Electric Transport Properties of Solid Solution and Composite Samples in the Ba2In2O5–Ba2InNbO6 System with Responce Atmospheric Humidity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Thermal and electrical properties of solid solution and composite samples in the quasi-binary system Ba2In2O5–Ba2InNbO6 were investigated. It was proven that in a humid atmosphere at temperatures below 600°C the samples reversibly interact with water vapor to form proton defects. The hydration process is accompanied by a significant increase in the total electrical conductivity due to the appearance of a contribution from proton transfer. Below 500°C in humid air the samples are predominantly proton conductors. The composite effect of proton electrical conductivity was established.

About the authors

E.  S Matveev

Ural Federal University named after the first President of Russia B. N. Yeltsin

Email: Egor.Matveev@urfu.ru
Ekaterinburg, Russia

N.  A Kochetova

Ural Federal University named after the first President of Russia B. N. Yeltsin

Ekaterinburg, Russia

I.  V Alyabisheva

Ural Federal University named after the first President of Russia B. N. Yeltsin

Ekaterinburg, Russia

I.  E Animitsa

Ural Federal University named after the first President of Russia B. N. Yeltsin

Ekaterinburg, Russia

References

  1. Singh, M., Zappa, D., and Comini, E., Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrogen Energy, 2021, vol. 46, no. 54, p. 27643. doi: 10.1016/j.ijhydene.2021.06.020
  2. Laguna-Bercero, M.A., Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, J. Power Sources, 2012, vol. 203, p. 4. doi: 10.1016/j.jpowsour.2011.12.019
  3. Hossain, S., Abdalla, A.M., Jamain, S.N.B., Zaini, J.H., and Azad, A.K., A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells, Renew. Sustain. Energy Rev., 2017, vol. 79, p. 750. doi: 10.1016/j.rser.2017.05.147
  4. Kasyanova, A.V., Rudenko, A.O., Lyagaeva, Yu.G., and Medvedev, D.A., Lanthanum-containing proton-conducting electrolytes with perovskite structures, Membr. Membr. Technol., 2021, vol. 3, no. 2, p. 73. doi: 10.1134/S2517751621020050
  5. Shen, M., Ai, F., Ma, H., Xu, H., and Zhang, Y., Progress and prospects of reversible solid oxide fuel cell materials, iScience, 2021, vol. 24, no. 12, p. 103464. doi: 10.1016/j.isci.2021.103464
  6. Filippov, S.P. and Yaroslavtsev, A.B., Hydrogen energy: Development prospects and materials, Russ. Chem. Rev., 2021, vol. 90, no. 6, p. 627. doi: 10.1070/RCR5014
  7. Duan, C., Huang, J., Sullivan, N., and O’Hayre, R., Proton-conducting oxides for energy conversion and storage, Appl. Phys. Rev., 2020, vol. 7, no. 1. doi: 10.1063/1.5135319
  8. Nie, H. et al., Recent advances and challenges in perovskite-based protonic ceramic electrolytes: Design strategies and fabrication innovations, Adv. Funct. Mater., 2024, p. 2416651. doi: 10.1002/adfm.202416651
  9. Baratov, S. et al., Current and further trajectories in designing functional materials for solid oxide electrochemical cells: A review of other reviews, J. Energy Chem., 2024, vol. 94, p. 302. doi: 10.1016/j.jechem.2024.02.047
  10. Zhang, G., Defects and transport of the brownmillerite oxides with high oxygen ion conductivity – Ba2In2O5, Solid State Ionics, 1995, vol. 82, no. 3–4, p. 161. doi: 10.1016/0167-2738(95)00196-2
  11. Zhang, G., Protonic conduction in Ba2In2O5, Solid State Ionics, 1995, vol. 82, no. 3–4, p. 153. doi: 10.1016/0167-2738(95)00199-8
  12. Speakman, S., In-situ diffraction study of Ba2In2O5, Solid State Ionics, 2002, vol. 149, no. 3–4, p. 247. doi: 10.1016/S0167-2738(02)00175-3
  13. Noirault, S., Celerier, S., Joubert, O., Caldes, M., and Piffard, Y., Water incorporation into the (Ba1–xLax)2In2O5+x□1–x (0 ≤ x < 0.6) system, Solid State Ionics, 2007, vol. 178, no. 23–24, p. 1353. doi: 10.1016/j.ssi.2007.07.013
  14. Mancini, A., Shin, J.F., Orera, A., Slater, P.R., Tealdi, C., Ren, Y., Page, K.L., and Malavasi, L., Insight into the local structure of barium indate oxide-ion conductors: An X-ray total scattering study, Dalton Trans., 2012, vol. 41, no. 1, p. 50. doi: 10.1039/C1DT11660F
  15. Pring, A., Tarantino, S.C., Tenailleau, C., Etschmann, B., Carpenter, M.A., Zhang, M., Liu, Y., and Withers, R.L., The crystal chemistry of Fe-bearing sphalerites: An infrared spectroscopic study, Am. Mineral., 2008, vol. 93, no. 4, p. 591. doi: 10.2138/am.2008.2610
  16. Ito, S., Mori, T., Yan, P., Auchterlonie, G., Drennan, J., Ye, F., Fugane, K., and Sato, T., High electrical conductivity in Ba2In2O5 brownmillerite based materials induced by design of a Frenkel defect structure, RSC Adv., 2017, vol. 7, no. 8, p. 4688. doi: 10.1039/C6RA27418H
  17. Rolle, A., Giridharan, N.V., Roussel, P., Abraham, F., and Vannier, R.-N., Oxide ion conduction in oxygen rich doped Ba2In2O5+δ brownmillerite, MRS Proc., 2004, vol. 835, p. K2.4. doi: 10.1557/PROC-835-K2.4
  18. Quarez, E., Noirault, S., Caldes, M.T., and Joubert, O., Water incorporation and proton conductivity in titanium substituted barium indate, J. Power Sources, 2010, vol. 195, no. 4, p. 1136. doi: 10.1016/j.jpowsour.2009.08.086
  19. Noirault, S., Quarez, E., Piffard, Y., and Joubert, O., Water incorporation into the Ba2(In1–xMx)2O5 (M=Sc3+ 0 ≤ x < 0.5 and M=Y3+ 0 ≤ x < 0.35) system and protonic conduction, Solid State Ionics, 2009, vol. 180, no. 20–22, p. 1157. doi: 10.1016/j.ssi.2009.06.010
  20. Shin, J.F., Orera, A., Apperley, D.C., and Slater, P.R., Oxyanion doping strategies to enhance the ionic conductivity in Ba2In2O5, J. Mater. Chem., 2011, vol. 21, no. 3, p. 874. doi: 10.1039/C0JM01978J
  21. Tarasova, N. and Animitsa, I., The influence of anionic heterovalent doping on transport properties and chemical stability of F-, Cl-doped brownmillerite Ba2In2O5, J. Alloys Compd., 2018, vol. 739, p. 353. doi: 10.1016/j.jallcom.2017.12.317
  22. Uvarov, N.F., Calculation of electrical conductivity of composites by the generalized mixing equation, Dokl. Phys. Chem., 1997, vol. 353, no. 1–3, p. 116.
  23. Yaroslavtsev, A. B., Ion transport in heterogeneous solid systems, Russ. J. Inorg. Chem., 2000, vol. 45, no. Suppl. 3.
  24. Uvarov, N.F., Composite solid electrolytes: Recent advances and design strategies, J. Solid State Electrochem., 2011, vol. 15, no. 2, p. 367. doi: 10.1007/s10008-008-0739-4
  25. Yaroslavtsev, A.B., Solid electrolytes: Main prospects of research and development, Russ. Chem. Rev., 2016, vol. 85, no. 11, p. 1255. doi: 10.1070/RCR4634
  26. Uvarov, N.F., Estimation of electrical properties of composite solid electrolytes of different morphologies, Solid State Ionics, 2017, vol. 302, p. 19. doi: 10.1016/j.ssi.2016.11.021
  27. Matveev, E.S., Composite solid electrolytes, Membr. Membr. Technol., 2024, vol. 14, no. 4, p. 263. doi: 10.31857/S2218117224040027
  28. Alyabysheva, I.V., Kochetova, N.A., Matveev, E.S., Baldina, L.I., and Animitsa, I.E., Stabilizing a disordered structural modification of barium indate by means of heterogeneous doping, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 3, p. 384. doi: 10.3103/S1062873817030030
  29. Kochetova, N., Alyabysheva, I., and Animitsa, I., Composite proton-conducting electrolytes in the Ba2In2O5–Ba2InTaO6 system, Solid State Ionics, 2017, vol. 306, p. 118. doi: 10.1016/j.ssi.2017.03.021
  30. Kochetova, N.A., Alyabysheva, I.V., Matveev, E.S., and Animitsa, I.E., Thermal and electrical properties of proton-conducting composite ceramics based on Al-doped barium indate, J. Sib. Fed. Univ. Chem., 2023, vol. 16, p. 383.
  31. Matveev, E.S., Kochetova, N.A., Alyabysheva, I.V., and Animitsa, I.E., Correlation between the electrical properties and structural and morphological characteristics of samples in the Ba2In2O5–Ba2InNbO6 quasi-binary eutectic system, Russ. J. Inorg. Chem., 2024. doi: 10.1134/S0036023624602897
  32. Bielecki, J., Parker, S.F., Mazzei, L., Börjesson, L., and Karlsson, M., Structure and dehydration mechanism of the proton conducting oxide Ba2In2O5(H2O)x, J. Mater. Chem. A, 2016, vol. 4, no. 4, p. 1224. doi: 10.1039/C5TA05728K
  33. Hashimoto, T., Absorption and secession of H2O and CO2 on Ba2In2O5 and their effects on crystal structure, Solid State Ionics, 2000, vol. 128, no. 1–4, p. 227. doi: 10.1016/S0167-2738(99)00344-6
  34. Schober, T., The oxygen and proton conductor Ba2In2O5: Thermogravimetry of proton uptake, Solid State Ionics, 1998, vol. 113–115, no. 1–2, p. 369. doi: 10.1016/S0167-2738(98)00302-6
  35. Kochetova, N.A., Alyabysheva, I.V., Matveev, E.S., and Animitsa, I.E., Proton transport in perovskites Ba2InMO6 (M = Nb, Ta), Russ. J. Electrochem., 2017, vol. 53, no. 6, p. 658. doi: 10.1134/S102319351706009X
  36. Kochetova, N.A., Animitsa, I.E., and Neiman, A.Ya., Electric properties of solid solutions based on strontium tantalate with perovskite-type structure: Protonic conductivity, Russ. J. Electrochem., 2010, vol. 46, no. 2, p. 168. doi: 10.1134/S1023193510020072
  37. Bohn, H.G., Schober, T., Mono, T., and Schilling, W., The high temperature proton conductor Ba3Ca1.18Nb1.82O9–δ. I. Electrical conductivity, Solid State Ionics, 1999, vol. 117, no. 3–4, p. 219. doi: 10.1016/S0167-2738(98)00420-2
  38. Du, Y. and Nowick, A.S., Galvanic cell measurements on a fast proton conducting complex perovskite electrolyte, Solid State Ionics, 1996, vol. 91, no. 1–2, p. 85. doi: 10.1016/S0167-2738(96)00409-2
  39. Hibino, T., Mizutani, K., Yajima, T., and Iwahara, H., Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method, Solid State Ionics, 1992, vol. 57, no. 3–4, p. 303. doi: 10.1016/0167-2738(92)90162-I
  40. Grimaud, A., Bassat, J.M., Mauvy, F., Simon, P., Canizares, A., Rousseau, B., and Grenier, J. C., Transport properties and in-situ Raman spectroscopy study of BaCe0.9Y0.1O3–δ as a function of water partial pressures, Solid State Ionics, 2011, vol. 191, no. 1, p. 24. doi: 10.1016/j.ssi.2011.03.020
  41. Ahmed, I., Knee, C.S., Eriksson, S. G., Ahlberg, E., Karlsson, M., Matic, A., and Börjesson, L., Proton conduction in perovskite oxide BaZr0.5Yb0.5O3–δ prepared by wet chemical synthesis route, J. Electrochem. Soc., 2008, vol. 155, no. 11, p. P97. doi: 10.1149/1.2969806
  42. Zhou, Y., Shiraiwa, M., Nagao, M., Fujii, K., Tanaka, I., Yashima, M., Baque, L., Basbus, J.F., Mogni, L.V., and Skinner, S. J., Protonic conduction in the BaNdInO4 structure achieved by acceptor doping, Chem. Mater., 2021, vol. 33, no. 6, p. 2139. doi: 10.1021/acs.chemmater.0c04828
  43. Morikawa, R., Murakami, T., Fujii, K., Avdeev, M., Ikeda, Y., Nambu, Y., and Yashima, M., High proton conduction in Ba2LuAlO5 with highly oxygen-deficient layers, Commun. Mater., 2023, vol. 4, no. 1, p. 42. doi: 10.1038/s43246-023-00364-5
  44. Zvonareva, I.A., Starostin, G.N., Akopian, M.T., Vdovin, G.K., Fu, X.Z., and Medvedev, D.A., Ionic and electronic transport of dense Y-doped barium stannate ceramics for high-temperature applications, J. Power Sources, 2023, vol. 565, p. 232883. doi: 10.1016/j.jpowsour.2023.232883
  45. Zhang, B., Zhong, Z., Tu, T., Wu, K., and Peng, K., Acceptor-doped La1.9M0.1Ce2O7 (M = Nd, Sm, Dy, Y, In) proton ceramics and in-situ formed electron-blocking layer for solid oxide fuel cells applications, J. Power Sources., 2019, vol. 412, p. 631. doi: 10.1016/j.jpowsour.2018.12.006

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences