Study of toxicity and peculiarities of biological effects of nanocomposite pectin-Ag: results of a subchronic experiment
- Authors: Vasilkevich V.M.1, Bogdanov R.V.1, Gilevskaya K.S.2, Kulikouskaya V.I.2
-
Affiliations:
- Republican unitary enterprise «Scientific Practical Centre of Hygiene», Ministry of Health of the Republic of Belarus
- State Scientific Institution “Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus”
- Issue: No 5 (2021)
- Pages: 25-33
- Section: Original articles
- Published: 14.10.2021
- URL: https://rjsvd.com/0869-7922/article/view/641375
- DOI: https://doi.org/10.36946/0869-7922-2021-29-5-25-33
- ID: 641375
Cite item
Full Text
Abstract
Introduction. Nanocomposites synthesized by the “green chemistry” method do not contain toxic chemicals (reducing agents and organic solvents) as carriers and/or stabilizing shells. One of the representatives of this group of materials are nanocomposites based on silver, which are increasingly used in medical practice, veterinary medicine, and in some other fields.
Material and methods. The nanocomposite is Ag0 nanoparticles coated with a highly methoxylated pectin shell. The concentration of Ag0 nanoparticles in the hydrosol of the pectin-Ag nanocomposite is 1.65 mmol/l, and the pectin content is 7.5 mg/ml. The size of the synthesized pectin-Ag nanocomposite is ~20–30 nm, more than 90% of the particles have a diameter of less than 20 nm, the value of the ξ-potential is 45.3 ± 0.7 mV. Toxicological studies were carried out on outbred rats. The main goal of the research was to study the toxic effects of the pectin-Ag nanocomposite in a subchronic experiment (90 days). At the end of the experiment, a complex of behavioral and clinical and laboratory parameters was determined, which made it possible to assess the biological effect of the nanocomposite on animals. The research results were statistically processed.
Results. With subchronic intragastric administration of the pectin-Ag nanocomposite to laboratory animals (rats) for 3 months at doses of 50, 500, and 5000 mg/kg, it was found that the nanocomposite exhibits a dose-dependent general toxic effect with critical target organs - the liver and spleen and the main biochemical markers of toxicity effect - aminotransferase, alkaline phosphatase and lactate dehydrogenase.
Conclusion. Experimental studies have made it possible to substantiate the threshold doses of the hydrosol of the pectin-Ag nanocomposite for the intragastric route of intake.
About the authors
Vadzim Michailovich Vasilkevich
Republican unitary enterprise «Scientific Practical Centre of Hygiene», Ministry of Health of the Republic of Belarus
Author for correspondence.
Email: sabas2004@mail.ru
ORCID iD: 0000-0002-6461-0655
Ph.D. in Medicine, Senior Research Scientist of Republican unitary enterprise «Scientific Practical Centre of Hygiene», Ministry of Health of the Republic of Belarus, 220012, Minsk, Republic of Belarus.
e-mail: sabas2004@mail.ru
BelarusRuslan Valerievich Bogdanov
Republican unitary enterprise «Scientific Practical Centre of Hygiene», Ministry of Health of the Republic of Belarus
Email: 7_rus@tut.by
ORCID iD: 0000-0003-3655-4155
Кандидат медицинских наук, заведующий лабораторией промышленной токсикологии республиканского унитарного предприятия «Научно-практический центр гигиены», г. Минск, Республика Беларусь.
e-mail: 7_rus@tut.by
BelarusKsenia Sergeevna Gilevskaya
State Scientific Institution “Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus”
Email: noemail@neicon.ru
ORCID iD: 0000-0002-3121-0014
Кандидат химических наук, доцент, старший научный сотрудник лаборатории микро- и наноструктурированных систем ГНУ «Институт химии новых материалов НАН Беларуси», г. Минск, Республика Беларусь.
BelarusVictoria Igorevna Kulikouskaya
State Scientific Institution “Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus”
Email: kulikouskaya@gmail.com
ORCID iD: 0000-0001-6505-3929
Кандидат химических наук, доцент, заведущий лаборатории микро- и наноструктурированных систем ГНУ «Институт химии новых материалов НАН Беларуси», г. Минск, Республика Беларусь.
e-mail: kulikouskaya@gmail.com
BelarusReferences
- Krutyakov Yu.A., Kudrinskiy A.A., Olenin A.Yu., Lisichkin G.V. Synthesis and properties of silver nanoparticles: advances and prospects. Uspekhi khimii. 2008; 77(3): 242-69. (In Russian)
- Lu W., Senapati D., Wang S.G., Tovmachenko O., Singh A.K., Hongtao Yu. et al. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chemical Physics Letters. 2010; 487(1-3): 92-6. https://doi.org/10.1016/j.cplett.2010.01.027
- Akter M., Sikder М.Т., Rahman М.М., Ullah A.K.M.A., Kaniz Fatima Binte Hossain, Banik S. et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research. 2018; 9: 1-16. https://doi.org/10.1016/j.cplett.2010.01.027
- Sharma V.K., Yngard R.A., Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science. 2009; 145: 83-96. https://doi.org/10.1016/j.cis.2008.09.002
- Mohandas A., Deepthi S., Biswas R., Jayakumar R. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioactive Materials. 2018; 3(3): 267-77. https://doi.org/10.1016/j.bioactmat.2017.11.003
- Gherasim O., Puiu R.A., Bîrca A.C., Burdusel A.-C., Grumezescu A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials. 2020; 10(11): 2318. https://doi.org/10.3390/nano10112318
- Deng H., McShan D., Zhang Y., Sinha S.S., Arslan Z., Ray P.C. et al. Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environ. Sci. Technol. 2016; 50(16): 8840-8. https://doi.org/10.1021/acs.est.6b00998
- Márquez J.C.M., Aida Hamdan Partida, María del Carmen Monroy Dosta, Jorge Castro Mejía, Jaime Amadeo Bustos Martínez. Silver nanoparticles applications (AgNPS) in aquaculture. International Journal of Fisheries and Aquatic Studies. 2018; 6(2): 5-11.
- Hileuskaya K., Ladutska A., Kulikouskaya V., Kraskouski A., Novik G., Kozerozhets I. et al. ‘Green’ approach for obtaining stable pectin-capped silver nanoparticles: physico-chemical characterization and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020; 585: 124141. https://doi.org/10.1016/j.colsurfa.2019.124141
- Al-Muhanna Muhanna K.A., Hileuskaya K.S., Kulikouskaya V.I., Kraskouski A.N., Agabekov V.E. Preparation of stable sols of silver nanoparticles in aqueous pectin solutions and properties of the sols. Colloid Journal. 2015; 77(6): 677-84.
- Vasilkevich V.M., Mikhailava N.N., Hileuskaya K.S., Kulikouskaya V.I. Toxicity behavior of hydrozol based on silver nanoparticles and stabilized by pectin. Khimicheskaya Bezopasnost’. 2019; 3(2): 67-77. (In Russian). https://doi.org/10.25514/CHS.2019.2.16003
- Vasilkevich V.M., Mikhailova N.N., Kryzh T.I., Bogdanov R.V., Hileuskaya K.S., Kraskovski A.N. Evaluation of the toxic influence of hydrozol of silver nanoparticles stabilized by pectin on the rat organism in a subsystem experiment. Ukrainskiy zhurnal po problemam mediciny truda. 2020; 16(1): 55-62. (In Russian). https://doi.org/10.33573/ujoh2020.01.055
- OECD. Guidelines for the Testing of Chemicals, Section 4, Health Effects. Available at: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788 (accessed: 2 June 2020).
- Andriychuk N., Vlasyk L. Subacute toxicity of decahedron and spherical silver nanoparticles in rats. Ukrainskiy zhurnal sovremennykh problem toksikologii. 2019; 2: 14-21. https://doi.org/10.33273/2663-4570-2019-86-2-14-21
- Hripach L.V., Rahmanin Ju.A., Mihajlova R.I., Knjazeva T.D., Koganova Z.I., Zheleznyak E.V. et al. Biochemical criteria in sanitary and toxicological experiments on laboratory animals - what is new in the OECD recommendations? In: IV-th congress of toxicologists of Russia, Moscow, November 6-8 Moscow: 2013; 533-6 [IV-y s”ezd toksikologov Rossii, Moscow, 6-8 noyabrya, 2013]. (In Russian)
- Rakhmanin Yu.A., Khripach L.V., Mikhaylova R.I., Koganova Z.I., Knyazeva T.D., Zheleznyak E.V. et al. Comparative analysis of the influence of nano- and ionic forms of silver on biochemical indices in laboratory animals. Gigiena i Sanitariya. 2014; 1: 45-50. (In Russian)
- Kovaleva N.Yu., Raevskaya E.G., Roshchin A.V. Aspects of nanomaterial safety: nanosafety, nanotoxicology, nanoinformatics. Khimicheskaya bezopasnost. 2017; 1(2), 44-87. (In Russian). https://doi.org/10.25514/CHS.2017.2.10982
- Tiwari D.K., Т. Jin, Behari J. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicology Mechanisms and Methods. 2011; 21(1): 13-24. https://doi.org/10.3109/15376516.2010.529184
Supplementary files
