Serotonin and Adrenals: Regulation of Functions, Regulation of Development
- 作者: Melnikova V.I.1, Bondarenko N.S.1
-
隶属关系:
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences
- 期: 卷 54, 编号 1 (2023)
- 页面: 3-17
- 栏目: REVIEWS
- URL: https://rjsvd.com/0475-1450/article/view/669953
- DOI: https://doi.org/10.31857/S0475145023010081
- EDN: https://elibrary.ru/FRKTOE
- ID: 669953
如何引用文章
详细
Serotonin is not only a neurotransmitter, but also an important humoral regulator of various physiological processes outside the central nervous system. In the last decade, the concept of local serotonergic systems in peripheral organs, where serotonin realizes its effects via autocrine/paracrine mechanisms, has been developing. Such local systems have already been described in the pancreas, thymus, mammary gland, and bone marrow. We consider that a similar local serotonergic system is also characteristic of the adrenal glands. These paired organs are a key component of the mammalian endocrine system, providing a complex physiological response to stress. The adrenal glands consist of two parts distinct in origin and function – the cortex and medulla, while serotonin plays an important role in regulation of hormone secretion in both of these structures. This review is aimed to analyze the structure of the local serotonergic system in the adrenal gland, as well as its role both in the regulation of adrenal functions in adult animals and in the formation of adrenals in embryogenesis. Analysis of the available data suggests that local serotonergic systems makes an organ susceptible to fluctuations in the level of serotonin circulating in the blood at all stages of ontogenesis. Thus, local sensitivity to serotonin provides the possibility of systemic humoral coordination of the development and functioning of the adrenal glands and other peripheral organs. From this perspective, the importance of local serotoninergic systems for developmental biology and medicine gains insight.
作者简介
V. Melnikova
Koltzov Institute of Developmental Biology of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: v_melnikova@mail.ru
Russia, 119334, Moscow, ul. Vavilovа 26
N. Bondarenko
Koltzov Institute of Developmental Biology of the Russian Academy of Sciences
Email: v_melnikova@mail.ru
Russia, 119334, Moscow, ul. Vavilovа 26
参考
- Лифанцева Н.В., Конеева Ц.О., Воронежская Е.Е. и др. Экспрессия компонентов серотонинергической системы в развивающемся тимусе крыс // Доклады Академии наук (Биохимия, биофизика, молекулярная биология). 2017. Т. 477. № 6. С. 745–748.
- Abbott N.J. Inflammatory mediators and modulation of blood–brain barrier permeability // Cellular and Molecular Neurobiology. 2000. V. 20. № 2. P. 131–147.
- Adamec R., Burton P., Blundell J. et al. Vulnerability to mild predator stress in serotonin transporter knockout mice // Behavioural Brain Research. 2006. V. 170. № 1. P. 126–140.https://doi.org/10.1016/j.bbr.2006.02.012
- Albillos A., Dernick G., Horstmann H., et al. The exocytotic event in chromaffin cells revealed by patch amperometry // Nature. 1997. V. 389. № 6650. P. 509–512.
- Alexander S.P.H., Benson H.E., Faccenda E., et al. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors // British J. Pharmacology. 2013. V. 170. № 8. P. 1459–1581.https://doi.org/10.1111/bph.12445
- Amireault P., Sibon D., Côté F. Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks // ACS Chemical Neuroscience. 2013. V. 4. № 1. P. 64–71.https://doi.org/10.1021/cn300154j
- Anantharam A., Bittner M.A., Aikman R.L. et al. A new role for the dynamin GTPase in the regulation of fusion pore expansion // Molecular Biology of the Cell. 2011. V. 22. № 11. P. 1907–1918. https://doi.org/10.1091/mbc.e11-02-0101
- Anderson D.J. Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor // J. Neurobiology. 1993. V. 24. № 2. P. 185–198.https://doi.org/10.1002/neu.480240206
- Anderson D.J., Carnahan J.F., Michelsohn A. et al. Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage // J. Neuroscience. 1991. V. 11. № 11. P. 3507–3519.https://doi.org/10.1523/JNEUROSCI.11-11-03507.1991
- Armando I., Tjurmina O.A., Li Q. et al. The serotonin transporter is required for stress-evoked increases in adrenal catecholamine synthesis and angiotensin II AT2 receptor expression // Neuroendocrinology. 2003. V. 78. № 4. P. 217–225.https://doi.org/10.1159/000073705
- Arnold J. Ein Beitrag zu der feineren Structur und dem Chemismus der Nebennieren // Virchows Archiv. 1866. V. 35. № 1. P. 64–107.https://doi.org/10.1007/BF01979887
- Bader M. Serotonylation: serotonin signaling and epigenetics // Frontiers in Molecular Neuroscience. 2019. V. 12. P. 288. https://doi.org/10.3389/fnmol.2019.00288
- Baker H., Abate C., Szabo A. et al. Species-specific distribution of aromatic L-amino acid decarboxylase in the rodent adrenal gland, cerebellum, and olfactory bulb // J. Comparative Neurology. 1991. V. 305. № 1. P. 119–129. https://doi.org/10.1002/cne.903050111
- Barbieri C., Sala M., Bigatti G. et al. Serotonergic regulation of cortisol secretion in dogs // Endocrinology. 1984. V. 115. № 2. P. 748–751.https://doi.org/10.1210/endo-115-2-748
- Bauer M.B., Currie K.P.M. Adrenal Medulla Hormones // Hormonal Signaling in Biology and Medicine. Academic Press. 2020. P. 635–653.https://doi.org/10.1016/B978-0-12-813814-4.00029-8
- Bedi U.S., Arora R. Cardiovascular manifestations of posttraumatic stress disorder // Journal of the National Medical Association. 2007. V. 99. № 6. P. 642.
- Betke K.M., Wells C.A., Hamm H.E. GPCR mediated regulation of synaptic transmission // Prog. Neurobiol. 2012. V. 96. № 3. P. 304–321. PMID: 22307060; PMCID: PMC3319362.https://doi.org/10.1016/j.pneurobio.2012.01.009
- Bonnin A., Goeden N., Chen K. et al. A transient placental source of serotonin for the fetal forebrain // Nature. 2011. V. 472. № 7343. P. 347–350.
- Bornstein S.R., Ehrhart-Bornstein M. Ultrastructural evidence for a paracrine regulation of the rat adrenal cortex mediated by the local release of catecholamines from chromaffin cells // Endocrinology. 1992. V. 131. № 6. P. 3126–3128.https://doi.org/10.1210/en.131.6.3126
- Bornstein S.R., Gonzalez-Hernandez J.A., Ehrhart-Bornstein M. et al. Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions // The Journal Clinical Endocrinology & Metabolism. 1994. V. 78. № 1. P. 225–232.https://doi.org/10.1210/jcem.78.1.7507122
- Bram Z., Louiset E., Ragazzon B. et al. PKA regulatory subunit 1A inactivating mutation induces serotonin signaling in primary pigmented nodular adrenal disease // JCI Insight. 2016. V. 1. № 15. P. e87958. https://doi.org/10.1172/jci.insight.87958
- Brindley M.B., Bauer R.D., Blakely K.P. et al. An interplay between the serotonin transporter (SERT) and 5-HT receptors controls stimulus-secretion coupling in sympathoadrenal chromaffin cells // Neuropharmacology. 2016. V. 110. P. 438–448.https://doi.org/10.1016/j.neuropharm.2016.08.015
- Brindley M.B., Bauer R.D., Blakely K.P.M. et al. Serotonin and serotonin transporters in the adrenal medulla: a potential hub for modulation of the sympathetic stress response // ACS Chemical Neuroscience. 2017. V. 8. № 5. P. 943–954.https://doi.org/10.1021/acschemneuro.7b00026
- Brindley R.L., Bauer M.B., Walker L.A. et al. Adrenal serotonin derives from accumulation by the antidepressant-sensitive serotonin transporter // Pharmacological Research. 2019. V. 140. P. 56–66.https://doi.org/10.1016/j.phrs.2018.06.008
- Briscoe V.J., Ertl A.C., Tate D.B. et al. Effects of a selective serotonin reuptake inhibitor, fluoxetine, on counterregulatory responses to hypoglycemia in healthy individuals // Diabetes. 2008. V. 57. № 9. P. 2453–2460.https://doi.org/10.2337/db08-0236
- Carvalho R.F., Ribeiro R.A., Falcão R.A. et al. Angiotensin II potentiates inflammatory edema in rats: Role of mast cell degranulation // European Journal Pharmacology. 2006. V. 540. № 1–3. P. 175–182.https://doi.org/10.1016/j.ejphar.2006.04.014
- Chan S.A., Doreian B., Smith C. Dynamin and myosin regulate differential exocytosis from mouse adrenal chromaffin cells // Cellular and Molecular Neurobiology. 2010. V. 30. № 8. P. 1351–1357.
- Chen G.L., Miller G.M. Advances in tryptophan hydroxylase-2 gene expression regulation: New insights into serotonin–stress interaction and clinical implications // American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2012. V. 159. № 2. P. 152–171. https://doi.org/10.1002/ajmg.b.32023
- Chen G.L., Miller G.M. Tryptophan hydroxylase-2: an emerging therapeutic target for stress disorders // Biochemical Pharmacology. 2013. V. 85. № 9. P. 1227–1233.https://doi.org/10.1016/j.bcp.2013.02.018
- Chen H.J., Antonson A.M., Rajasekera T.A. et al. Prenatal stress causes intrauterine inflammation and serotonergic dysfunction, and long-term behavioral deficits through microbe-and CCL2-dependent mechanisms // Translational Psychiatry. 2020. V. 10. № 1. P. 1–12.https://doi.org/10.1038/s41398-020-00876-5
- Contesse V., Hamel C., Lefebvre H. et al. Activation of 5-hydroxytryptamine4 receptors causes calcium influx in adrenocortical cells: involvement of calcium in 5-hydroxytryptamine-induced steroid secretion // Molecular Pharmacology. 1996. V. 49. № 3. P. 481–493.
- Contesse V., Lefebvre H., Lenglet S. et al. Role of 5-HT in the regulation of the brain-pituitary-adrenal axis: effects of 5-HT on adrenocortical cells // Canadian Journal Physiology and Pharmacology. 2000. V. 78. № 12. P. 967–983. https://doi.org/10.1139/y00-098
- Côté E., Thevenot C., Fligny Y. et al. Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function // Proceedings of the National Academy of Sciences. 2003. V. 100. № 23. P. 13525–13530.https://doi.org/10.1073/pnas.2233056100
- Fernández-Vivero J., Rodríguez-Sánchez F., Verástegui C. et al. lmmunocytochemical distribution of serotonin and neuropeptide Y, NPY in mouse adrenal gland // Histology and Histopathology. 1993. V. 8. № 3. P. 509–520. PMID: 8358162.
- Finco I., Mohan D.R., Hammer G.D. et al. Regulation of stem and progenitor cells in the adrenal cortex // Current Opinion in Endocrine and Metabolic Research. 2019. V. 8. P. 66–71.https://doi.org/10.1016/j.coemr.2019.07.009
- Finotto S., Krieglstein K., Schober A. et al. Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells // Development. 1999. V. 126. № 13. P. 2935–2944.https://doi.org/10.1242/dev.126.13.2935
- Furlan A., Dyachuk V., Kastriti M.E. et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla // Science. 2017. V. 357. № 6346. P. eaal3753. https://doi.org/10.1126/science.aal3753
- García-Iglesias B.B., Mendoza-Garrido M.E., Gutiérrez-Ospina G. et al. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: involvement of 5-HT7 receptors // Neuropharmacology. 2013. V. 71. P. 216–227. https://doi.org/10.1016/j.neuropharm.2013.03.013
- Goeden N., Velasquez J., Arnold K.A. et al. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain // Journal Neuroscience. 2016. V. 36. № 22. P. 6041–6049. https://doi.org/10.1523/JNEUROSCI.2534-15.2016
- Goto M., Hanley K.P., Marcos J. et al. In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development // The Journal Clinical Investigation. 2006. V. 116. № 4. P. 953–960.https://doi.org/10.1172/JCI25091
- Gutknecht L., Araragi N., Merker S. et al. Impacts of brain serotonin deficiency following Tph2 inactivation on development and raphe neuron serotonergic specification // PLoS One. 2012. e43157. https://doi.org/10.1371/journal.pone.0043157
- Haning R., Tait J.F. In vitro effects of ACTH, angiotensins, serotonin and potassium on steroid output and conversion of corticosterone to aldosterone by isolated adrenal cells // Endocrinology. 1970. V. 87. № 6. P. 1147–1167. https://doi.org/10.1210/endo-87-6-1147
- Hatano O., Takakusu A., Nomura M. et al. Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1 // Genes to Cells. 1996. V. 1. № 7. P. 663–671.https://doi.org/10.1046/j.1365-2443.1996.00254.x
- Hinson J.P., Vinson G.P., Pudney J. et al. Adrenal mast cells modulate vascular and secretory responses in the intact adrenal gland of the rat // Journal Endocrinology. 1989. V. 121. № 2. P. 253-NP. https://doi.org/10.1677/joe.0.1210253
- Huber K., Kalcheim C., Unsicker K. The development of the chromaffin cell lineage from the neural crest // Autonomic Neuroscience. 2009. V. 151. № 1. P. 10–16. https://doi.org/10.1016/j.autneu.2009.07.020
- Ikeda Y., Shen W.H., Ingraham H.A. et al. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases // Molecular Endocrinology. 1994. V. 8. № 5. P. 654–662.https://doi.org/10.1210/mend.8.5.8058073
- Jewell M.L., Currie K.P.M. Control of Ca V 2 calcium channels and neurosecretion by heterotrimeric G protein coupled receptors // Modulation of Presynaptic Calcium Channels. Springer, Dordrecht, 2013. P. 101–130.
- Jiang X., Wang J., Luo T. et al. Impaired hypothalamic-pituitary-adrenal axis and its feedback regulation in serotonin transporter knockout mice // Psychoneuroendocrinology. 2009. V. 34. № 3. P. 317–331.https://doi.org/10.1016/j.psyneuen.2008.09.011
- Kalueff A.V., Olivier J.D.A., Nonkes L.J.P. et al. Conserved role for the serotonin transporter gene in rat and mouse neurobehavioral endophenotypes // Neuroscience & Biobehavioral Reviews. 2010. V. 34. № 3. P. 373–386. https://doi.org/10.1016/j.neubiorev.2009.08.003
- Kameneva P., Artemov A.V., Kastriti M.E. et al. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin // Nat. Genet. 2021. V. 53. № 5. P. 694–706. PMID: 33833454; PMCID: PMC7610777.https://doi.org/10.1038/s41588-021-00818-x
- Kameneva P., Melnikova V.I., Kastriti M.E. et al. Serotonin limits generation of chromaffin cells during adrenal organ development // Nature Communications. 2022. V. 13. № 1. P. 1–21.
- Kastriti M.E., Kameneva P., Kamenev D. et al. Schwann cell precursors generate the majority of chromaffin cells in Zuckerkandl organ and some sympathetic neurons in paraganglia // Front. Mol. Neurosci. 2019. V. 25. № 12. P. 6. PMID: 30740044; PMCID: PMC6355685.https://doi.org/10.3389/fnmol.2019.00006
- Kent C., Coupland R.E. On the uptake and storage of 5-hydroxytryptamine, 5-hydroxytryptophan and catecholamines by adrenal chromaffin cells and nerve endings // Cell and Tissue Research. 1984. V. 236. № 1. P. 189–195.
- Kvetnansky R., Lu X., Ziegler M.G. Stress-triggered changes in peripheral catecholaminergic systems // Advances in Pharmacology. 2013. V. 68. P. 359–397. https://doi.org/10.1016/B978-0-12-411512-5.00017-8
- Lacroix A., Bourdeau I., Lampron A. et al. Aberrant G-protein coupled receptor expression in relation to adrenocortical overfunction // Clinical Endocrinology. 2010. V. 73. № 1. P. 1–15. https://doi.org/10.1111/j.1365-2265.2009.03689.x
- Lefebvre H., Compagnon P., Contesse V. et al. Production and metabolism of serotonin (5-HT) by the human adrenal cortex: paracrine stimulation of aldosterone secretion by 5-HT // The Journal Clinical Endocrinology & Metabolism. 2001. V. 86. № 10. P. 5001–5007. https://doi.org/10.1210/jcem.86.10.7917
- Lefebvre H., Contesse V., Delarue C. et al. Serotonin-induced stimulation of cortisol secretion from human adrenocortical tissue is mediated through activation of a serotonin4 receptor subtype // Neuroscience. 1992. V. 47. № 4. P. 999–1007. https://doi.org/10.1016/0306-4522(92)90047-6
- Lefebvre H., Contesse V., Delarue C. et al. Serotonergic regulation of adrenocortical function // Horm. Metab. Res. 1998. V. 30. № 6–7. P. 398–403. PMID: 9694569.https://doi.org/10.1055/s-2007-978904
- Lefebvre H., Duparc C., Prevost G. et al. Paracrine control of steroidogenesis by serotonin in adrenocortical neoplasms // Molecular and Cellular Endocrinology. 2015. V. 408. P. 198–204.https://doi.org/10.1016/j.mce.2014.11.013
- Le Mestre J., Duparc C., Reznik Y. et al. Illicit upregulation of serotonin signaling pathway in adrenals of patients with high plasma or intra-adrenal ACTH levels // The Journal Clinical Endocrinology & Metabolism. 2019. V. 104. № 11. P. 4967–4980.https://doi.org/10.1210/jc.2019-00425
- Lenglet S., Louiset E., Delarue C. et al. Activation of 5-HT7 receptor in rat glomerulosa cells is associated with an increase in adenylyl cyclase activity and calcium influx through T-type calcium channels // Endocrinology. 2002. V. 143. № 5. P. 1748–1760.https://doi.org/10.1210/endo.143.5.8817
- Li Q. Cellular and molecular alterations in mice with deficient and reduced serotonin transporters // Molecular Neurobiology. 2006. V. 34. № 1. P. 51–65.
- Li Y., Hadden C., Cooper A. et al. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability // Scientific Reports. 2016. V. 6. № 1. P. 1–13. https://doi.org/10.1038/srep22747
- Linder A.E., Beggs K.M., Burnett R.J. et al. Body distribution of infused serotonin in rats // Clinical and Experimental Pharmacology and Physiology. 2009. V. 36. № 5–6. P. 599–601. https://doi.org/10.1111/j.1440-1681.2009.05147.x
- Liu J., Huang S., Li G. et al. High housing density increases stress hormone-or disease-associated fecal microbiota in male Brandt’s voles (Lasiopodomys brandtii) // Hormones and Behavior. 2020. V. 126. P. 104838.https://doi.org/10.1016/j.yhbeh.2020.104838
- Louiset E., Duparc C., Lefebvre H. Role of serotonin in the paracrine control of adrenal steroidogenesis in physiological and pathophysiological conditions // Current Opinion in Endocrine and Metabolic Research. 2019. V. 8. P. 50–59.https://doi.org/10.1016/j.coemr.2019.07.003
- Louiset E., Duparc C., Lenglet S. et al. Role of cAMP/PKA pathway and T-type calcium channels in the mechanism of action of serotonin in human adrenocortical cells // Molecular and Cellular Endocrinology. 2017. V. 441. P. 99–107.https://doi.org/10.1016/j.mce.2016.10.008
- Metcalfe D.D., Baram D., Mekori Y.A. Mast cells // Physiological Reviews. 1997. V. 77. № 4. P. 1033–1079.https://doi.org/10.1152/physrev.1997.77.4.1033
- Muma N.A., Mi Z. Serotonylation and transamidation of other monoamines // ACS Chemical Neuroscience. 2015. V. 6. № 7. P. 961–969. https://doi.org/10.1021/cn500329r
- Naccache A., Louiset E., Duparc C. et al. Temporal and spatial distribution of mast cells and steroidogenic enzymes in the human fetal adrenal // Molecular and Cellular Endocrinology. 2016. V. 434. P. 69–80.https://doi.org/10.1016/j.mce.2016.06.015
- Natarajan R., Ploszaj S., Horton R. et al. Tumor necrosis factor and interleukin-1 are potent inhibitors of angiotensin-II-induced aldosterone synthesis // Endocrinology. 1989. V. 125. № 6. P. 3084–3089.https://doi.org/10.1210/endo-125-6-3084
- Noorlander C.W., Ververs F.F., Nikkels P.G. et al. Modulation of serotonin transporter function during fetal development causes dilated heart cardiomyopathy and lifelong behavioral abnormalities // PLoS One. 2008. V. 3. № 7. P. e2782.
- Nordquist N., Oreland L. Serotonin, genetic variability, behaviour, and psychiatric disorders-a review // Upsala Journal Medical Sciences. 2010. V. 115. № 1. P. 2–10. https://doi.org/10.3109/03009730903573246
- Paine N.J., Watkins L.L., Blumenthal J.A. et al. Associations of Depressive and Anxiety Symptoms with 24-hour Urinary Catecholamines in individuals with untreated high blood pressure // Psychosomatic Medicine. 2015. V. 77. № 2. P. 136.https://doi.org/10.1097/PSY.0000000000000144
- Paulmann N., Grohmann M., Voigt, J.P. et al. Intracellular serotonin modulates insulin secretion from pancreatic β-cells by protein serotonylation // PLoS Biology. 2009. V. 7. № 10. P. e1000229.https://doi.org/10.1371/journal.pbio.1000229
- Rapport M.M., Green A.A., Page I.H. Serum vasoconstrictor, serotonin; isolation and characterization // J. Biol. Chem. 1948. V. 176. № 3. P. 1243–1251. PMID: 18100415176.
- Ritchie P.K., Knight H.H., Ashby M. et al. Serotonin increases interleukin-6 release and decreases tumor necrosis factor release from rat adrenal zona glomerulosa cells in vitro // Endocrine. 1996. V. 5. № 3. P. 291–297.
- Ritzen M, Hammarstroem L, Ullbery S. Autoradiographic distribution of 5-hydroxytryptamine and 5-hydroxytryptophan in the mouse // Biochem. Pharmacol. 1965. V. 14. P. 313–321. PMID: 14314328.https://doi.org/10.1016/0006-2952(65)90196-6
- Rodríguez M.J., Saura J., Finch C.C. et al. Localization of monoamine oxidase A and B in human pancreas, thyroid, and adrenal glands // Journal Histochemistry & Cytochemistry. 2000. V. 48. № 1. P. 147–151. https://doi.org/10.1177/002215540004800115
- Rouzaud-Laborde C., Hanoun N., Baysal I. et al. Role of endothelial AADC in cardiac synthesis of serotonin and nitrates accumulation // PLoS One. 2012. V. 7. № 7. P. e34893.https://doi.org/10.1371/journal.pone.0034893
- Sabban E.L., Nankova B.B., Serova L.I. et al. Regulation of gene expression of catecholamine biosynthetic enzymes by stress // Advances in Pharmacology. Academic Press, 1997. V. 42. P. 564–567.https://doi.org/10.1016/S1054-3589(08)60813-3
- Saito T., Fujimoto W., Yanase H. et al. Immunohistochemical localization of serotonin transporter in the adrenal chromaffin cells and mast cells of mice // Biomedical Research. 2002. V. 23. № 6. P. 277–286. https://doi.org/10.2220/biomedres.23.277
- Sanders N.M., Wilkinson C.W., Taborsky Jr. et al. The selective serotonin reuptake inhibitor sertraline enhances counterregulatory responses to hypoglycemia // American Journal Physiology-Endocrinology and Metabolism. 2008. V. 294. № 5. P. E853–E860. https://doi.org/10.1152/ajpendo.00772.2007
- Schroeter S., Levey A.I., Blakely R.D. Polarized expression of the antidepressant-sensitive serotonin transporter in epinephrine-synthesizing chromaffin cells of the rat adrenal gland // Molecular and Cellular Neuroscience. 1997. V. 9. № 3. P. 170–184. https://doi.org/10.1006/mcne.1997.0619
- Shanker S., Saroj N., Cordova E.J. et al. Chronic restraint stress induces serotonin transporter expression in the rat adrenal glands // Molecular and Cellular Endocrinology. 2020. V. 518. P. 110935. https://doi.org/10.1016/j.mce.2020.110935
- St-Pierre J., Laurent L., King S. et al. Effects of prenatal maternal stress on serotonin and fetal development // Placenta. 2016. V. 48. P. S66–S71.https://doi.org/10.1016/j.placenta.2015.11.013
- Swami T., Weber H.C. Updates on the biology of serotonin and tryptophan hydroxylase // Current Opinion in Endocrinology & Diabetes and Obesity. 2018. V. 25. № 1. P. 12–21.https://doi.org/10.1097/MED.0000000000000383
- Tjurmina O.A., Armando I., Saavedra J.M. et al. Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene // Endocrinology. 2002. V. 143. № 12. P. 4520–4526. https://doi.org/10.1210/en.2002-220416
- Tominaga T., Fukata J., Naito Y. et al. Prostaglandin-dependent in vitro stimulation of adrenocortical steroidogenesis by interleukins // Endocrinology. 1991. V. 128. № 1. P. 526–531. https://doi.org/10.1210/endo-128-1-526
- Vandenbergh D.J., Mori N., Anderson D.J. Co-expression of multiple neurotransmitter enzyme genes in normal and immortalized sympathoadrenal progenitor cells // Developmental Biology. 1991. V. 148. № 1. P. 10–22. https://doi.org/10.1016/0012-1606(91)90313-R
- Verhofstad A.A.J., Jonsson G. Immunohistochemical and neurochemical evidence for the presence of serotonin in the adrenal medulla of the rat // Neuroscience. 1983. V. 10. № 4. P. 1443–1453.https://doi.org/10.1016/0306-4522(83)90125-2
- Vikenes K., Farstad M., Nordrehaug J.E. Serotonin is associated with coronary artery disease and cardiac events // Circulation. 1999. V. 100. № 5. P. 483–489.https://doi.org/10.1161/01.CIR.100.5.483
- Vinson G.P. Functional zonation of the adult mammalian adrenal cortex // Frontiers in Neuroscience. 2016. V. 10. P. 238.https://doi.org/10.3389/fnins.2016.00238
- Vinson G.P., Pudney J.A., Whitehouse B.J. The mammalian adrenal circulation and the relationship between adrenal blood flow and steroidogenesis // Journal Endocrinology. 1985. V. 105. № 2. P. 285-NP. https://doi.org/10.1677/joe.0.1050285
- Walther D.J., Peter J.U., Winter S. et al. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-granule release // Cell. 2003. V. 115. № 7. P. 851–862.https://doi.org/10.1016/S0092-8674(03)01014-6
- Walther A., Petri E., Peter C. et al. Selective serotonin-receptor antagonism and microcirculatory alterations during experimental endotoxemia // Journal of Surgical Research. 2007. V. 143. № 2. P. 216–223.https://doi.org/10.1016/j.jss.2006.08.021
- Weinstein A.A., Deuster P.A., Francis J.L. et al. Neurohormonal and inflammatory hyper-responsiveness to acute mental stress in depression // Biological Psychology. 2010. V. 84. № 2. P. 228–234. https://doi.org/10.1016/j.biopsycho.2010.01.016
- Weiss O. Uber die Wirkungen von Blutserum-Injectionen ins Blut // Archiv fur die Gesamte Physiologie des Menschen und der Thiere. 1896. V. 65. № 3. P. 215–230.https://doi.org/10.1007/BF01661741
- Wilkins A.S., Wrangham R.W., Fitch W.T. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics // Genetics. 2014. V. 197. № 3. P. 795–808.https://doi.org/10.1534/genetics.114.165423
- Winkler H., Westhead E. The molecular organization of adrenal chromaffin granules // Neuroscience. 1980. V. 5. № 11. P. 1803–1823.https://doi.org/10.1016/0306-4522(80)90031-7
- Wong D.L., Tai T.C., Wong-Faull D.C. et al. Epinephrine: A short-and long-term regulator of stress and development of illness // Cellular and Molecular Neurobiology. 2012. V. 32. № 5. P. 737–748.
- Xing Y., Lerario A.M., Rainey W. et al. Development of adrenal cortex zonation // Endocrinology and Metabolism Clinics. 2015. V. 44. № 2. P. 243–274.https://doi.org/10.1016/j.ecl.2015.02.001
- Yates R., Katugampola H., Cavlan D. et al. Adrenocortical development, maintenance, and disease // Current Topics in Developmental Biology. 2013. V. 106. P. 239–312.https://doi.org/10.1016/B978-0-12-416021-7.00007-9
- Yoon E.J., Gerachshenko T., Spiegelberg B.D. et al. Gβγ interferes with Ca2+-dependent binding of synaptotagmin to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex // Molecular Pharmacology. 2007. V. 72. № 5. P. 1210–1219.https://doi.org/10.1124/mol.107.039446
- Yu Z., Ohba M., Nakamura M. et al. Dynamics of platelet mobilisation into lungs in response to 5-hydroxytryptamine (serotonin) in mice // Thrombosis and Haemostasis. 2009. V. 102. № 12. P. 1251–1258.https://doi.org/10.1160/TH08-06-0406
- Ziegler M.G., Elayan H., Milic M. et al. Epinephrine and the metabolic syndrome // Current Hypertension Reports. 2012. V. 14. № 1. P. 1–7.
- Zurawski Z., Rodriguez S., Hyde K. et al. Gβγ binds to the extreme C terminus of SNAP25 to mediate the action of Gi/o-coupled G protein–coupled receptors // Molecular Pharmacology. 2016. V. 89. № 1. P. 75–83.https://doi.org/10.1124/mol.115.101600
- Zwemer R.L., Wotton R.M., Norkus M.G. A study of corticoadrenal cells // The Anatomical Record. 1938. V. 72. № 2. P. 249–263. https://doi.org/10.1002/ar.1090720210
补充文件
