On regularization of the classical optimality conditions in the convex optimization problems for Volterra-type systems with operator constraints
- Authors: Sumin V.I.1, Sumin M.I.2
-
Affiliations:
- Derzhavin Tambov State University
- Lobachevskii Nizhnii Novgorod State University
- Issue: Vol 60, No 2 (2024)
- Pages: 237-259
- Section: CONTROL THEORY
- URL: https://rjsvd.com/0374-0641/article/view/649558
- DOI: https://doi.org/10.31857/S0374064124020074
- EDN: https://elibrary.ru/QKMYJY
- ID: 649558
Cite item
Abstract
We consider the regularization of classical optimality conditions (COCs) — the Lagrange principle (LP) and the Pontryagin maximum principle (PMP) — in a convex optimal control problem with an operator equality-constraint and functional inequality-constraints. The controlled system is specified by a linear functional-operator equation of the second kind of general form in the space
Full Text

About the authors
V. I. Sumin
Derzhavin Tambov State University
Author for correspondence.
Email: v_sumin@mail.ru
Russian Federation, Tambov
M. I. Sumin
Lobachevskii Nizhnii Novgorod State University
Email: m.sumin@mail.ru
Russian Federation, Nizhnii Novgorod
References
- Alekseev, V.M. Optimal Control / V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin. — New York : Plenum Press, 1987.
- Avakov, E.R. Lagrange’s principle in extremum problems with constraints / E.R. Avakov, G.G. Magaril-Il’yaev, V.M. Tikhomirov // Russ. Math. Surveys. — 2013. — V. 68, № 3. — P. 401–433.
- Arutyunov, A.V. Printsip maksimuma Pontryagina. Dokazatel‘stvo i prilozheniya / A.V. Arutyunov, G.G. Magaril-Il’yaev, V.M. Tikhomirov. — Moscow : Faktorial Press, 2006. — 144 p. [in Russian]
- Gamkrelidze, R.V. History of the discovery of the Pontryagin maximum principle / R.V. Gamkrelidze // Proc. Steklov Inst. Math. — 2019. — V. 304. — P. 1–7.
- Il-posed problems in the natural science : coll. art. / By eds. A.N. Tikhonov, A.V. Goncharskii. Moscow : MSU Press, 1987. — 303 p. [in Russian]
- Vasil’ev, F.P. Metody optimizatsii / F.P. Vasil’ev. — Moscow : MCCME, 2011. Vol. 1: 620 p.; Vol. 2: 433 p. [in Russian]
- Sumin, M.I. Regularized parametric Kuhn–Tucker theorem in a Hilbert space / M.I. Sumin // Comput. Math. Math. Phys. — 2011. — V. 51, № 9. — P. 1489–1509.
- Sumin, M.I. On ill-posed problems, extremals of the Tikhonov functional and the regularized Lagrange principles / M.I. Sumin // Russ. Universities Reports. Mathematics. — 2022. — V. 27, № 137. — P. 58–79. [in Russian]
- Sumin, V.I. On the iterative regularization of the Lagrange principle in convex optimal control problems for distributed systems of the Volterra type with operator constraints / V.I. Sumin, M.I. Sumin // Differ. Equat. — 2022. — V. 58, № 6. — P. 791–809.
- Sumin, V.I. On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints / V.I. Sumin, M.I. Sumin // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2022. — V. 59. — P. 85–113. [in Russian]
- Fursikov, A.V. Optimal Control of Distributed Systems: Theory and Applications / A.V. Fursikov. — Providence : Amer. Math. Soc., 2000. — 305 p.
- Troltzsch, F. Optimal Control of Partial Differential Equations. Theory, Methods and Applications /
- F. Troltzsch. — Providence; Rhode Island : Amer. Math. Soc., 2010. — 399 p.
- Borzi, A. The Sequential Quadratic Hamiltonian Method. Solving Optimal Control Problems / A. Borzi. —
- Boca Raton : Chapman and Hall/CRC Press, 2023.
- Tonelli, L. Sulle equazioni funzionali di Volterra / L. Tonelli // Bull. Calcutta Math. Soc. — 1929. — V. 20. — P. 31–48.
- Tikhonov, A.N. Functional Volterra-type equations and their applications to certain problems of mathematical physics / A.N. Tikhonov // Bull. Mosk. Gos. Univ. Sekt. A. — 1938. — V. 8, № 1. — P. 1–25. [in Russian]
- Zabreiko, P.P. Integral Volterra operators / P.P. Zabreiko // Uspekhi Mat. Nauk. — 1967. — V. 22, № 1. —
- P. 167–168. [in Russian]
- Shragin, I.V. Abstract Nemyckii operators are locally defined operators / I.V. Shragin // Sov. Math. Dokl. — 1976. — V. 17. — P. 354–357.
- Sumin, V.I. Volterra functional-operator equations in the theory of optimal control of distributed systems / V.I. Sumin // Sov. Math. Dokl. — 1989. — V. 39, № 2. — P. 374–378.
- Zhukovskii, E.S. On the theory of Volterra equations / E.S. Zhukovskii // Differ. Equat. — 1989. — V. 25,
- № 9. — P. 1132–1137.
- Corduneanu, C. Integral Equations and Applications / C. Corduneanu. — Cambridge; New York : Cambridge
- University Press, 1991. — 376 p.
- Gohberg, I.C. Theory and Applications of Volterra Operators in Hilbert Space / I.C. Gohberg, M.G. Krein. —
- Amer. Math. Soc., 1970. — 378 p.
- Bughgeim, A.L. Volterra Equations and Inverse Problems / A.L. Bughgeim. — Utrecht : VSP BV, 1999.
- Gusarenko, S.A. On a generalization of the notion of Volterra operator / S.A. Gusarenko // Sov. Math. Dokl. — 1988. — V. 36, № 1. — P. 156–159.
- Vath, M. Abstract Volterra equations of the second kind / M. V¨ath // J. Equat. Appl. — 1998. — V. 10, № 9. — P. 125–144.
- Zhukovskii, E.S. Abstract Volterra operators / E.S. Zhukovskii, M.J. Alves // Russ. Mathematics. — 2008. —
- V. 52, № 3. — P. 1–14.
- Sumin, V.I. Functional Volterra equations in the theory of optimal control of distributed systems / V.I. Sumin. — Nizhnii Novgorod : Izd-vo Nizhegorodskogo gosuniversiteta, 1992. — 110 p. [in Russian]
- Sumin, V.I. Operators in spaces of measurable functions: The Volterra property and quasinilpotency / V.I. Sumin, A.V. Chernov // Differ. Equat. — 1998. — V. 34, № 10. — P. 1403–1411.
- Sumin, V.I. Controlled Volterra functional equations and the contraction mapping principle / V.I. Sumin //
- Trudy Inst. Mat. Mekh. UrO RAN. — 2019. — V. 25, № 1. — P. 262–278. [in Russian]
- Warga, J. Optimal control of differential and functional equations / J. Warga. — New York : Acad. Press, 1972.
- Sumin, M.I. Stable sequential convex programming in a Hilbert space and its application for solving unstable problems / M.I. Sumin // Comput. Math., Math. Phys. — 2014. — V. 54, № 1. — P. 22–44.
- Bakushinskii, A.B. Iterative Methods for Solving Ill-Posed Problems / A.B. Bakushinskii, A.V. Goncharskii. — Moscow : Nauka, 1989. — 126 p. [in Russian]
- Sumin, M.I. On regularization of the classical optimality conditions in convex optimal control problems /
- M.I. Sumin // Trudy Inst. Mat. Mekh. UrO RAN. — 2020. — V. 26, № 2. — P. 252–269. [in Russian]
- Sumin, M.I. Nondifferential Kuhn–Tucker theorems in constrained extremum problems via subdifferentials of
- nonsmooth analysis / M.I. Sumin // Russ. Universities Reports. Mathematics. — 2020. — V. 25, № 131. —
- P. 307–330. [in Russian]
- Aubin, J.P. L’analyse non lin/eaire et ses motivations /economiques / J.P. Aubin. — Paris : Masson, 1984. — 214 p.
- Loewen, P.D. Optimal Control via Nonsmooth Analysis / P.D. Loewen. — Providence, Rhode Island, USA :
- Amer. Math. Soc., 1993. — 153 p.
- Jorgens, K. An asymptotic expansion in the theory of neutron transport / K. Jorgens // Comm. Pure Appl.
- Math. — 1958. — V. 11, № 2. — P. 219–242.
- Morozov, S.F. Non-stationary integro-differential transport equation / S.F. Morozov // Izvestiya vysshikh uchebnykh zavedeniy. Matematika. — 1969. — № 1. — P. 26–31. [in Russian]
- Kuznetsov, Yu.A. Correctness of the mixed problem statement for the nonstationary transport equation /
- Yu.A. Kuznetsov, S.F. Morozov // Differ. uravneniya. — 1972. — V. 8, № 9. — P. 1639–1648. [in Russian]
Supplementary files
