MECHANISMS OF INCREASED RESISTANCE TO INFECTION IN THE EARLY PHASE OF SEPSIS IN MICE AFTER ACUTE INTOXICATION WITH ORGANOPHOSPHORUS COMPOUNDS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It was established in experiments on random-bred albino mice that the reduction of mortality of mice from sepsis and decrease of pro-inflammatory cytokines (TNF- , IL-1 , IL-6 ) concentrations in blood after acute intoxication with organophosphorus compounds (OPCs) is due to the implementation of the cholinergic antiinflammatory pathway: activation of muscarinic acetylcholine receptors m1 and 7n-acetylcholine receptors of the monocyte macrophage system. The anti-inflammatory effect after acute intoxication with OPCs is also associated with excitation of the sympathetic nervous system, 2 adrenergic receptors on T-lymphocytes, macrophages and monocytes and the subsequent reduction of pro-inflammatory cytokines in blood.

About the authors

P. F. Zabrodskii

Saratov Branch of «Samara Medical Institute «REAVIZ»

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

V. V. Maslyakov

Saratov Branch of «Samara Medical Institute «REAVIZ»

Email: noemail@neicon.ru
Russian Federation

M. S. Gromov

Saratov Branch of «Samara Medical Institute «REAVIZ»

Email: noemail@neicon.ru
Russian Federation

References

  1. Забродский П.Ф. Иммунотоксикология фосфорорганических соединений Саратов: Саратовский источник; 2016.
  2. Hulse E.J., Davies J.O, Simpson A.J., Sciuto A.M., Eddleston M. Respiratory complications of organophosphorus nerve agent and insecticide poisoning. Implications for respiratory and critical care. Am. J. Respir. Cri.t Care Med. 2014;190(12):1342–54.
  3. King A.M., Aaron C.K. Organophosphate and carbamate poisoning. Emerg. Med. Clin. North Am. 2015; 33(1):133–51.
  4. Peter J.V., Sudarsan T.I., Moran J.L. Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian J. Crit. Care Med. 2014;18(11):735–45.
  5. Sawyer T.W., Mikler J., Worek F., Reiter G., Thiermann H., Tenn C. et al. The therapeutic use of localized cooling in the treatment of VX poisoning. Toxicol Lett. 2011;204(1):52–6.
  6. Yanagisawa N. The nerve agent sarin: history, clinical manifestations, and treatment. Brain Nerve. 2014;66(5):561–9.
  7. Забродский П.Ф. Влияние армина на факторы неспецифической резистентности организма и первичный гуморальный ответ. Фармакол. и токсикол. 1987;49(20):57–60.
  8. Забродский П.Ф. Влияние холинергической стимуляции на неспецифическую резистентность организма и систему иммунитета. Иммунология.1995;53(5):62–4.
  9. Забродский П.Ф. Изменение антиинфекционной неспецифической резистентности организма под влиянием холинергической стимуляции. Бюл. эксперим. биол. и мед. 1995;119(8):164–7.
  10. Забродский П.Ф. Иммунотропные эффекты при обратимом ингибировании холинэстеразы. Иммунология.1996;4: 26–8.
  11. Pavlov V.A., Wang H., Czura C.J. Friedman S.G., Tracey K.J. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol. Med. 2003;9(5-8):125–34.
  12. Martelli D., McKinley M.J., McAllen R.M. The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci. 2014;182:65-9.
  13. Payolla T.B., Lemes S.F., de Fante T., Reginato A., Mendes da Silva C., de Oliveira Micheletti T. et al. High-fat diet during pregnancy and lactation impairs the cholinergic anti-inflammatory pathway in the liver and white adipose tissue of mouse offspring. Mol. Cell Endocrinol. 2016;422:192–202.
  14. Rosas-Ballina M., Tracey K.J. Cholinergic control of inflammation. J. Intern. Med. 2009;265(6):663–79.
  15. Eftekhari G., Hajiasgharzadeh K., Ahmadi-Soleimani S.M., Dehpour A.R., Semnanian S., Mani A.R. Activation of central muscarinic receptor type 1 prevents development of endotoxin tolerance in rat liver. Eur. J. Pharmacol. 2014;740:436-41.
  16. Bonaz B.L., Bernstein C.N. Brain-gut interactions in inflammatory bowel disease. Gastroenterology. 2013;144(1):36–49.
  17. Egea J., Buendia I., Parada E., Navarro E., León R, Lopez M.G. et al. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem. Pharmacol. 2015; 97(4): 463–72.
  18. Kox M., Pickkers P. Modulation of the innate immune response through the vagus nerve. Nephron. 2015;131(2):79–84.
  19. Song D.J., Huanq X.Y., Ren L.C. Yang X.H., Xiao M.Z., Wang S. Effect of lentiviral vector encoding on triggering receptor expressed on myeloid cells 1 on expression of inflammatory cytokine in septic mice infected by Bacteroides fragilis. Zhonghua Shao Shang Za Zhi. 2009;25(1):36–41.
  20. Jones C.K. , Brady A.E., Davis A.A, Xiang Z., Bubser M., Tantawy M.N. et al. Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J. Neurosci. 2008;28(41):10422–33.
  21. Sitapara R.A., Antoine D.J., Sharma L., Patel V.S., Ashby C.R. Jr, Gorasiya S. et al. Mol. Med. 2014;20:238–47.
  22. Norman G.J., Morris J.S., Karelina K., Weil Z.M., Zhang N., Al-Abed Y. et al. Cardiopulmonary arrest and resuscitation disrupts cholinergic anti-inflammatory processes: a role for cholinergic 7 nicotinic receptors. J. Neurosci. 2011;31(9):3446– 52.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Zabrodskii P.F., Maslyakov V.V., Gromov M.S.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.