Criteria of reversibility of suppression of bioelectric activity of the brain in alcoholic coma: experimental study

Cover Page

Cite item

Full Text

Abstract

The aim. The aim of the study is to determine prognostically significant criteria for the reversibility of the suppression of the generation of bioelectrical activity using an experimental model of alcoholic coma.

Materials and methods. The work was performed on 27 nonlinear sexually mature rats weighing 340±40 g, which received a 40% solution of ethyl alcohol by the oral route in fractional doses of 12.6 g/kg, which corresponded to LD50. EEG monitoring was performed until there was a definite effect (from 1 to 54 hours).

Results. In a favorable outcome of alcoholic coma (11 rats), the EEG results contained the following phase states: 1) a pattern of continuous activity with registration of flashes with intense modulation amplitudes (modulation coefficient 10–12, index 25–35%); 2) a pattern of discrete activity (signal suppression index does not exceed 10%), which was recorded only in the toxicogenic phase; 3) a pattern of awakening. In the lethal outcome of cerebral insufficiency (16 rats), there were the following states of bioelectric activity: 1) weakly modulated continuous activity (modulation coefficient is less than 5); 2) fragmented activity (suppression index is 20–50%); 3) “flash-suppression” pattern; 4) a pattern of periodic discharges; 5) isoelectric silence. The terminal phase of cerebral insufficiency was characterized by the presence of high-amplitude waves with a frequency of 1–1.5 Hz, alternating with 3–4 oscillations decreasing in amplitude.

Conclusion. In a case of acute poisoning with ethanol at a dose of LD50, the prognostically favorable EEG sign is the amplitude modulation of continuous activity, which reflects the preservation of synchronizing thalamocortical interactions. In the toxicogenic phase of the poisoning, a pattern of discrete activity can be recorded (modulation index is up to 10%), which reflects the suppressive effect of ethanol rather than the decay of the bioelectrogenesis mechanisms.

About the authors

Irina Aleksandrovna Kostenko

Almazov National Medical Research Center

Author for correspondence.
Email: mdoktor@yandex.ru
ORCID iD: 0000-0002-9527-8309

Head of the Office of Neurocognitive Research, Polenov Russian Research Neurosurgical Institute (branch of the Almazov National Research Medical Center) of the Ministry of Health of the Russian Federation, Saint-Petersburg, 191014, Russian Federation.

e-mail: mdoktor@yandex.ru

Russian Federation

Maksim Borisovich Ivanov

Golikov Scientific and Clinical Center of Toxicology under the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-5006-7567

Доктор медицинских наук, директор ФГБУ «НКЦТ им. С.Н. Голикова ФМБА России», г. Санкт-Петербург, Россия

Russian Federation

Tatiana Viktorovna Alexandrova

St. Petersburg Scientific Research Institute of Emergency Medicine named after I.I. Janelidze

Email: noemail@neicon.ru
ORCID iD: 0000-0001-6745-665X

Кандидат медицинских наук, заведующая отделением клинической нейрофизиологии ФГБУ «НИИ СП имени И.И. Джанелидзе», г. Санкт-Петербург, Россия

Russian Federation

Aleksey Borisovich Verveda

Golikov Scientific and Clinical Center of Toxicology under the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0003-4029-3170

Кандидат медицинских наук, заведующий лабораторией лекарственной токсикологии ФГБУ «НКЦТ им. С.Н. Голикова» ФМБА России, г. Санкт-Петербург, Россия 

Russian Federation

Alena Viktorovna Shults

Golikov Scientific and Clinical Center of Toxicology under the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-9809-0678

Младший научный сотрудник лаборатории лекарственной токсикологии ФГБУ «НКЦТ им. С.Н. Голикова» ФМБА России, г. Санкт-Петербург, Россия

Russian Federation

Boris Sergeevich Litvincev

Golikov Scientific and Clinical Center of Toxicology under the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0001-6364-2391

Доктор медицинских наук, ведущий научный сотрудник ФГБУ «НКЦТ им. С.Н. Голикова» ФМБА России, г. Санкт-Петербург, Россия

Russian Federation

Mikhail Vsevolodovich Alexandrov

Almazov National Medical Research Center; Golikov Scientific and Clinical Center of Toxicology under the Federal Medical Biological Agency; Military Medical Academy named after S.M. Kirov

Email: noemail@neicon.ru
ORCID iD: 0000-0002-9935-3249

Доктор медицинских наук, профессор, ведущий научный сотрудник ФГБУ «НКЦТ им. С.Н. Голикова» ФМБА России; заведующий отделением клинической нейрофизиологии ФГБУ «Российский научно-исследовательский нейрохирургический институт им. проф. А.Л. Поленова» (филиал ФГБУ «НМИЦ им. В.А. Алмазова») Министерства здравоохранения Российской Федерации, заведующий кафедрой нормальной физиологии ФГБУ ВО «Военно-медицинская академия им. С.М. Кирова» МО РФ, г. Санкт-Петербург, Россия

Russian Federation

References

  1. Derbyshire A.J., Rempel B., Forbes A. et al. The effects of anesthetics on action potentials in the cerebral cortex of the cat. Physiology. 1936; 577–96. https://doi.org/10.1152/ajplegacy.1936.116.3.577
  2. Cuiping Xu., Tao Yu., Xiaohua Zhang et al. Focal burst suppression on intra-operative electrocorticography does not affect the surgical outcome in patients with temporal lobe epilepsy. Clinical Neurology and Neurosurgery. 2020; 193. https://doi.org/10.1016/j.clineuro.2020.105785
  3. Sumskii L.I., Berezina I.Yu., Mikhailov A.Yu. et al. Amplitude-frequency characteristics of burst in appearance “burst-suppression” in unconscious patients. Moskovskaya medicina. 2019; (4): 86-7. (in Russian)
  4. Kostenko I.A., Aleksandrov M.V., Chernyi V.S. Mechanisms of formation of brain bioelectrical activity suppression patterns under adverse effects caused by neurotoxicants. Vestnik Toksikologii. 2020; 3(167): 35-43. https://doi.org/10.36946/0869-7922-2021-3 (in Russian)
  5. Aleksandrov M.V., Kostenko I.A., Arhipova N.B., Basharin V.A. et al. Suppression of brain electrical activity in general anesthesia: the dose-effect relationship. Vestnik Rossijskoj voenno-medicinskoj akademii. 2018; 4(64): 79– 85. (in Russian)
  6. Hirsch J., Fong M., Leitinger M., LaRoche S.M., Gaspard N. et al. American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2021 version. J. Clin. Neurophysiol. 2021; 38: 1-29.
  7. Sofronov G.A. Extreme toxicology [E`kstremal`naya toksikologiya]. G.A. Sofronov, M.V. Aleksandrov, A.I. Golovko et al. Saint-Petersburg: GEOTAR-Media. 2021; 67-81. (In Russian)
  8. Mölle M., Bergmann T., Marshall L. et al. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. SLEEP. 2011; 34(10): 1411-21. https://doi.org/10.5665/SLEEP.1290
  9. Montupil J., Defresne A., Bonhomme V. The Raw and Processed Electroencephalogram as a Monitoring and Diagnostic Tool. Journal of Cardiothoracic and Vascular Anesthesia. 2019. 33: 3–10. https://doi.org/10.1053/j.jvca.2019.03.038
  10. Aleksandrov M.V. Electroencephalographic monitoring in intensive care unit. In: Electroencephalography [Elektroencefalografiya]. Ed. M.V. Aleksandrov, L.B. Ivanov, S.A. Lytaev et al. Saint-Petersburg: SpecLit. 2020; 197-216. (In Russian)
  11. Zenkov L.R., Ronkin M.A. Functional diagnostic of nervous diseases [Funkcional`naya diagnostika nervny`x boleznej]. Moscow: MED press-inform. 2004. (in Russian)
  12. Steriade M., Amzica F., Contreras D. Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalography and clinical Neurophysiology. 1994; 90: 1-16. https://doi.org/10.1016/0013-4694(94)90108-2
  13. Haumesser J., Kühn J., Güttler Ch. et al. Acute In Vivo Electrophysiological Recordings of Local Field Potentials and Multi-unit Activity from the Hyperdirect Pathway in Anesthetized Rats. Journal of Visualized Experiments. 2017; 124: 1–8.
  14. Huotari A.-M., Koskinen M., Suominen K. et al. Evoked EEG patterns during burst suppression with propofol. British Journal of Anaesthesia. 2004; 92 (1): 18–24. https://doi.org/10.1093/bja/aeh022
  15. Japaridze N., Muthuraman M., Reinicke Ch. et al. Neuronal Networks during Burst Suppression as Revealed by Source Analysis. PLoS ONE. 2015; 10(4): 1–18. https://doi.org/10.1371/journal.pone.0123807

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Kostenko I.A., Ivanov M.B., Alexandrova T.V., Verveda A.B., Shults A.V., Litvincev B.S., Alexandrov M.V.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.