Universality of the phenomenon of «neurotoxicity» (literature review)
- Authors: Golovko A.I.1, Ivnitsky J.J.1, Ivanov M.B.2, Rejnyuk V.L.1
-
Affiliations:
- Golikov Research Center of Toxicology
- Non-governmental organization «St. Petersburg public organization of Toxicologists»
- Issue: No 5 (2021)
- Pages: 4-16
- Section: Reviews
- Published: 14.10.2021
- URL: https://rjsvd.com/0869-7922/article/view/641372
- DOI: https://doi.org/10.36946/0869-7922-2021-29-5-4-16
- ID: 641372
Cite item
Full Text
Abstract
Introduction. The neurotoxic effect is considered as one of the variants of the toxicity of many xenobiotics. Neurotoxic effects develop not only in poisoning, but also when exposed to biological (for example, pathogens of infectious diseases) and physical (for example, ionizing and non-ionizing radiation) factors.
Materials and methods. The subject of the analysis was the phenomenon of neurotoxicity. The information was obtained by studying the databases Scopus, Web of Science, PubMed, RSCI.
Results. The absence of a single definition of the concept of «neurotoxicant» is noted. In addition to chemicals, other factors have neurotoxicity: biological, physical. The mechanisms of neurodegeneration under the influence of neurotoxicants with different mechanisms of action are similar and include excitotoxicity, neuroinflammation, suppression of mitochondrial function, inhibition of neurogenesis and gliogenesis, oxidative stress, increased BBB permeability and apoptosis. The presented features allow us to speak about the universality of the phenomenon of «neurotoxicity».
Conclusion. When considering the phenomenon of «neurotoxicity», certain difficulties arise. A clear idea of the etiological factors of this phenomenon is not fully formulated. A comprehensive classification of neurotoxicants has not been created. At the same time, the processes of neurodegeneration are very similar in cases of poisoning with neurotoxicants with different mechanisms of action, which proves the universality of the phenomenon of «neurotoxicity.
About the authors
Alexandr Ivanovich Golovko
Golikov Research Center of Toxicology
Author for correspondence.
Email: prgolovko@inbox.ru
ORCID iD: 0000-0002-2751-3637
MD, Professor, Leading Researcher of the Golikov Research Center of Toxicology, 192019, Saint-Petersburg, Russian Federation.
e-mail: prgolovko@inbox.ru
Russian FederationJury Jurievich Ivnitsky
Golikov Research Center of Toxicology
Email: neugierig@mail.ru
Доктор медицинских наук, профессор, ведущий научный сотрудник ФГБУ «Научно-клинический центр токсикологии имени академика С.Н. Голикова» ФМБА России, 192019, Санкт-Петербург, Российская Федерация.
e-mail: neugierig@mail.ru
Scopus Author ID: 6508306519
Russian FederationMaksim Borisovich Ivanov
Non-governmental organization «St. Petersburg public organization of Toxicologists»
Email: kkbk@bk.ru
Доктор медицинских наук, доцент, Председатель Санкт-Петербургской общественной организации токсикологов, 192019, Санкт-Петербург, Российская Федерация.
e-mail: kkbk@bk.ru
eLIBRARY ID: 45112177; eLIBRARY ID: 41619063
Russian FederationVladimir Leonidovich Rejnyuk
Golikov Research Center of Toxicology
Email: vladton@mail.ru
Доктор медицинских наук, доцент, Временно Исполняющий Обязанности директора ФГБУ «Научно-клинический центр токсикологии имени академика С.Н. Голикова» ФМБА России, 192019, Санкт-Петербург, Российская Федерация.
e-mail: vladton@mail.ru
Scopus Author ID: 55436905400
Russian FederationReferences
- Kucenko S.A. The basics of toxicology [Osnovy toxikologii]. SPb.: OOO «Izdatel’stvo FOLIANT»; 2004 (in Russian).
- Sofronov G.A., Aleksandrov M.V., Golovko A.I., Ivanov M.B., Rejniuk V.L., Vasilev S.A., et al. Extreme Toxicology: Textbook. 2nd ed., corrected. Sofronov G.A., Aleksandrov M.V., eds. [Extremal’naya toxicologiya: Uchebnik. 2-e izd., isprav. Sofronov G.A., Aleksandrov M.V., red.] SPb.: Medkniga «ELBI-SPb»; 2016. (in Russian)
- Singer R. Neurotoxicity in neuropsychology. In: Schoenberg M.R., Scott J.G., eds. The little black book of neuropsychology: A syndrome-based approach. Santa Fe, New Mexico. Springer Science+Business Media. 2011: 813-38.
- Cannon J.R., Greenamyre J.T. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol. Sci. 2011; 124 (2): 225-50. https://doi.org/10.1093/toxsci/kfr239
- Chen Y. Organophosphate-induced brain damage: Mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. Neurotoxicology. 2012; 33 (3): 391-400. https://doi.org/10.1016/j.neuro.2012.03.011
- Cunha-Oliveira T., Rego A.C., Oliveira C.R. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res. Rev. 2008; 58 (1): 192-208. https://doi.org/10.1016/j.brainresrev.2008.03.002
- Gonçalves J., Baptista S., Silva A.P. Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology. 2014; 87: 135-49. https://doi.org/10.1016/j.neuropharm.2014.01.006
- Singh T.P., Singh O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem. 2018; 18 (1): 9-25. https://doi.org/10.2174/1389557517666170807123201
- Pereira R.B., Andrade P.B., Valentão P. A comprehensive view of the neurotoxicity mechanisms of cocaine and ethanol. Neurotox. Res. 2015; 28 (3): 253-67. https://doi.org/10.1007/s12640-015-9536-x
- Cash W.J., McConville P., McDermott E., McCormick P.A., Callender M.E., McDougall N.I. Current concepts in the assessment and treatment of hepatic encephalopathy. QJM. 2010; 103 (1): 9-16. https://doi.org/10.1093/qjmed/hcp152
- Avdoshina V., Caragher S.P., Wenzel E.D., Taraballi F., Mocchetti I., Harry G.J. The viral protein gp120 decreases the acetylation of neuronal tubulin: potential mechanism of neurotoxicity. J. Neurochem. 2017; 141 (4): 606-13. https://doi.org/10.1111/jnc.14015
- Fike J.R. Physiopathology of radiation-induced neurotoxicity. Rev. Neurol. (Paris). 2011; 167 (10): 746-50. https://doi.org/10.1016/j.neurol.2011.07.005
- Hosseini S., Wilk E., Michaelsen-Preusse K., Gerhauser I., Baumgärtner W., Geffers R. et al. Long-term neuroinflammation induced by influenza a virus infection and the impact on hippocampal neuron morphology and function. J. Neurosci. 2018; 38 (12): 3060-80. https://doi.org/10.1523/JNEUROSCI.1740-17.2018
- Megha K., Deshmukh P.S., Banerjee B.D., Tripathi A.K., Ahmed R., Abegaonkar M.P. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology. 2015; 51: 158-65. https://doi.org/10.1016/j.neuro.2015.10.009
- Zhi W.J., Wang L.F., Hu X.J. Recent advances in the effects of microwave radiation on brains. Mil. Med. Res. 2017; 4 (1): 29. https://doi.org/10.1186/s40779-017-0139-0 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607572/ (Accessed 02 August 2020).
- Norton S. Toxic responses of the central nervous system. In: Klaassen C.D., Amdur M.O., Doull J., eds. Casarett and Doull’s toxicology. The basic science of poisons. 3rd ed. New York: Macmillan; 1986: 359-86.
- Angoa-Pérez M., Anneken J.H., Kuhn D.M. Neurotoxicology of synthetic cathinone analogs. Curr. Top. Behav. Neurosci. 2017; 32: 209-30. https://doi.org/10.1007/7854_2016_21
- Banks C.N., Lein P.J. A review of experimental evidence linking neurotoxic organophosphorus compounds and inflammation. Neurotoxicology. 2012; 33 (3): 575-84. https://doi.org/10.1016/j.neuro.2012.02.002
- Farina M., Avila D.S., da Rocha J.B., Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem. Int. 2013; 62 (5): 575-94. https://doi.org/10.1016/j.neuint.2012.12.006
- National Institute of Neurological Disorders and Stroke. Neurotoxicity information page (2020). Available at: https://www.ninds.nih.gov/Disorders/All-Disorders/Neurotoxicity-Information-Page (Accessed 02 August 2020).
- Spencer P.S., Lein P.J. Neurotoxicity. In: Wexler P., ed. Encyclopedia of toxicology. 3rd ed. Cambridge, Massachusetts: Academic Press; 2014; 3: 489-500.
- Smart D. Radiation toxicity in the central nervous system: mechanisms and strategies for injury reduction. Semin. Radiat. Oncol. 2017; 27 (4): 332-9. https://doi.org/10.1016/j.semradonc.2017.04.006
- Armada-Moreira A., Gomes J.I., Pina C.C., Savchak O.K., Gonçalves-Ribeiro J., Rei N. et al. Going the extra (synaptic) mile: Excitotoxicity as the road toward neurodegenerative diseases. Front. Cell. Neurosci. 2020; 14. https://doi.org/10.3389/fncel.2020.00090 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194075/ (Accessed 02 August 2020).
- Barua S., Kim J.Y., Yenari M.A., Lee J.E. The role of NOX inhibitors in neurodegenerative diseases. IBRO Rep. 2019; 7: 59-69. https://doi.org/10.1016/j.ibror.2019.07.1721
- Erinoff L. General considerations in assessing neurotoxicity using neuroanatomical methods. Neurochem. Int. 1995; 26 (2): 111-14. https://doi.org/10.1016/0197-0186(94)00105-4
- Mohammad Ahmadi Soleimani S., Ekhtiari H., Cadet J.L. Drug-induced neurotoxicity in addiction medicine: From prevention to harm reduction. Progress in Brain Research. 2016; 223: 19-41. https://doi.org/10.1016/bs.pbr.2015.07.004
- Furlong H. Investigation of the cellular and molecular mechanisms of radiation-induced bystander effects. Doctoral thesis. Technological University Dublin. 2014: 1-245. Available at: https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1156&context=sciendoc (Accessed 02 August 2020).
- Golikov S.N., Sanotsky I.V., Tiunov L.A. General mechanisms of toxicity [Obshhie mekhanizmy` toksicheskogo deystviya ]. Leningrad: Medicina; 1986 (in Russian).
- Moser V.C., Aschner M., Richardson R.J., Philbert M.A. Toxic responses of the nervous system. In: Klaassen C.D. ed. Casarett and Doull’s toxicology: The basic science of poisons. 7th ed. New York: McGraw-Hill; 2008: 631-64.
- Tilson H.A., Harry G.J. Principles of neurotoxicology. In: Lester D.S., Slikker W. Jr, Lazarovici P., eds. Site selective neurotoxicity. London, New York: Taylor and Francis e-Library; 2004: 3-15.
- Jiang X., Jin T., Zhang H., Miao J., Zhao X., Su Y. et al. Current progress of mitochondrial quality control pathways underlying the pathogenesis of Parkinson’s disease. Oxid. Med. Cell. Longev. 2019; 4578462. https://doi.org/10.1155/2019/4578462. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710741/ (Accessed 02 August 2020).
- Ayala M.E., Velázquez D.E., Mendoza J.L., Monroy J., Domínguez R., Cárdenas M. et al. Dorsal and medial raphe nuclei participate differentially in reproductive functions of the male rat. Reprod. Biol. Endocrinol. 2015; 13 (1): 132. https://doi.org/10.1186/s12958-015-0130-0 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672486/ (Accessed 02 August 2020).
- Hamadjida A., Frouni I., Kwan C., Huot P. Classic animal models of Parkinson’s disease: a historical perspective. Behav. Pharmacol. 2019; 30 (4): 291-310. https://doi.org/10.1097/FBP.0000000000000441
- Shin H.C., Jo B.G., Lee C.Y., Lee K.W, Namgung U. Hippocampal activation of 5-HT1B receptors and BDNF production by vagus nerve stimulation in rats under chronic restraint stress. Eur. J. Neurosci. 2019; 50 (1): 1820-30. https://doi.org/10.1111/ejn.14368
- Andrews P.L. Physiology of nausea and vomiting. Br. J. Anaesth. 1992; 69 (Suppl. 1): S2-19. https://doi.org/10.1093/bja/69.supplement_1.2s
- Bond R.A., Ijzerman A.P. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol. Sci. 2006; 27 (2): 92-6. https://doi.org/10.1016/j.tips.2005.12.007
- Kenakin T. Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol. Pharmacol. 2004; 65 (1): 2-11. https://doi.org/10.1124/mol.65.1.2
- Golovko A.I. Cannabinoids. Neurochemistry and neurobiology. Uspekhi sovremennoj biologii. 2011; 131 (3): 280-91. (in Russian)
- Golovko A.I., Golovko E.S., Ivanov M.B., Barinov V.A. The basics of biological activity of psychostimulants. Uspekhi sovremennoj biologii. 2017; 137 (3): 273-87 (in Russian)
- Carocci A., Rovito N., Sinicropi M.S., Genchi G. Mercury toxicity and neurodegenerative effects. Rev. Environ. Contam. Toxicol. 2014; 229: 1-18. https://doi.org/10.1007/978-3-319-03777-6_1
- Lohren H., Blagojevic L., Fitkau R., Ebert F., Schildknecht S., Leist M. et al. Toxicity of organic and inorganic mercury species in differentiated human neurons and human astrocytes. J. Trace Elem. Med. Biol. 2015; 32: 200-8. https://doi.org/10.1016/j.jtemb.2015.06.008
- Takahashi T., Fujimura M., Koyama M., Kanazawa M., Usuki F., Nishizawa M. et al. Methylmercury causes blood-brain barrier damage in rats via upregulation of vascular endothelial growth factor expression. PLoS One. 2017; 12 (1): e0170623. https://doi.org/10.1371/journal.pone.0170623 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5261729/ (Accessed 02 August 2020).
- Kaur S., Singh S., Chahal K.S., Prakash A. Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity. Can. J. Physiol. Pharmacol. 2014; 92 (11): 893-911. https://doi.org/10.1139/cjpp-2014-0113
- Noshy M.M., Saad-Hussein A., Shahy E.M., El-Shorbagy H.M., Taha M.M., Abdel-Shafy E.A. Assessment of anticholinesterase toxicity, oxidative stress and antioxidant status in carbamate and organophosphorus pesticides exposed agricultural workers. International Journal of Pharmaceutical and Clinical Research. 2017; 9 (3): 205-9. https://doi.org/10.25258/ijpcr.v9i3.8319
- Little J.P., Villanueva E.B., Klegeris A. Therapeutic potential of cannabinoids in the treatment of neuroinflammation associated with Parkinson’s disease. Mini Rev. Med. Chem. 2011; 11 (7): 582-90. https://doi.org/10.2174/138955711795906905
- Oztas E., Abudayyak M., Celiksoz M., Özhan G. Inflammation and oxidative stress are key mediators in AKB48-induced neurotoxicity in vitro. Toxicol. In Vitro. 2019; 55: 101-7. https://doi.org/10.1016/j.tiv.2018.12.005
- Tomiyama K., Funada M. Cytotoxicity of synthetic cannabinoids found in “Spice” products: the role of cannabinoid receptors and the caspase cascade in the NG 108-15 cell line. Toxicol. Lett. 2011; 207 (1): 12-17. https://doi.org/10.1016/j.toxlet.2011.08.021
- Tomiyama K., Funada M. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol. Appl. Pharmacol. 2014; 274 (1): 17-23. https://doi.org/10.1016/j.taap.2013.10.028
- Sarafian T., Verity M.A. Oxidative mechanisms underlying methyl mercury neurotoxicity. Int. J. Dev. Neurosci. 1991; 9 (2): 147-53. https://doi.org/10.1016/0736-5748(91)90005-7
- Atchison W.D., Hare M.F. Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 1994; 8 (9): 622-9. https://doi.org/10.1096/fasebj.8.9.7516300
- Altuntas I., Delibas N., Doguc D.K., Ozmen S., Gultekin F. Role of reactive oxygen species in organophosphate insecticide phosalone toxicity in erythrocytes in vitro. Toxicol. In Vitro. 2003; 17 (2): 153-7. https://doi.org/10.1016/s0887-2333(02)00133-9
- Gultekin F., Ozturk M., Akdogan M. The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch. Toxicol. 2000; 74 (9): 533-8. https://doi.org/10.1007/s002040000167
- Soltaninejad K., Abdollahi M. Current opinion on the science of organophosphate pesticides and toxic stress: a systematic review. Med. Sci. Monit. 2009; 15 (3): RA75-90.
- Ranjbar A., Pasalar P., Abdollahi M. Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Hum. Exp. Toxicol. 2002; 21 (4): 179-82. https://doi.org/10.1191/0960327102ht238oa
- Shadnia S., Azizi E., Hosseini R., Khoei S., Fouladdel S., Pajoumand A. et al. Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Hum. Exp. Toxicol. 2005; 24 (9): 439-45. https://doi.org/10.1191/0960327105ht549oa
- Sharma R.K., Upadhyay G., Siddiqi N.J., Sharma B. Pesticides-induced biochemical alterations in occupational North Indian suburban population. Hum. Exp. Toxicol. 2013; 32 (11): 1213-27. https://doi.org/10.1177/0960327112474835
- Kaur P., Radotra B., Minz R.W., Gill K.D. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neurotoxicology. 2007; 28 (6): 1208-19. https://doi.org/10.1016/j.neuro.2007.08.001
- Pearson J.N., Patel M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann. N Y Acad. Sci. 2016; 1378 (1): 17-24. https://doi.org/10.1111/nyas.13115
- Cadet J.L., Krasnova I.N. Molecular bases of methamphetamine-induced neurodegeneration. Int. Rev. Neurobiol. 2009; 88: 101-19. https://doi.org/10.1016/S0074-7742(09)88005-7
- Planeta C.S., Lepsch L.B., Alves R., Scavone C. Influence of the dopaminergic system, CREB, and transcription factor-κB on cocaine neurotoxicity. Braz. J. Med. Biol. Res. 2013; 46 (11): 909-15. https://doi.org/10.1590/1414-431X20133379
Supplementary files
