Development of technology for manufacturing electrodes for self-charging supercapacitors from carbon nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article discusses the development of the technology for manufacturing supercapacitor electrodes from industrially produced carbon nanotubes with a specific surface area of 109.6 m2/g, with the aim of further application in the manufacture of carbon electrodes for self-charging supercapacitors. The electrochemical characteristics of carbon nanotube electrodes were studied in a symmetrical two–electrode cell using cyclic voltammetry, galvanostatic charge-discharge, and impedance spectroscopy. It was shown that the specific capacitance of the electrode in the organic electrolyte 1-butyl-3-methylimidazolium trifluoromethane sulfonate:propylene carbonate (volume ratio 3:1) was 9.1 F/g.

About the authors

N. V. Keller

JSC “Research Institute of Nuclear Material”

Author for correspondence.
Email: keller_nv@irmatom.ru
Russian Federation, Zarechny, Sverdlovsk region

V. N. Nikolkin

JSC “Research Institute of Nuclear Material”

Email: keller_nv@irmatom.ru
Russian Federation, Zarechny, Sverdlovsk region

D. S. Butakov

JSC “Research Institute of Nuclear Material”

Email: keller_nv@irmatom.ru
Russian Federation, Zarechny, Sverdlovsk region

A. A. Zolotavin

JSC “Research Institute of Nuclear Material”

Email: keller_nv@irmatom.ru
Russian Federation, Zarechny, Sverdlovsk region

A. A. Askarova

JSC “Research Institute of Nuclear Material”

Email: keller_nv@irmatom.ru
Russian Federation, Zarechny, Sverdlovsk region

V. Y. Kheynstein

JSC “Research Institute of Nuclear Material”

Email: keller_nv@irmatom.ru
Russian Federation, Zarechny, Sverdlovsk region

References

  1. Conway, B. E., Electrochemical Supercapacitors: Scientific fundamentals and technological applications, N. Y.: Plenum Publ., 1999, p. 698.
  2. Иванов, A.M., Герасимов, А.Ф. Молекулярные накопители электрической энергии на основе двойного электрического слоя. Электричество. 1991. Т.1. С. 16. [Ivanov, A.M. and Gerasimov, A.F., Molecular energy storage devices based on electrical double layer, Russ. J. Electric., 1991, vol. 1, p. 16.]
  3. Рисованый, В.Д., Булярский, С.В., Марков, Д.В., Синельников, Л.П., Николкин, В.Н., Злоказов, С.Б., Джанелидзе, А.А., Светухин, В.В. Суперконденсатор и способ его изготовления, Пат. 2668544 (Россия), 2018. [Risovanyj, V.D., Bulyarskij, S.V., Markov, D.V., Sinelnikov, L.P., Nikolkin, V.N., Zlokazov, S.B., Dzhanelidze, A.A., and Svetukhin, V.V., Supercapacitor and its manufacturing method, Patent 2668544 (Russia), 2018.]
  4. Рисованый, В.Д., Костылев, А.И., Душин, В.Н., Фирсин, Н.Г., Синельников, Л.П., Бутаков, Д.С., Николкин, В.Н. Атомные батареи конденсаторного типа нового поколения с жидким электролитом. Атомная энергия. 2022. Т. 132. С. 175. [Risovanyj, V.D., Kostylev, A.I., Dushin, V.N., Firsin, N.G., Sinelnikov, L.P., Butakov, D.S., and Nikolkin, V.N., New generation atomic batteries of capacitor type with liquid electrolyte, Russ. J. Atomic energy, 2022, vol. 132, p. 175.]
  5. Signorelli, R., Ku, D.C., Kassakian, J.G., and Schindall, J.E., Electrochemical Double–Layer Capacitors Using Carbon Nanotube Electrode Structures, IEEE, 2009, vol. 97, no. 11. p. 1837.
  6. Чернявина, В. В., Бережная, А. Г., Жихарева, Е.А. Активированный уголь марки “NORIT B Test EUR” как электродный материал суперконденсатора. Электрохим. энергетика. 2018. Т. 18. № 4. С. 192. [Chernyavina, V.V., Berezhnaya, A.G., and Zhikhareva, E.A., Activated carbon “NORIT B Test EUR” as an electrode material for supercapacitors, Russ. J. Electrochemical Energetics, 2018, vol. 18, no. 4, p. 192.]
  7. Чайка, М.Ю., Воробьев, А.Ю., Силютин, Д.Е., Небольсин, В.А. Разработка лабораторного технологического маршрута изготовления нанопористых электродов суперконденсаторов. Вестник ВГУ. 2012. Т. 7, № 2. С. 79. [Chayka, M.Yu., Vorobjev, A.Yu., Silyutin, D.E., and Nebolsin, V.A., Development of the laboratory technological route for supercondensers nanoporous electrodes manufacturing, Russ. J. Vestnik VSU, 2012, vol. 7, no. 2, p. 79.]
  8. Янилкин, И.В., Саметов, А.А., Школьников, Е.И. Влияние количества связующего фторопласта Ф4 в угольных электродах на характеристики суперконденсаторов. Журн. прикл. химии. 2015. Т. 88. №2. С. 336. [Yanilkin, I.V., Sametov, A.A., and Shkol’nikov, E.I., Impact of F-4 fluoroplast in carbon electrodes on the supercapacitors characteristics, Russ. J. applied chemistry, 2015, vol. 88, no. 2. p. 336.]
  9. Lalitha, M. and Lakshmipathi, S., Interface energetics of [Emim]+[X]− and [Bmim]+[X]− (X = BF4, Cl, PF6, TfO, Tf2N) based ionic liquids on graphene, defective graphene, and graphyne surfaces, J. Molecular liquids, 2017, vol. 236, p. 124.
  10. Lam, P.H., Tran, A.T., Walczyk, D.J., Miller, A.M., and Yu, L., Conductivity, viscosity, and thermodynamic properties of propylene carbonate solutions in ionic liquids, J. Molecular liquids, 2017, vol. 246, p. 215.
  11. Di Leo, R.A., Marschilok, A.C., Takeuchi, K.J., and Takeuchi, E.S., Battery electrolytes based on saturated ring ionic liquids: Physical and electrochemical properties, Electrochim. Acta, 2013, vol. 109, p. 27.
  12. Pitawela, N.R. and Shaw, S.K., Imidazolium triflate ionic liquid’s capacitance−potential relationships and transport properties affected by cation chain lengths, ACS Meas. Sci, 2021, vol. 1, p. 117.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences