Prospects for the bottom ash from hydraulic removal use if in dry building mixtures. Part 2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Improving the quality of construction gypsum mixtures will be determined by a number of their advantages, which determine their performance characteristics. This makes it possible to solve a number of problems related to creating a comfortable living environment, reducing the carbon footprint, ensuring energy efficiency of construction technologies and constructed facilities without damaging the environment. These problems can be solved by recycling waste from thermal power plants and products based on them in the production of modified gypsum general construction mixtures. The article examines the possibilities of using activated carbon fractions isolated from hydraulic ash waste to improve the performance properties of gypsum dry building mixtures. An overview of existing methods of using ash and slag waste in the production of binders and their disadvantages is presented. The need for innovative methods for assessing and selecting the granulometric composition of modified mixtures is substantiated. The granulometric composition of the original gypsum binder and isolated carbon fractions, which have a special internal structure, are studied. Experimental results show that modified gypsum mixtures with a carbon modifier and a selected granulometric composition provide high quality materials based on them. The work represents a valuable contribution to the use of carbon fractions of hydraulic ash waste in the production of building mixtures, opening up new opportunities for the effective processing of ash and slag waste from thermal power plants and protection from man-made pollution of the natural environment.

Full Text

Restricted Access

About the authors

K. S. Petropavlovskii

Tver State Technical University

Author for correspondence.
Email: kspetropavlovsky@gmail.com

Candidate of Sciences (Engineering) 

Russian Federation, 22, Afanasiya Nikitina, Tver, 170026

T. B. Novichenkova

Tver State Technical University

Email: tanovi.69@mail.ru

Candidate of Sciences (Engineering) 

Russian Federation, 22, Afanasiya Nikitina, Tver, 170026

V. B. Petropavlovskaya

Tver State Technical University

Email: victoriapetrop@gmail.com

Doctor of Sciences (Engineering) 

Russian Federation, 22, Afanasiya Nikitina, Tver, 170026

M. Al-Sweity

Tver State Technical University

Email: mohadsweity@gmail.com

Engineer 

Russian Federation, 22, Afanasiya Nikitina, Tver, 170026

References

  1. Krasnovskikh M.P., Mokrushin I.G., Nekrasova Yu.I., Avtukhovich V.V. The Use of black metallurgy slag when producing ceramic brick at PCB “At Zakamennoy”. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 14–21. (In Russian). https:// doi.org/10.31659/0585-430X-2019-774-9-14-21
  2. Lanzerstorfer C. Pre-processing of coal combustion fly ash by classification for enrichment of rare earth elements. Energy Reports. 2018. Vol. 4, рр. 660–663. https://doi.org/10.1016/j.egyr.2018.10.010
  3. Rakhimov R.Z. Ecology, metallurgy, mineral binders and building materials industry. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 26–31. (In Russian). https://doi.org/10.31659/0585-430X-2022-806-9-26-31
  4. Duan S., Liao H., Cheng F., Song H., Yang H. Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag. Construction and Building Materials. 2018. Vol. 187, рр. 1113–1120. https:// doi.org/10.1016/j.conbuildmat.2018.07.241
  5. Nikulin I.S., Nikulicheva T.B., Anosov N.V., Yapryntsev M.N., Vyugin A.O., Alfimova N.I., Karlina Yu.I. Processing of rare earth metal oxide for use as a master alloy in the metallurgical industry. Metallurgist. 2024. Vol. 67, рр. 1506–1515. https://doi.org/10.1007/s11015-024-01643-3
  6. Fediuk R., Makarova N., Qader D.N., Kozin A., Amran M., Petropavlovskaya V., Novichenkova T., Sulman M., Petropavlovskii K. Combined effect on properties and durability performance of nanomodified basalt fiber blended with bottom ash-based cement concrete: ANOVA evaluation. Journal of Materials Research and Technology. 2023. Vol. 23 (11), рр. 2642–2657. https://doi.org/10.1016/j.jmrt.2023.01.179
  7. Sweity Y., Petropavlovskaya V., Novichenkova T., Petropavlovskii K. Influence of bed ash on the rheology and properties of gypsum building mixtures. E3S Web of Conferences. XII International Scientific and Practical Forum «Environmentally sustainable cities and settlements: problems and solutions» (ESCP-2023). 2023. Vol. 403, 03012. https://doi.org/10.1051/e3sconf/202340303012
  8. Sulman M.G., Delitsyn L.M., Popel O.S., Kulumbegov R.V., Petropavlovskaya V.B., Chalov K.V. Complex processing of ash and slag waste from coal-fired power plants to obtain valuable products in demand in various industries. Chemreaktor-25: Collection of abstracts of the XXV International Conference on Chemical Reactors. Novosibirsk. 2023, рр. 113–114. (In Russian).
  9. Petropavlovskaya V.B., Zavad’ko M.Yu., Novichenkova T.B., Petropavlovskii K.S., Buryanov A.F. Assessment of the possibility of using hydraulic ash as a component of dry building mixtures. Part 1. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 73–79. (In Russian). https:// doi.org/10.31659/0585-430X-2023-812-4-73-79
  10. Karpova E.A., Yakovlev G.I., Averkiev I.K., Volkov M.A., Kuzmina N.V., Knyazeva S.A. The effect of carbon black and silica fume on the properties of self-compacting concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 45–51. (In Russian). https://doi.org/10.31659/0585-430X-2022-809-12-45-51
  11. Gumenyuk A.N., Polianskikh I.S., Gordina A.F., Buryanov A.F. Impact of carbon fiber on electrical and thermal properties of fluoranhydrite based composites. AlfaBuild. 2024. No. 1 (30). 3003. https:// doi.org/10.57728/ALF.30.3
  12. Petropavlovskii K.S., Novichenkova T.B., Petropavlovskaya V.B., Al-Sweiti M. Carbon gypsum composites. Building Materials Science: present and future: A collection of materials of the III All-Russian Scientific Conference dedicated to the ninetieth anniversary of the Department of Building Materials Science. Moscow. 2023, рр. 241–243. (In Russian).
  13. Prokopets V.S. The effect of mechanical activation on the activity of binders. Stroitel’nye Materialy [Construction Materials]. 2003. No. 9, рр. 28–29. (In Russian).
  14. Gips: izgotovlenie i primenenie gipsovyh stroitel’nyh materialov [Gypsum: manufacture and application of gypsum building materials] / Edited by V.B. Ratinova; Translated from German by V.F. Goncharov, et al. Мoscow: Stroyizdat, 1981. 223 р.
  15. Sivkov S.P. On the stable quality of cements. Cement i ego primenenie. 2016. No. 6, рр. 35–37. (In Russian).
  16. Ramezani M., Kim Y.H., Sun Z. Mechanical properties of carbon nanotube reinforced cementitious materials: database and statistical analysis. Magazine of Concrete Research. 2020. Vol. 72 (20), рр. 1047–1071. https://doi.org/10.1680/jmacr.19.00093
  17. Ramezani M., Dehghani A., Sherif M.M. Carbon nanotube reinforced cementitious composites: A comprehensive review. Construction and Building Materials. 2022. Vol. 315 (1), 125100. https://doi.org/10.1016/j.conbuildmat.2021.125100
  18. Computer program RU 2021664345. Programma postroeniya geometricheskih modelej dispersnoj mikrostruktury stroitel’nogo kompozicionnogo materiala [Program of creation of geometrical models of a disperse microstructure of construction composite material]. Korneev A.I., Margolis B.I. Declared 13.07.2021. Published 06.09.2021. (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Integral density curve and differential distribution of the initial technogenic carbon powder

Download (300KB)
3. Fig. 2. Microstructure of hydraulic ash powders: a – is the initial mixture of fuel ash and slag before flotation; b – is the composition of a man–made ash modifier with the inclusion of carbon particles with pores; 1 – is carbon particles; 2 – is silicate particles

Download (447KB)
4. Fig. 3. Integral density curve and differential grain distribution of: a – gypsum binder; b – the initial technogenic carbon powder; c – activated technogenic carbon powder

Download (1MB)
5. Fig. 4. Integral distribution of particles in a gypsum mixture with a carbon modifier of optimal granulometric composition

Download (590KB)
6. Fig. 5. Pore size distribution in gypsum modified stone of optimal granulometric composition

Download (297KB)

Copyright (c) 2024 ООО РИФ "СТРОЙМАТЕРИАЛЫ"