Methodological foundations for substantiating safe levels of exposure to artificial nanomaterials (for example, carbon nanotubes) (literature review)
- 作者: Timerbulatova G.A.1,2, Fatkhutdinova L.M.1
-
隶属关系:
- Kazan State Medical University
- FBUZ «The Center of Hygiene and Epidemiology in the Republic of Tatarstan»
- 期: 编号 6 (2021)
- 页面: 5-15
- 栏目: Reviews
- ##submission.datePublished##: 23.12.2021
- URL: https://rjsvd.com/0869-7922/article/view/641386
- DOI: https://doi.org/10.36946/0869-7922-2021-29-6-5-15
- ID: 641386
如何引用文章
全文:
详细
Introduction. The unique physicochemical properties of carbon nanotubes allow them to be used in many fields. The global nanomaterials market is growing every year. An important step in introducing products to the domestic and world markets is to determine the safe exposure levels of CNTs. Establishing a corporate standard can serve as a preliminary stage before the approval of a state hygiene standard.
Material and methods. The material for the analysis was the sources of information on the available standards for the content of CNTs in the air of the working area using information from regulatory agencies, research centers, CNT manufacturers, bibliographic and abstract databases Web of Science, Scopus, PubMed, RSCI.
Results. A scheme for justifying safe levels of exposure to CNTs (corporate standard) has been developed, consisting of several stages: characterization of CNTs in the air at workplaces, selection of experimental doses of CNTs, preparation of CNT dispersions, and conducting toxicological and hygienic experiments. Justification of the corporate standard is carried out in in vitro and in vivo experiments. The planning of experiments should be carried out taking into account the target organ under the influence of CNT — the respiratory system. The recommended dose / concentration range for experiments should include doses / concentrations derived from calculated and literature data. A necessary step is to obtain homogeneous dispersions in which CNTs become bioavailable for biological systems. In vitro and in vivo experiments determine the level of exposure at which no harmful effect is observed and / or the lowest level of exposure at which there is a harmful effect on the cell culture / respiratory tract of animals. After the stage of substantiating the corporate standard, the enterprise should take measures for several years to adjust the corporate standard based on data from clinical and hygienic studies, during which the working conditions and health status of workers are monitored, and extended toxicological and hygienic studies.
Conclusion. The presence of a corporate standard will allow the manufacturer of CNTs to carry out activities for the development and implementation of a production control program with the introduction of monitoring the air condition in the working area. The development of a corporate regulation can be seen as a preparatory stage before the establishment of a government regulation.
作者简介
Gyuzel Timerbulatova
Kazan State Medical University; FBUZ «The Center of Hygiene and Epidemiology in the Republic of Tatarstan»
编辑信件的主要联系方式.
Email: ragura@mail.ru
ORCID iD: 0000-0002-2479-2474
Ассистент кафедры гигиены, медицины труда ФГБОУ ВО Казанский государственный медицинский университет Минздрава России (420012, г. Казань, Российская Федерация), врач по общей гигиене отдела социально-гигиенического мониторинга ФБУЗ «Центр гигиены и эпидемиологии в Республике Татарстан (Татарстан)» (420061, г. Казань, Российская Федерация)
e-mail: ragura@mail.ru
俄罗斯联邦Liliya Fatkhutdinova
Kazan State Medical University
Email: liliya.fatkhutdinova@gmail.com
ORCID iD: 0000-0001-9506-563X
MD, PhD, DSc, head of the Department of Hygiene and Occupational Medicine, Kazan State Medical University of the Ministry of Health of Russia, Kazan.
e-mail: liliya.fatkhutdinova@gmail.com
俄罗斯联邦参考
- Global Markets and Technologies for Carbon Nanotubes - 2015. BCC Research. Market forecasting. Available at: https://www.bccresearch.com/market-research/nanotechnology/carbon-nantubes-global-markets-technologies-report-nan024f.html (accessed: 25 October 2021).
- Chae H., Choi Y., Marilyn L. Minus, Satish Kumar. Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Composites Science and Technology. 2009; 69(3-4): 406-13. https://doi.org/10.1016/j.compscitech.2008.11.008
- Behabtu N., Young C.C., Tsentalovich D.E., Kleinerman O., Wang X., Ma A.W., Bengio E.A., ter Waarbeek R.F., de Jong J.J., Hoogerwerf R.E., Fairchild S.B., Ferguson J.B., Maruyama B., Kono J., Talmon Y., Cohen Y., Otto M.J., Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science. 2013; 339(6116): 182-6. https://doi.org/10.1126/science.1228061
- Dai L., Chang D.W., Baek J.B., Lu W. Carbon nanomaterials for advanced energy conversion and storage. Small. 2012; 8(8): 1130-66. https://doi.org/10.1002/smll.201101594 Epub 2012 Mar 2.
- Future Needs and Opportunities in Nanotechnology for Aerospace Applications - A NASA Perspective. Available at: https://www.nianet.org/wp-content/uploads/2014/04/Meador.Mike-Keynote.pdf (accessed: 25 October 2021).
- Saito N., Haniu H., Usui Y., Aoki K., Hara K., Takanashi S., Shimizu M., Narita N., Okamoto M., Kobayashi S., Nomura H., Kato H., Nishimura N., Taruta S., Endo M. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev. 2014; 114(11): 6040-79. https://doi.org/10.1021/cr400341h Epub 2014 Apr 10.
- Wang W., Zhu Y., Liao S., Li J. Carbon nanotubes reinforced composites for biomedical applications. Biomed Res Int. 2014; 2014: 518609. https://doi.org/10.1155/2014/518609 Epub 2014 Feb 24.
- Commission Recommendation of 18 October 2011 on the definition of nanomaterial Text with EEA relevance. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011H0696 (accessed: 25 October 2021).
- Monteiro-Riviere N.A., Nemanich R.J., Inman A.O., Wang Y.Y., Riviere J.E. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett. 2005; 155(3): 377-84. https://doi.org/10.1016/j.toxlet.2004.11.004
- Magdolenova Z., Collins A., Kumar A., Dhawan A., Stone V., Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014; 8(3): 233-78. https//doi.org/10.3109/17435390.2013.773464
- Guseva Canu I., Schulte P.A., Riediker M., Fatkhutdinova L., Bergamaschi E. Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J Epidemiol Community Health. 2018; 72(2): 148-53. https://doi.org/10.1136/jech-2016-208668
- Mihalache R., Verbeek J., Graczyk H., Murashov V., van Broekhuizen P. Occupational exposure limits for manufactured nanomaterials, a systematic review. Nanotoxicology. 2016; 11(1). https://doi.org/10.1080/17435390.2016.1262920
- Stone V., Hankin S., Aitken R., Aschberger K., Baun A., Christensen F., Fernandes T., Hansen S., Hartmann N., Hutchison G., Johnston H., Peters S., Micheletti C., Ross B., Sokull-Kluettgen B., Stark D., Tran C. Engineered Nanoparticles: Review of Health and Environmental Safety (ENRHES). Final Report. United Kingdom. 2009. Available at: https://ihcp.jrc.ec.europa.eu/whatsnew/enhres-final-report (accessed: 15 October 2021).
- NIOSH Current intelligence bulletin 65. Occupational exposure to carbon nanotubes and nanofibers. Available at: https://www.cdc.gov/niosh/docs/2013-145/pdfs/2013-145.pdf?id=10.26616/NIOSHPUB2013145 (accessed: 15 October 2021).
- Risk Assessment of the Carbon Nanotube Group. Risk Anal. 2015; 35(10): 1940-56. https://doi.org./10.1111/risa.12394
- Nanocyl. Responsible care and nanomaterials case study Nanocyl. Available at: https://www.cefic.org/Documents/ResponsibleCare/04_Nanocyl.pdf (accessed: 25 October 2021).
- Baytubes. Available at: https://foresight.org/baytubes (accessed: 25 October 2021).
- Aschberger K., Johnston H., Stone V., Aitken J., Hankin S., Read S., Tran K., Christensen F. Review of carbon nanotubes toxicity and exposure-Appraisal of human health risk assessment based on open literature. Critical Reviews in Toxicology. 2010; 40(9): 759-90. https://doi.org/10.3109/10408444.2010.506638
- Ma-Hock L., Treumann S., Strauss V., Brill S., Luizi F., Mertler M., Wiench K., Gamer A.O., van Ravenzwaay B., Landsiedel R. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci. 2009; 112(2): 468-81. https://doi.org/10.1093/toxsci/kfp146
- Pauluhn J. Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit. Regul Toxicol Pharmacol. 2010; 57(1): 78-89. https://doi.org/10.1016/j.yrtph.2009.12.012
- Nanocyl SA. Available at: https://www.nanocyl.com/product/nc7000 (accessed: 25 October 2021).
- ОECD Test Guideline 413: Subchronic Inhalation Toxicity: 90-day Study Available at: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd-tg413.pdf (accessed: 25 October 2021).
- Pauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol. Sci. 2010; 113: 226-42. https://doi.org/10.1093/toxsci/kfp247
- Mitchell L.A., Lauer F.T., Burchiel S.W., McDonald J.D. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol. 2009; 4(7): 451-6. https://doi.org/10.1038/nnano.2009.151
- Shvedova A.A., Kisin E., Murray A.R., Johnson V.J., Gorelik O., Arepalli S., Hubbs A.F., Mercer R.R., Keohavong P., Sussman N., Jin J., Yin J., Stone S., Chen B.T., Deye G., Maynard A., Castranova V., Baron P.A., Kagan V.E. Inhalation vs. as-piration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 2008; 295(4): 552-65. https://doi.org/10.1152/ajplung.90287.2008
- Lam C.W., James J.T., McCluskey R., Hunter R.L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004; 77(1): 126-34. https://doi.org/10.1093/toxsci/kfg243
- Porter D.W., Hubbs A.F., Mercer R.R., Wu N., Wolfarth M.G., Sriram K., Leonard S., Battelli L., Schwegler-Berry D., Friend S., Andrew M., Chen B.T., Tsuruoka S., Endo M., Castranova V. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 2010; 269(2-3): 136-47. https://doi.org/10.1016/j.tox.2009.10.017
- Morimoto Y., Hirohashi M., Ogami A., Oyabu T., Myojo T., Todoroki M., Yamamoto M., Hashiba M., Mizuguchi Y., Lee B.W., Kuroda E., Shimada M., Wang W.N., Yamamoto K., Fujita K., Endoh S., Uchida K., Kobayashi N., Mizuno K., Inada M., Tao H., Nakazato T., Nakanishi J., Tanaka I. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology. 2012; 6(6): 587-99. https://doi.org/10.3390/ma5122833
- Morimoto Y., Hirohashi M., Kobayashi N., Ogami A., Horie M., Oyabu T., Myojo T., Hashiba M., Mizuguchi Y., Kambara T., Lee B.W., Kuroda E., Shimada M., Wang W.N., Mizuno K., Yamamoto K., Fujita K., Nakanishi J., Tanaka I. Pulmonary toxicity of well-dispersed single-wall carbon nanotubes after inhalation. Nanotoxicology. 2012; 6(7): 766-75. https//doi.org/10.3109/17435390.2011.620719
- Hygienic standards GN 1.2.2633-10 «Hygienic standards for the content of priority nanomaterials in environmental objects». [Gigienicheskie normativy GN 1.2.2633-10 «Gigienicheskie normativy soderzhaniya prioritetnyh nanomaterialov v ob"ektah okruzhayushchej sredy»]. (in Russian).
- Labor Code of the Russian Federation of December 30, 2001 No. 197-FZ (with amendments and additions as of June 28, 2021). [Trudovoj kodeks Rossijskoj Federacii ot 30 dekabrya 2001 goda № 197-FZ (s izmeneniyami i dopolneniyami po sostoyaniyu na 28.06.2021)]. (in Russian).
- Baron P.A., Maynard A.D., Foley M. Evaluation of aerosol release during the handling of unrefined single walled carbon nanotube materials. Carbon Nanotube Aerosol Generation. 2003; 11: 1-22.
- Joseph G. Industrial hygiene air monitoring report. DuPont Co. internal report. 2002.
- Maynard A.D., Baron P.A., Foley M., Shvedova A.A., Kisin E.R., Castranova V. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health A. 2004; 67: 87-107. https//doi.org/10.1080/15287390490253688
- Debia M., Bakhiyi B., Ostiguy C., Verbeek J.H., Brouwer D.H., Murashov V.A. Systematic Review of Reported Exposure to Engineered Nanomaterials. Ann. Occup. Hyg. 2016; 1-20. https://doi.org/10.1093/annhyg/mew041
- Guseva Canu I., Bateson T.F., Bouvard V., Debia M., Diond Ch., Savolainen K., Yu I.J. Human exposure to carbon-based fibrous nanomaterials: A review. International Journal of Hygiene and Environmental Health. 2016; 219: 166-75. https//doi.org/10.1016/j.ijheh.2015.12.005
- Birch M.E. Occupational monitoring of particulate diesel exhaust by NIOSH method 5040. Appl Occup Environ Hyg. 2002; 17(6): 400-5. https://doi.org/10.1080/10473220290035390
- Ashley K. NIOSH Manual of Analytical Methods 5th Edition and Harmonization of Occupational Exposure Monitoring. Gefahrst Reinhalt Luft. 2015; 2015(1-2): 7-16. PMID: 26309348.
- Eller P.M., Cassinelli M.E. Method 7402 asbestos by TEM (modified for carbon nanotubes). In NIOSH method of analytical methods 4th ed. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH). 2006; 94-113.
- Haliullin T.O., Zalyalov R.R., Shvedova A.A., Tkachov A.G., Fathutdinova L.M. Hygienic evaluation of multilayer carbon nanotubes. [Medicina truda i promyshlennaya ekologiya]. 2015; (7): 37-41. PMID: 26470480. (in Russian).
- William I.G., Dewar R.A. Flame Ionization Detector for Gas Chromatography. Nature. 1958; 181(4611): 760. https://doi.org/10.1038/181760a0
- Bieri R., Borek-Donten J., Bürgi T., Cattaneo S., Celikkol Zijlstra B. Sensing Solution for Airborne Carbon Nanotube Exposure in Workplaces Based on Surface-Enhanced Raman Spectroscopy. TechConnect Briefs. 2017; 275-8.
- Multiple-Path Particle Dosimetry Model (MPPD v. 3.04). Available at: https://ara.com/products/multiple-path-particle-dosimetry-model-mppd-v-211 (accessed: 25 October 2021).
- Ema M., Gamo M., Honda K. A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol. 2016; 74: 42-63. https//doi.org/10.1016/j.yrtph.2015.11.015
- Lam C.W., James J.T., McCluskey R., Arepalli S., Hunter R.L. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 2006; 36(3): 189-217. https//doi.org/10.1080/10408440600570233
- Timerbulatova G., Dimiev A.M., Khamidullin T., Boichuk S.V., Dunaev P., Fakhrullin R., Khaertdinov N.N., Porfiryeva N.N., Khaliullin T., Fatkhutdinova L. Dispersion of Single-Walled Carbon Nanotubes in Biocompatible Environments. Nanotechnologies in Russia. 2020; 15: 437-44. https//doi.org/10.1134/S1995078020040163
- Russell W.M.S., Burch R. The Principles of Humane Experimental Technique. Medical Journal of Australia. 1(13): 500-500. https://doi.org/10.5694/j.1326-5377.1960.tb73127.x
- NANoREG framework for the safety assessment of nanomaterials. Available at: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/nanoreg-framework-safety-assessment-nanomaterials (accessed: 25 October 2021).
- Timerbulatova G.A., Fatkhutdinova L.M. Assessment of the Toxicity of Single-Wall Carbon Nanotubes Using Different Types of Cell Cultures: Review of the Current State of Knowledge. Nanotechnologies in Russia. 2018; 13(5-6): 240-5. https://doi.org/10.1134/S1995078018030187
- Timerbulatova G.A., Dunaev P.D., Dimiev A.M., Gabidinova G.F, Khaertdinov N.N., Fakhrullin R.F., Boichuk S.V., Fatkhutdinova L.M. Comparative characteristics of various fibrous materials in in vitro experiments. [Kazanskij medicinskij zhurnal]. 2021; 102 (4): 501-509. https://doi.org/10.17816/KMJ2021-501 (in Russian).
- Methodical instructions MU 1.2.3699-21 «Approaches to the experimental and toxicological substantiation of the maximum permissible concentrations of nanoparticles in the air of the working area». [Metodicheskie ukazaniya MU 1.2.3699-21 «Podhody k eksperimental’no-toksikologicheskomu obosnovaniyu predel’no dopustimyh koncentracij nanochastic v vozduhe rabochej zony»]. (in Russian).
补充文件
