biochemical bone parameters after kidney transplantation. Nephrol. Dial. Transplant., 1998, 13(2), 436-442. doi: 10.1093/oxfordjournals.ndt.a027843 PMID: 9509459
  9. Julian, B.A.; Laskow, D.A.; Dubovsky, J.; Dubovsky, E.V.; Curtis, J.J.; Quarles, L.D. Rapid loss of vertebral mineral density after renal transplantation. N. Engl. J. Med., 1991, 325(8), 544-550. doi: 10.1056/NEJM199108223250804 PMID: 1857390
  10. Cejka, D.; Jäger-Lansky, A.; Kieweg, H.; Weber, M.; Bieglmayer, C.; Haider, D.G.; Diarra, D.; Patsch, J.M.; Kainberger, F.; Bohle, B.; Haas, M. Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol. Dial. Transplant., 2012, 27(1), 226-230. doi: 10.1093/ndt/gfr270 PMID: 21613383
  11. Cejka, D.; Herberth, J.; Branscum, A.J.; Fardo, D.W.; Monier-Faugere, M.C.; Diarra, D.; Haas, M.; Malluche, H.H. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin. J. Am. Soc. Nephrol., 2011, 6(4), 877-882. doi: 10.2215/CJN.06550810 PMID: 21164019
  12. Cianciolo, G.; Capelli, I.; Angelini, M.L.; Valentini, C.; Baraldi, O.; Scolari, M.P.; Stefoni, S. Importance of vascular calcification in kidney transplant recipients. Am. J. Nephrol., 2014, 39(5), 418-426. doi: 10.1159/000362492 PMID: 24819032
  13. Si, J.; Wang, C.; Zhang, D.; Wang, B.; Hou, W.; Zhou, Y. Osteopontin in bone metabolism and bone diseases. Med. Sci. Monit., 2020, 26, e919159. doi: 10.12659/MSM.919159 PMID: 31996665
  14. Wada, T.; McKee, M.D.; Steitz, S.; Giachelli, C.M. Calcification of vascular smooth muscle cell cultures: Inhibition by osteopontin. Circ. Res., 1999, 84(2), 166-178. doi: 10.1161/01.RES.84.2.166 PMID: 9933248
  15. Rao, M.; Jain, P.; Ojo, T.; Surya, G.; Balakrishnan, V. Fibroblast growth factor and mineral metabolism parameters among prevalent kidney transplant patients. Int. J. Nephrol., 2012, 2012, 1-6. doi: 10.1155/2012/490623 PMID: 22811905
  16. Strengthening the reporting of observational studies in epidemiology. Available from: https://www.strobe-statement.org/checklists/
  17. Metz, C.E. Basic principles of ROC analysis. Semin. Nucl. Med., 1978, 8(4), 283-298. doi: 10.1016/S0001-2998(78)80014-2 PMID: 112681
  18. Economidou, D.; Dovas, S.; Papagianni, A.; Pateinakis, P.; Memmos, D. FGF-23 levels before and after renal transplantation. J. Transplant., 2009, 2009, 1-5. doi: 10.1155/2009/379082 PMID: 20107581
  19. Araújo, S.A.; Cordeiro, T.M.; Belisário, A.R.; Araújo, R.F.A.; Marinho, P.E.S.; Kroon, E.G.; de Oliveira, D.B.; Teixeira, M.M.; Simões e Silva, A.C. First report of collapsing variant of focal segmental glomerulosclerosis triggered by arbovirus: Dengue and Zika virus infection. Clin. Kidney J., 2019, 12(3), 355-361. doi: 10.1093/ckj/sfy104 PMID: 31198534
  20. Bonani, M.; Rodriguez, D.; Fehr, T.; Mohebbi, N.; Brockmann, J.; Blum, M.; Graf, N.; Frey, D.; Wüthrich, R.P. Sclerostin blood levels before and after kidney transplantation. Kidney Blood Press. Res., 2014, 39(4), 230-239. doi: 10.1159/000355781 PMID: 25118597
  21. van Lierop, A.H.; van der Eerden, A.W.; Hamdy, N.A.T.; Hermus, A.R.; den Heijer, M.; Papapoulos, S.E. Circulating sclerostin levels are decreased in patients with endogenous hypercortisolism and increase after treatment. J. Clin. Endocrinol. Metab., 2012, 97(10), E1953-E1957. doi: 10.1210/jc.2012-2218 PMID: 22844062
  22. Cejka, D.; Marculescu, R.; Kozakowski, N.; Plischke, M.; Reiter, T.; Gessl, A.; Haas, M. Renal elimination of sclerostin increases with declining kidney function. J. Clin. Endocrinol. Metab., 2014, 99(1), 248-255. doi: 10.1210/jc.2013-2786 PMID: 24187403
  23. Tartaglione, L.; Pasquali, M.; Rotondi, S.; Muci, M.L.; Leonangeli, C.; Farcomeni, A.; Fassino, V.; Mazzaferro, S. Interactions of sclerostin with FGF23, soluble klotho and vitamin D in renal transplantation. PLoS One, 2017, 12(5), e0178637. doi: 10.1371/journal.pone.0178637 PMID: 28558021
  24. Schlieper, G.; Schurgers, L.; Brandenburg, V.; Reutelingsperger, C.; Floege, J. Vascular calcification in chronic kidney disease: An update. Nephrol. Dial. Transplant., 2016, 31(1), 31-39. doi: 10.1093/ndt/gfv111 PMID: 25916871
  25. Oschatz, E.; Benesch, T.; Kodras, K.; Hoffmann, U.; Haas, M. Changes of coronary calcification after kidney transplantation. Am. J. Kidney Dis., 2006, 48(2), 307-313. doi: 10.1053/j.ajkd.2006.04.066 PMID: 16860198
  26. Malluche, H.H.; Monier-Faugere, M.C.; Herberth, J. Bone disease after renal transplantation. Nat. Rev. Nephrol., 2010, 6(1), 32-40. doi: 10.1038/nrneph.2009.192 PMID: 19918255
  27. Morena, M.; Jaussent, I.; Dupuy, A.M.; Bargnoux, A.S.; Kuster, N.; Chenine, L.; Leray-Moragues, H.; Klouche, K.; Vernhet, H.; Canaud, B.; Cristol, J.P. Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: Potential partners in vascular calcifications. Nephrol. Dial. Transplant., 2015, 30(8), 1345-1356. doi: 10.1093/ndt/gfv081 PMID: 25854266
  28. Vangala, C.; Pan, J.; Cotton, R.T.; Ramanathan, V. Mineral and bone disorders after kidney transplantation. Front. Med., 2018, 5, 211. doi: 10.3389/fmed.2018.00211 PMID: 30109232
  29. Magalhães, J.; Quelhas-Santos, J.; Pereira, L.; Neto, R.; Castro-Ferreira, I.; Martins, S.; Frazão, J.M.; Carvalho, C. Could bone biomarkers predict bone turnover after kidney transplantation?—a proof-of-concept study. J. Clin. Med., 2022, 11(2), 457. doi: 10.3390/jcm11020457 PMID: 35054152
  30. Trueba, D.; Sawaya, B.P.; Mawad, H.; Malluche, H.H. Bone biopsy: Indications, techniques, and complications. Semin. Dial., 2003, 16(4), 341-345. doi: 10.1046/j.1525-139X.2003.160631.x PMID: 12926408
  31. Seoane-Pillado, M.T.; Pita-Fernández, S.; Valdés-Cañedo, F.; Seijo-Bestilleiro, R.; Pértega-Díaz, S.; Fernández-Rivera, C.; Alonso-Hernández, Á.; González-Martín, C.; Balboa-Barreiro, V. Incidence of cardiovascular events and associated risk factors in kidney transplant patients: A competing risks survival analysis. BMC Cardiovasc. Disord., 2017, 17(1), 72. doi: 10.1186/s12872-017-0505-6 PMID: 28270107
  32. Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in patients with chronic kidney disease: Etiology and management. Int. J. Nephrol. Renovasc. Dis., 2017, 10, 35-45. doi: 10.2147/IJNRD.S101808 PMID: 28223836
  33. Maria Borges Vigil, F.; Alves Soares Vaz de Castro, P.; Gramiscelli Hasparyk, Ú.; Soares Bartolomei, V.; Cristina Simões e Silva, A. MO947: Evaluation of bone metabolism markers in kidney transplant recipients. Nephrology Dialysis Transplantation, 2022, 37, 1685-1686.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers