Фитостимулирующая активность Methylobacterium dichloromethanicum subsp. dichloromethanicum DM4 и его нокаут-мутанта по гену groEL2

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Впервые проведен анализ генома деструктора дихлорметана Methylobacterium dichloromethanicum subsp. dichloromethanicum DM4 на наличие генетических детерминант, указывающих на его потенциал как стимулятора роста растений, а также определена способность данного штамма и его нокаут-мутанта по гену groEL2 к улучшению роста растений. В геноме штамма DM4 обнаружены гены, отвечающие за биосинтез фитогормонов (индолил-3-уксусной кислоты и цитокининов), сидерофоров, каротиноидов, поли-β-гидроксибутирата, гидролитических ферментов, а также ферментов, участвующих деградации D-цистеина, в защите от УФ-повреждений и солюбилизации фосфатов. Инокуляция ростков салата штаммом DM4 положительно влияла на рост и развитие растений, повышала адаптивную защиту и устойчивость к кратковременному температурному стрессу в вегетационных опытах. Сравнительный анализ продукции ауксинов, сидерофоров, гидролитических ферментов, D-цистеиндесульфогидразной активности, способности к солюбилизации нерастворимых фосфатов у штаммов DM4 и DM4 ΔgroEL2 показал, что нарушение структуры гена groEL2 приводило к снижению синтеза индолпроизводных и фосфатсолюбилизирующей способности у мутантного штамма. Оценка влияния инокуляции указанными штаммами растений салата также продемонстрировала уменьшение фитостимулирующего потенциала DM4 ΔgroEL2 по сравнению с исходным штаммом. Полученные данные свидетельствуют об опосредованном влиянии шаперонина GroEL2 у M. dichloromethanicum subsp. dichloromethanicum DM4 на его фитостимулирующую активность.

Полный текст

Доступ закрыт

Об авторах

Н. В. Агафонова

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН, ФИЦ “Пущинский научный центр биологических исследований РАН”

Автор, ответственный за переписку.
Email: nadyagafonova@gmail.com
Россия, Московская область, Пущино, 142290

Г. А. Екимова

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН, ФИЦ “Пущинский научный центр биологических исследований РАН”

Email: nadyagafonova@gmail.com
Россия, Московская область, Пущино, 142290

Ю. Е. Фирсова

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН, ФИЦ “Пущинский научный центр биологических исследований РАН”

Email: nadyagafonova@gmail.com
Россия, Московская область, Пущино, 142290

М. Л. Торгонская

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН, ФИЦ “Пущинский научный центр биологических исследований РАН”

Email: nadyagafonova@gmail.com
Россия, Московская область, Пущино, 142290

Список литературы

  1. Trotsenko Y.A., Khmelenina V.N. // Microbiology (Moscow). 2002. V. 71. P. 123–132. https://doi.org/10.1023/A:1015183832622
  2. Vuilleumier S. // Biotechnology for the Environment: Strategy and Fundamentals. / Eds. S. N. Agathos, W. Reineke.: Springer Dordrecht , 2002. P. 105–130. https://doi.org/10.1007/978-94-010-0357-5_7
  3. Torgonskaya M.L., Doronina N.V., Hourcade E., Trotsenko Y.A., Vuilleumier S. // J. Basic Microbiol. 2011. V. 51. P. 296–303. https://doi.org/10.1002/jobm.201000280
  4. Vorholt J.A. // Nat. Rev. Microbiol. 2012. V. 10. P. 828–840. https://doi.org/10.1038/nrmicro2910
  5. Fall R., Benson A.A. // Trends Plant Sci. 1996. V. 1. № 9. P. 296–301. https://doi.org/10.1016/S1360-1385(96)88175-0
  6. Федоров Д.Н., Доронина Н.В., Троценко Ю.А. // Микробиология. 2011. Т. 80. № 4. С. 435–446.
  7. Агафонова Н.В., Капаруллина Е.Н., Доронина Н.В., Троценко Ю.А. // Микробиология. 2014. Т. 83. № 1. С. 28–32. https://doi: 10.7868/S0026365614010029
  8. Kwak M.J., Jeong H., Madhaiyan M., Lee Y., Sa T.M., Oh T.K., Kim J.F. // PloS ONE. 2014. V. 9. P. e106704. https://doi.org/10.1371/journal.pone.0106704
  9. Alessa O., Ogura Y., Fujitani Y., Takami H., Hayashi T., Sahin N., Tani A. // Front Microbiol. 2021. V. 12. P. 740610. https://doi.org/10.3389/fmicb.2021.740610
  10. Kumar C.M., Mande S.C., Mahajan G. // Cell Stress Chaperones. 2015. V. 20. № 4. P. 555–574. https://doi.org/10.1007/s12192-015-0598-8
  11. Hayer-Hartl M., Bracher A., Hartl F.U. // Trends Biochem. Sci. 2016. V. 41. P. 62–76. https://doi.org/10.1016/j.tibs.2015.07.009
  12. Mizobata T., Kawata Y. // Biophys. Rev. 2018. V. 10. P. 631–640. https://doi.org/10.1007/s12551-017-0332-0
  13. Fischer H.M., Schneider K., Babst M., Hennecke H. // Arch. Microbiol. 1999. V. 171. P. 279–289. https://doi.org/10.1007/s002030050711
  14. Bittner A.N., Foltz A., Oke V. // J. Bacteriol. 2007. V. 189. P. 1884–1889. https://doi.org/10.1128/jb.01542-06
  15. Torgonskaya M. L., Firsova Y.E., Ekimova G.A., Grouzdev D.S., Agafonova N.V. // Microbiology (Moscow). 2024. V. 93. P. 14–27. https://doi.org/10.1134/S0026261723601768
  16. Doronina N.V, Trotsenko Y.A., Tourova T.P., Kuznetsov B.B., Leisinger T. // Syst. Appl. Microbiol. 2000. V. 23. P. 210–218. https://doi.org/10.1016/S0723-2020(00)80007-7
  17. Firsova Y.E., Torgonskaya M.L. // Antonie van Leeuwenhoek. 2020. V. 113. P. 101–116. https://doi.org/10.1007/s10482-019-01320-5
  18. Green P.N., Ardley J.K. // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 2727–2748. https://doi.org/10.1099/ijsem.0.002856
  19. Firsova Y.E., Torgonskaya M.L., Trotsenko Y.A. // Microbiology (Moscow). 2015. V. 84. P. 796–803. https://doi.org/10.1134/S002626171506003X
  20. Aziz R.K., Bartels D., Best A.A., De Jongh M., Disz T., Edwards R.A. et al. // BMC genomics. 2008. V. 9. P. 1–15. https://doi.org/10.1186/1471-2164-9-75
  21. Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P. // Nucleic Acids Res. 2016. V. 44. P. 6614–6624. https://doi.org/10.1093/nar/gkw569
  22. Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. // Nucleic Acids Res. 2016. V. 44. P. D457–D462. https://doi.org/10.1093/nar/gkv1070
  23. Капаруллина Е.Н., Доронина Н.В., Мустахимов И.И., Агафонова Н.В., Троценко Ю.А. // Микробиология. 2017. Т. 86. № 1. С. 107–113. https://doi.org/10.7868/S0026365617010086
  24. Gordon S.A., Weber R.P. // Plant Physiol. 1951. V. 26. № 1. P. 192–195. https://doi.org/10.1104/pp.26.1.192
  25. Schwyn B., Neilands J.B. // Anal. Biochem. 1987. V. 160. № 1. P. 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
  26. Wang S., Wang J., Zhou Y., Huang Y., Tang X. // Curr. Microbiol. 2022. V. 79. № 2. P. 66. https://doi.org/10.1007/s00284-021-02755-8
  27. Rodríguez H., Gonzalez T., Selman G. // J. Biotechnol. 2000. V. 84 (2). P. 155–161. https://doi.org/10.1016/S0168-1656(00)00347-3
  28. Son H.J., Park G.T., Cha M.S., Heo M.S. // Bioresour. Technol. 2006. V. 97. № 2. P. 204–210. https://doi.org/10.1016/j.biortech.2005.02.021
  29. Jiang L., Seo J., Peng Y., Jeon D., Park S.J., Kim C.Y. et al. // AMB Express. 2023. V. 13. P. 9. https://doi.org/10.1186/s13568-023-01514-1
  30. Siegel M. // Anal. Biochem. 1965. V. 11. P. 126-132. https://doi.org/10.1016/0003-2697(65)90051-5
  31. Wintermans J.F.G.M., De Mots A. // Biochim. Biophys. Acta. 1965. V. 109. P. 448–453.
  32. Агафонова Н.В., Доронина Н.В., Троценко Ю.А. // Прикл. биохимия и микробиология. 2016. Т. 52. №. 2. С. 210–216. https://doi.org/10.7868/S0555109916020021
  33. Чернядьев И.И. // Прикл. биохимия и микробиология. 2001. Т. 37. С. 466–471.
  34. Pine L., Hoffman P.S., Malcolm G.B., Benson R.F., Keen M.G. // J. Clinic. Microbiol. 1984. V. 20. P. 421–429. https://doi.org/10.1128/jcm.20.3.421-429.1984
  35. Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  36. Costa H., Gallego S.M., Tomaro M.L. // Plant Sci. 2002. V. 162. P. 939–945. https://doi.org/10.1016/S0168-9452(02)00051-1
  37. Vuilleumier S., Chistoserdova L., Lee M.C., Bringel F., Lajus A. et al. // PLoS ONE. 2009. V. 4. P. e5584. https://doi.org/10.1371/journal.pone.0005584
  38. Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. // J. Exp. Bot. 2011. V. 62. P. 2431–2452. https://doi.org/10.1093/jxb/err004
  39. Arif Y., Hayat S., Yusuf M., Bajguz A. // Plant Physiol. Biochem. 2021. V. 158. P. 372–384. https://doi.org/10.1016/j.plaphy.2020.11.045
  40. Jha P., Panwar J., Jha P.N. // J. Environ. Sustain. 2018. V. 1. P. 25–38. https://doi.org/10.1007/s42398-018-0011-5
  41. Verma V.C., Singh S.K., Prakash S. // J. Basic Microbiol. 2011. V. 51. P. 550–556. https://doi.org/10.1002/jobm.201000155
  42. Ghavami N., Alikhani H.A., Pourbabaei A.A., Besharati H. // J. Plant Nutr. 2017. V. 40. № 5. P. 736–746. https://doi.org/10.1080/01904167.2016.1262409
  43. Bianco C., Imperlini E., Defez R. // Plant Signal Behav. 2009. V. 4. P. 763–765. https://doi.org/10.1093/jxb/erp140
  44. Spaepen S., Das F., Luyten E., Michiels J., Vanderleyden J. // FEMS Microbiol. Lett. 2009. V. 291. P. 195–200. https://doi.org/10.1111/ j.1574-6968.2008.01453.x
  45. Федоров Д.Н., Бут С.Ю., Доронина Н.В., Троценко Ю.А. // Микробиология. 2009. Т. 78. № 6. С. 844–846.
  46. Patten C.L., Blakney A.J.C., Coulson T.J.D. // Crit. Rev. Microbiol. 2013. V. 39. P. 395–415. https://doi.org/10.3109/1040841X.2012.716819
  47. Lin H.R., Shu H.Y., Lin G.H. // Microbiol. Res. 2018. V. 216. P. 30–39. https://doi.org/org/10.1016/j.micres.2018.08.004
  48. Duca D.R., Glick B.R // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 8607–8619. https://doi.org/10.1007/s00253-020-10869-5
  49. Kunkel B.N., Johnson J.M.B. // Cold Spring Harb. Perspect. Biol. 2021. V. 13. P. a040022. https://doi.org/10.1101/cshperspect.a040022
  50. Ivanova L.A., Zolotareva N.V., Ronzhina D.A., Podgaevskaya E.N., Migalina S.V., Ivanov L.A. // Flora. 2018. V. 239. P. 11–19. https://doi.org/10.1016/j.flora.2017.11.005
  51. Esteban R., Barrutia O., Artetxe U., Fernández‐Marín B., Hernández A., García‐Plazaola J.I. // New Phytologist. 2015. V. 206. P. 268–280. https://doi.org/10.1111/nph.13186
  52. Mittler R. // Trends Plant Sci. 2002. V. 7. P. 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9
  53. Нарайкина Н.В., Синькевич М.С., Дерябин А.Н., Трунова Т.И. // Физиология растений. 2018. Т. 65. № 5. С. 340–347. https://doi.org/10.1134/S0015330318050226
  54. Кошкин Е.И. Физиология устойчивости сельскохозяйственных культур. М.: Дрофа, 2010. 638 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Распределение категорий подсистем клеточного метаболизма M. dichloromethanicum subsp. dichloromethanicum DM4 на основе результатов функциональной аннотации согласно базам данных KEGG BlastKOALA (а) и RAST (б).

Скачать (883KB)
3. Рис. 2. Накопление фосфора в культуральной жидкости (а) и оптическая плотность клеток (б) при культивировании штаммов M. dichloromethanicum subsp. dichloromethanicum DM4 (1) и DM4 ΔgroEL2 (2) на минеральной среде с Са3(РО4)2 в качестве единственного источника фосфора.

Скачать (134KB)
4. Рис. 3. Активности ферментов антиоксидантной защиты — каталазы (а) и пероксидазы (б), а также концентрация эндогенного МДА (в) у растений салата, инокулированных штаммами M. dichloromethanicum subsp. dichloromethanicum DM4 и DM4 ΔgroEL2 и неинокулированных (контроль), в нормальных условиях (1) и после воздействия температурного стресса (2). Достоверные различия (р < 0.05) между вариантами отмечены разными буквами.

Скачать (246KB)

© Российская академия наук, 2025