Regularities of X-ray transfer in doped multicomponent semiconductors for dosimetry

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Sensitivity control of semiconductors often requires changing their crystal and electronic structure, which can lead to the loss of their initial semiconductor properties. Chalcogenide semiconductors have high carrier transport properties. However, they face limitations in detecting hard X-rays due to various reasons, in particular, their defective structure and poor X-ray sensitivity. The basic laws of the theory of X-ray conductivity of semiconductors are generalized and simplified taking into account their areas of application. The features of the influence of doping on X-ray sensitivity, determination of the optimal concentration of the dopant, using the example of Cr-doping of chalcogenides, as well as the principle of creating an X-ray detector are considered. As an example of an important X-ray sensitive material, our results on the study of photo- and X-ray conductivity in the layered compound with a monoclinic p-type structure TlGaS2 containing a doped chromium impurity are presented. Our experimental results of the study of synthesized and grown single crystals of chromium-doped (≤ 0.5 mol. % Cr) TlGaS2:Cr are presented. It is shown that TlGaS2:Cr-based materials retain semiconductor properties and are characterized by high electrical transport. Chromium doping increases photosensitivity and polarization between metal and chalcogenide ions in TlGaS2:Cr. The doping of Cr impurity on the photoconductivity and band gap of the layered TlGaS2 single crystal was studied. The change in the spectral sensitivity region of TlGaS2:Cr and the appearance of impurity photocurrent peaks in the photon energy region were analyzed. The X-ray dosimetric properties of TlGaS2:Cr were studied depending on the irradiation doses. Using TlGa0.995Cr0.005S2 as an example, it was shown that the volt-dose characteristics have good reproducibility. The single crystal detector sample TlGa0.995Cr0.005S2 also demonstrated high photo- and X-ray sensitivity compared to pure TlGaS2. The obtained new photoelectric and X-ray dosimetric properties and results show the potential of TlGaS2:Cr semiconductor for optoelectronic and radiation technologies.

全文:

受限制的访问

作者简介

S. Asadov

Geotechnological Problems of Oil, Gas and Chemistry Scientific Research Institute; Nagiev Institute of Catalysis and Inorganic Chemistry; Azerbaijan State Oil and Industry University

编辑信件的主要联系方式.
Email: mirasadov@gmail.com
阿塞拜疆, Baku; Baku; Baku

S. Mustafaeva

Institute of Physics

Email: mirasadov@gmail.com
阿塞拜疆, Baku

V. Lukichev

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: lukichev@ftian.ru
俄罗斯联邦, Moscow

参考

  1. Yoshida S., Ohsugi T., Fukazawa Y., Yamamura K., Yamamoto K., and Sato K., Radiation hardening of silicon strip detectors, Nucl. Instrum. Methods Phys. Res. A, 2003, Vol. 514, No. 1–3, pp. 38–43. https://doi.org/10.1016/j.nima.2003.08.081
  2. Arias A., Nedev N., Nesheva D., Curiel M., Manolov E., Mateos D., Dzurkov V., Valdez B., Contreras O., Herrera R., Bineva I., and Siqueiros J.M. MOS structures containing Si nanocrystals for applications in UV dosimeters, Key Eng. Mater., 2014, Vol. 605, pp. 380–383. https://doi.org/10.4028/www.scientific.net/KEM.605.380
  3. Sun Y., Zhang S., Shen G., Qua L., Chang Z., Tian, C., Jing T., Zhang H., Ding J., Yuan B., and Zhang B. Radiation dosimeter and charge detector Onboard BeiDou navigation satellites in MEO, De Gruyter, 2023, Vol. 32, 20220205, pp. 1–7. https://doi.org/10.1515/astro-2022-0205
  4. Hou B., Chen Q., Yi L., Sellin P., Sun H.-T., Wong L.J., and Liu X. Materials innovation and electrical engineering in X-ray detection, Nat. Rev., 22 Aug. 2024, Vol. 1, pp. 639–655. https://doi.org/10.1038/s44287-024-00086-x
  5. Sato E., Oda Y., Sagae M., Yoshida S., Yamaguchi S., Sato Y., Moriyama H., Hagiwara O., Matsukiyo H., Enomoto T., Watanabe M., and Kusachi C. Development of a compact dosimeter using a silicon X-ray diode and a long USB cable, AR IMU., Center for Liberal Arts and Sciences, 2017, No. 52, pp. 1–5.
  6. Nedev N., Arias A., Curiel M., Nedev R., Mateos D., Manolov E., Nesheva D., Valdez B., Herrera R., and Sanchez A. Visible light sensor based on metal-oxide-semiconductor structure, Key Eng. Mater., 2014, Vol. 605, pp. 384–387. https://doi.org/10.4028/www.scientific.net/KEM.605.384
  7. Hossain A., Cui Y., Bolotnikov A.E., Camarda G.S., Yang G., Kochanowska D., Witkowska-Baran M., Mycielski A., and James R.B. Vanadium-doped cadmium manganese telluride (Cd1–xMnxTe) crystals as X- and gamma-ray detectors, J. Electron. Mater., 2009, Vol. 38, No. 8, pp. 1593–1599. https://doi.org/10.1007/s11664-009-0780-9
  8. Yang G., Bolotnikov A.E., Fochuk P.M., Kopach O., Franc J., Belas E., Kim K.H., Camarda G.S., Hossain A., Cui Y., Adams A.L., Radja A., Pinder R., and James R.B. Post-growth thermal annealing study of CdZnTe for developing room-temperature X-ray and gamma-ray detectors, J. Cryst. Growth., 2013, vol. 379, pp. 16–20. https://doi.org/10.1016/j.jcrysgro.2012.11.041
  9. Damulira E. Radiation dosimetry in medicine using II–VI semiconductors, J. Radiat. Res. Appl. Sci., 2022, Vol. 15, No. 3, pp. 72–82. https://doi.org/10.1016/j.jrras.2022.06.001
  10. Handbook of II–VI Semiconductor-Based Sensors and Radiation Detectors. Vol. 3: Sensors, Biosensors and Radiation Detectors. G. Korotcenkov (Eds.), Springer Cham. 2023. ISBN978-3-031-24002-7.
  11. Yang G., and Hany I. Thallium-based materials for radiation detection. In: K. Iniewski (Eds). Advanced Materials for Radiation Detection. Springer, Cham.2022. pp. 145–163. https://doi.org/10.1007/978-3-030-76461-6_7
  12. Jayawardena K.D.G.I., Sellin P.J., Nanayakkara M.P.A., and Ryan R. Perovskite X-ray detectors. In: B. Pradhan (Eds). Perovskite Optoelectronic Devices. Engineering Materials. Springer, Cham. June 2024. pp. 447–474. https://doi.org/10.1007/978-3-031-57663-8_13
  13. Bertuccio G., Puglisi D., Macera D., Liberto R.D., Lamborizio M., and Mantovani L. Silicon carbide detectors for in vivo dosimetry, ITNS, 2014, Vol. 6, No. 2, pp. 961–966. https://doi.org/10.1109/TNS.2014.2307957
  14. Iniewski K. (eds.). Advanced Materials for Radiation Detection, Springer, Cham. 07 Aug. 2022. ISBN 978-3-030-76463-0.
  15. Lowe B.G., and Sareen R.A. Semiconductor X-Ray Detectors, CRC Press. Taylor and Francis Group. 1st Edition. Boca Raton, FL, 2014. 198 p. ISBN-13: 978-1-4665-5401-6.
  16. Pennicard D., Pirard B., Tolbanov O., and Iniewski K. Semiconductor Materials for X-ray detectors, MRS Bull., 2017, Vol. 42, No. 6, pp. 445–450. https://doi.org/10.1557/mrs.2017.95
  17. Kramberger G. Solid state detectors for high radiation environments. In: Fabjan, C., Schopper, H. (eds.). Particle Physics Reference Library. Springer, Cham. Sept. 2020. P. 965–1034. https://doi.org/10.1007/978-3-030-35318-6_21
  18. Damulira E., Yusoff M.N.S., Omar A.F., and Taib N.H.M. A Review: Photonic devices used for dosimetry in medical radiation, Sensor., 2019, vol. 19, 2226, pp. 1–28. https://doi.org/10.3390/s19102226
  19. Koper T., Kowalik A., and Adamczyk S. The Semiconductor diode detector response as a function of field size and beam angle of high-energy photons, Rep. Pract. Oncol. Radiother., 2017, Vol. 22, No. 3, pp. 193–200. https://doi.org/10.1016/j.rpor.2016.12.004
  20. Karmakar A., Wang J., Prinzie J., Smedt V.D., and Leroux P.A. Review of semiconductor based ionising radiation sensors used in hard radiation environments and their applications, Radiation, 2021, Vol. 1, No. 3, pp. 194–217. https://doi.org/10.3390/radiation1030018
  21. Kuge Y., Shiga T., and Tamaki N. (Eds.). Perspectives on nuclear medicine for molecular diagnosis and integrated therapy. Springer, Tokyo, Heidelberg, New York, Dordrecht, London, 2016. ISBN 978-4-431-55892-7.
  22. Rosenfeld A.B., Biasi G., Petasecca M., Lerch M.L.F., Villani G., and Feygelman V. Semiconductor dosimetry in modern external-beam radiation therapy, Physics in Medicine and Biology, 2020, Vol. 65, pp. 1–95. https://doi.org/10.1088/1361-6560/aba163
  23. Advanced Radiation Detector and Instrumentation in Nuclear and Particle Physics, R. N. Patra (Eds.). Springer, Cham. Proceedings of RAPID2021. 09 Feb. 2023. ISBN 978-3-031-19267-8.
  24. Nemerenco L., Syrbu N.N., Dorogan V., Bejan N.P., and Zalamai V.V. Optical spectra of TlGaS2 crystals, Journal of Lumin., 2016, Vol. 172, pp. 111–117. https://doi.org/10.1016/j.jlumin.2015.12.001
  25. Xin X., Liu F., Yan X.-Q., Hui W., Zhao X., Gao X., Liu Z.-B., and Tian J.-G. Two-photon absorption and non-resonant electronic nonlinearities of layered semiconductor TlGaS2, Opt. Express, 2018, Vol. 26, No. 26, pp. 33895–33905. https://doi.org/10.1364/OE.26.033895
  26. Mustafaeva S.N. Dielectric properties of TlGa1–x MnxS2 (0 ≤ x ≤ 0.03) single crystals, Inorg. Mater., 2006, Vol. 42, No. 5, pp. 470–473. https://doi.org/10.1134/S0020168506050037
  27. Salomon E., Homolka P., Csete I., and Toroi P. Performance of semiconductor dosimeters with a range of radiation qualities used for mammography: A calibration laboratory study, Med. Phys., 2020, Vol. 47, No. 3, pp. 1372–1378. https://doi.org/10.1002/mp.14005
  28. Asadov S.M., and Mustafaeva S.N. Effect of composition on charge transport in (TlGaSe2)1–x(TlGaS2)x (0 ≤ x ≤ 1) solid solutions, Inorg. Mater., 2024, Vol. 60, No. 11, pp. 1283–1292. https://doi.org/10.1134/S0020168525700098
  29. Delgado G.E., Mora A.J., Perez F.V., and Gonzalez J. Crystal structure of the ternary semiconductor compound thallium gallium sulfide TlGaS2, Phys. B: Condens. Matter., 2007, Vol. 39, No. 2, pp. 385–388. https://doi.org/10.1016/j.physb.2006.10.030
  30. Ghoniem N.M. Dislocation dynamics simulations of defects in irradiated materials. Comprehensive Nuclear Materials. 2nd edition. Elsevier Inc. 2019, https://doi.org/10.1016/B978-0-12-803581-8.11657-1
  31. Martin J.E. Physics for Radiation Protection: A Handbook, 2nd ed, Wiley, New York, Completely Revised and Enlarged. July 2008, 844 p. ISBN9783527618804
  32. Knoll G.F. Radiation Detection and Measurement, 4th ed. Wiley, New York, Aug 2010, 864 p. ISBN 9780470131480.
  33. Kasap S., and Kabir M.Z. X-Ray Detectors. In: M. Rudan, R. Brunetti, S. Reggiani (Eds.). Springer Handbook of Semiconductor Devices. Springer, Cham. pp. 747–776. 11 Nov. 2022. https://doi.org/10.1007/978-3-030-79827-7_20
  34. Kabir M.Z., and Kasap S. Photoconductors for X-Ray Image Detectors. In: S. Kasap, P. Capper (Eds.). Springer Handbook of Electronic and Photonic Materials. Springer, Cham. Ch. 45, pp. 1125–1147. 04 Oct. 2017. https://doi.org/10.1007/978-3-319-48933-9_45
  35. Kabir M.Z. Basic Principles of Solid-State X-Ray Radiation Detector Operation. In: G. Korotcenkov (Eds.) Handbook of II–VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. 31 Mart 2023. https://doi.org/10.1007/978-3-031-24000-3_1
  36. Asadov S.M., Mustafaeva S.N., Mammadov A.N., and Lukichev V.F. Modeling of Structural Properties and Transport Phenomena in Doped Multicomponent 2D Semiconductors, Russ. Microelectron., 2024, Vol. 53. No. 6, pp. 519–542. https://doi.org/10.1134/S106373972460081X

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic of a flat surface of a substance of thickness dx with a photon flux falling perpendicularly to it

下载 (78KB)
3. Fig. 2. Principle diagram of the semiconductor X-ray detector

下载 (89KB)
4. Fig. 3. Photocurrent spectra along the layers of TlGaS2 (1) and TlGa0.995Cr0.005S2 (2) single crystals, reduced to unity. T = 298 K

下载 (79KB)
5. Fig. 4. Spectral distribution of photocurrent across the layers of single crystal TlGa0.995Cr0.005S2

下载 (71KB)
6. Fig. 5. Dependences of the X-ray conductivity coefficient on the irradiation dose rate for single crystal TlGa0.995Cr0.005S2 at different accelerating voltages on the X-ray tube Va = 25 (1), 30 (2), 35 (3), 40 (4), 45 (5), 50 (6) keV

下载 (88KB)
7. Fig. 6. Dependences of the X-ray conductivity coefficient of single crystals TlGaS2 (a) and TlGa0.995Cr0.005S2 (b) on the hardness of X-ray radiation with dose rate E = 10 R/min.

下载 (107KB)
8. Fig. 7. X-ray characteristics of single crystal TlGa0.995Cr0.005S2 at different X-ray hardnesses: Va = 25 (1), 30 (2), 35 (3), 40 (4), 45 (5), 50 (6) keV. F = 100 V/cm

下载 (76KB)
9. Fig. 8. Dependences of α (Va) for TlGaS2 (1) and TlGa0.995Cr0.005S2 (2)

下载 (77KB)

版权所有 © Russian Academy of Sciences, 2025