Multilevel switchings in memristive structures based on oxidized lead selenide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using oxidized lead selenide as the interface, Ag/PbSeOx/PbSe heterostructures were made, demonstrating stable memristive characteristics. In order to obtain metastable multilevel states on such structures, studies have been performed using different protocols for delivering pulsed signals. By adjusting the number, amplitude, duration, and fill factor of the pulses, 13 metastable resistive states were implemented. The memristor under study showed good stability and reproducibility for several months.

Full Text

Restricted Access

About the authors

N. A. Tulina

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Author for correspondence.
Email: tulina@issp.ac.ru
Russian Federation, Chernogolovka

A. N. Rossolenko

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: tulina@issp.ac.ru
Russian Federation, Chernogolovka

I. M. Shmytko

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: tulina@issp.ac.ru
Russian Federation, Chernogolovka

I. Yu. Borisenko

Institute of Problems of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences

Email: tulina@issp.ac.ru
Russian Federation, Chernogolovka

D. N. Borisenko

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: tulina@issp.ac.ru
Russian Federation, Chernogolovka

N. N. Kolesnikov

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: tulina@issp.ac.ru
Russian Federation, Chernogolovka

References

  1. Panin G.N. Low-Dimensional Layered Light-Sensitive Memristive Structures for Energy-Efficient Machine Vision // Electronics 2022. V. 11, P. 619. https://doi.org/10.3390/electronics11040619.
  2. Wang W. et al. MoS2 memristor with photoresistive switching // Sci. Rep. 2016. V. 6, 31224. https://doi.org/10.1038/srep31224
  3. Fu X., Zhang L., Cho H.D. et al. Molybdenum Disulfide Nanosheet/Quantum Dot Dynamic Memristive Structure Driven by Photoinduced Phase Transition // Small 2019. V. 15. № 45. P. 1903809. https://doi.org/10.1002/smll.201903809
  4. Fu X. et al. Graphene/MoS2−xOx /graphene photomemristor with tunable non-volatile responsivities for neuromorphic vision processing // Light Sci. Appl. 2023. V. 12. P. 39. https://doi.org/10.1038/s41377-023
  5. Yin J. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals // Nature Communications 2018. V. 9. P. 3311. https://doi.org/10.1038/s41467-018-05874-2
  6. Равич Ю.И., Ефимова Б.А., Смирнов И.А. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS. (М., Наука, 1968). УДК 537 Р139.
  7. Vladimir K., Zinovi D., Minna S.C., Flitsiyan E., Leonid C. and Dmitry K. Infrared detectors based on semiconductor p-n junction of PbSe // JAP. 2012, V. 112. P. 086101. https://doi.org/10.1063/1.4759011
  8. Зимин С.П., Амиров И.И., Наумов В.В. Изменение проводимости тонких пленок селенида свинца после плазменного травления // ФТП. 2016. Т. 50. З. 1146.
  9. Sun X., Gao K., Pang X., Yang H., Volinsky A. A Structure and Composition Effects on Electrical and Optical Properties of Sputtered PbSe // Thin Solid Films 2015. V. 592. P. 59. https://doi.org/10.1016/j.tsf.2015.09.009
  10. Peng H., Hwan S.J., Kanatzidis M.G. and Freeman A.J. Electronic structure and transport properties of doped PbS // PRB. 2011. V. 84. P. 125207. https://doi.org/10.1103/PhysRevB.84.125207
  11. Тулина Н.А., Россоленко А.Н., Шмытько И.М., Борисенко И.Ю., Борисенко Д.Н., Колесников Н.Н. Свойства интерфейсных структур наоснове оксидированного селенида свинца // 13-я Международная конференция "Фазовые превращения и прочность кристаллов", ФППК-2024 : сб. тр. (28 октября – 1 ноября 2024) / Черноголовка. – 2024. – С. 37. (Принята в печать в журнал Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2025). https://doi.org/10.24412/cl-37267-FPPK-2024.35
  12. Wang Chen, Wu Huaqiang, Gao Bin, Zhang Teng, Yang Yuchao, Wang H.Q. // Microelectronic Engineering 2017. V.187. P. 121. https://doi.org/10.1016/j.mee.2017.11.003
  13. Furqan Z., Tun Zainal Azni Zulkifli and Farooq A.K. // Nanoscale Research Letters 2020. V. 15. P. 90. https://doi.org/10.1186/s11671-020-03299-9
  14. Wu J., Ye C., Zhang J., Deng T., He P., and Wang H. // Mater Sci Semicond Process 2016. V. 43. P. 144. https://doi.org/10.1016/j.mssp.2015.12.012
  15. Pan F., Chen C., Wang Z.-S., Yang Y.-C., Yang J., and Zeng F. Nonvolatile Resistive Switching Memories-Characteristics, Mechanisms and Challenges // Progress in Natural Science: Materials International 2010 V. 20. P. 1–15. https://doi.org/10.1016/S1002-0071(12)60001-X
  16. Zhu W., Li J., X. Xu X., Zhang L., and Zhao Y. Low Power and Ultrafast Multi-State Switching in nc-Al Induced Al2O3/AlxOy Bilayer Thin Film RRAM Device // IEEE Access 2020. V. 8. P. 16310. https://doi.org/10.1109/ACCESS.2020.2966026
  17. Sahu V.K., Das A.K., Ajimsha R.S. and Misra P. Controllable Conductance Quantization in Electrochemical Metallization Based Tantalum Oxide Crossbar RRAM Devices // J Phys D Appl Phys. 2020. V. 53. P. 1. https://doi.org/10.36227/techrxiv.24354880
  18. Böttger U., von Witzleben M., Havel V., Fleck K., Rana V., Waser R., and Menze L. Picosecond multilevel resistive switching in tantalum oxide thin films // Sci Rep. 2020. V. 10. P. 16391. https://doi.org/10.1038/s41598-020-73254-2
  19. Bhattacharjee S., Caruso E., Mcevoy N., Coileáin Ó., O’neill K., Ansari L., Duesberg G.S., Nagle R., Cherkaoui K., Gity F., Hurley P.K., and Coileáin C.Ó. Insights into Multi-Level Resistive Switching in Monolayer MoS // Acs Applied Materials & Interfaces 2020. V. 12. P. 6022. https://doi.org/10.1103/PhysRevApplied.18.014018
  20. Lu Y.Y., Peng Y.T., Huang Y.T., Chen J. N., Jhou J., Lan L. W., Jian S. H., Kuo C.C., Hsieh S.H., Chen C.H., Sankar R., and Chou F.C. Compliance current dependent multilevel resistive switching in Titanium dioxide nanosheet based memory device // ACS Appl. Mater. Interfaces 2021. V. 13. P. 4618. https://doi.org/10.1007/s10854-024-13777-w
  21. AAbbas H., Ali A., Li J., Te Tun T.T., and Ang D.S. Forming-Free, Self-Compliance WTe2-Based Conductive Bridge RAM With Highly Uniform Multilevel Switching for High-Density Memory // IEEE Electron Device Letters 2023. V. 44, P. 253. https://doi.org/10.1109/led.2022.3231646
  22. Brzhezinskaya M., Kapitanova O.O., Kononenko O.V., Koveshnikov S., Korepanov V., Roshchupkin D. Large-scalable graphene oxide films with resistive switching for nonvolatilememory applications // J. Alloys Compd. 2020. V. 849. P. 156699. https://doi.org/10.1016/j.jallcom.2020.156699
  23. Ковешников С.В., Коротицкий В.И. Достижение многоуровневого переключения в элементах резистивной памяти на основе оксида гафния // Наноиндустрия 2020. Т. 13. С. 673. htps://doi.org/10.22184/1993-8578.2020.13.5s.673.677
  24. Mahata C., Myounggon K., Kim S. Multi-Level Analog Resistive Switching Characteristics in Tri-Layer HfO2/Al2O3/HfO2 Based Memristor on ITO Electrode // Nanomaterials 2020. V. 10. P. 2069. https://doi.org/10.3390/nano10102069
  25. Fedotov M.I., Korotitsky V.I. and Koveshnikov S.V. Experimental and Theoretical Study of Intrinsic Variability in Hafnium Oxide Based RRAM // 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM), Souzga, the Altai Republic, Russia, 2021, pp. 26–32. https://doi.org/10.1109/EDM52169.2021.9507665

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Example of 5 cycles of the VAC of the Ag/PbSeOx/PbSe microcontact heterojunction. In the lower left corner, the stability of On and Off states in the Ag/PbSeO/PbSe MC heterostructures. In the bottom right corner schematic view of Ag/PbSeOx/PbSe microcontact type heterojunction. The measurements were carried out on the ArcOne bench with voltage pulses of 200 μs duration with increasing amplitude and voltage step of 0.05 V

Download (222KB)
3. Fig. 2. Example of 10 cycles of reproducible (several months of training) resistive switching in Ag/PbSeOx/PbSe heterojunctions with a 1 mm diameter silver film top electrode. In the lower right corner the scheme of the structure

Download (142KB)
4. Fig. 3. Off-On transition, current from time normalised to pulse width. 1 - T = 2 s; 2 - T = 1 c; 3 - T = 0.2 c; 4 - T = 40 ms; 5 - T = 10 ms; 6 - T = 2 ms; 7 - T = 1 ms; 8 - T = 0.2 ms. The upper part of the figure shows the shape of the pulse signals

Download (182KB)
5. Fig. 4. On-Off transition, current from time normalised to pulse width. 1 - T = 4 s; 2 - T = 1 c; 3 - T = 0.2 c; 4 - T = 0.04 ms. The upper part of the figure shows the shape of the pulse signals

Download (186KB)
6. Fig. 5. Dependence of current on time at transition to low impedance state for pulse period T = 1 s with filling factor: 1 - D = 70 %; 2 - D = 60 %; 3 - D = 50 %; 4 - D = 20 %; 5 - D = 10 %. The upper part of the figure shows an example of the form of pulse signals with fill factor D = 50 %

Download (156KB)
7. Fig. 6. On-Off transition. Time dependence of current at the transition to the high-resistance state for the period of pulses T = 1 s with filling factor: 1 - D = 50 %; 2 - D = 25 %; 3 - D = 10 % (numbers 11-13 in Table 1). The upper part of the figure shows an example of the pulse waveform with fill factor D = 50 %

Download (128KB)
8. Fig. 7. Metastable resistive states from time. Time dependence of resistance at transition to low resistive state for the period of pulses T = 1 s with filling factor: 1 - D = 10 %; 2 - D = 9 %; 3 - D = 4 % (numbers 1, 2 in Table 1). The upper part of the figure shows an example of the form of pulse signals with filling factor D = 10 %

Download (136KB)
9. Fig. 8. Metastable resistive states from time. Time dependence of resistance at transition to low resistive state for pulse period T = 200 ms with filling factor: 1 - D = 50 %; 2 - D = 45 %; 3 - D = 30 %; 4 - D = 25 %; 5 - D = 15 %; 6 - D = 5 % (numbers 5, 6, 8-10 in Table 1). The upper part of the figure shows an example of the form of pulse signals with filling factor D = 25

Download (185KB)
10. Fig. 9. Metastable resistive states from time. Time dependence of the current during the transition to the high-resistive state for the pulse period T = 1 s with the filling factor: 1 - D = 50 %; 2 - D = 25 %; 3 - D = 10 % (numbers 11-13 in Table 1). The upper part of the figure shows an example of the pulse waveform with filling factor D = 10 %

Download (134KB)

Copyright (c) 2025 Russian Academy of Sciences