Goldstone Mode of Skyrmion Crystal

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We discuss the Goldstone mode of skyrmion crystal in a model of two-dimensional ferromagnet with the Dzyaloshinskii–Moriya interaction in magnetic field. We use stereographic projection approach to construct skyrmion crystal and consider skyrmion displacement field. The small overlap of the individual skyrmion images restricts the potential energy to the interaction of nearest neighboring displacements. The closed form of the Goldstone mode dispersion is found and its dependence on the magnetic field is studied. We use semiclassical quantization to define the Green’s function and show that the propagation of displacements through the crystal changes its tensorial form from anisotropic to isotropic one at large times.

作者简介

V. Timofeev

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;St. Petersburg State University

Email: victor.timofeev@thd.pnpi.spb.ru
188300, Gatchina, Russia;199034, St. Petersburg, Russia

D. Aristov

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;St. Petersburg State University

编辑信件的主要联系方式.
Email: Victor.Timofeev@thd.pnpi.spb.ru
188300, Gatchina, Russia;199034, St. Petersburg, Russia

参考

  1. H. Vakili, J.-W. Xu, W. Zhou et al. (Collaboration), J. Appl. Phys. 130, 070908 (2021).
  2. Z. Yan, Y. Liu, Y. Guang, K. Yue, J. Feng, R. Lake, G. Yu, and X. Han, Phys. Rev. Appl. 44, 392001 (2011).
  3. N. S. Kiselev, A.N. Bogdanov, R. Sch¨afer, and U.K. R¨oßler, J. Phys. D: Appl. Phys. 44, 392001 (2011).
  4. F.H.D. Leeuw, R.V.D. Doel, and U. Enz, Rep. Prog. Phys. 138, 255 (1994).
  5. A.A. Thiele, Bell System Technical Journal 48, 3287 (1969).
  6. A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).
  7. A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973).
  8. M. Weißenhofer, L. R'ozsa, and U. Nowak, Phys. Rev. Lett. 127, 047203 (2021).
  9. A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 1 (2017).
  10. S. Weißenhofer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. B¨oni, Science 323, 915 (2009).
  11. X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nat. Mater. 10, 106 (2010).
  12. X. Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010).
  13. N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
  14. V.E. Timofeev, A.O. Sorokin, and D.N. Aristov, Phys. Rev. B 103, 094402 (2021).
  15. V.E. Timofeev, A.O. Sorokin, and D.N. Aristov, JETP Lett. 109, 207 (2019).
  16. A. Rold'an-Molina, A. S. Nunez, and J. Fern'andez- Rossier, New J. Phys. 18, 045015 (2016).
  17. M. Garst, J. Waizner, and D. Grundler, J. Phys. D: Appl. Phys. 50, 293002 (2017).
  18. A. Mook, J. Klinovaja, and D. Loss, Physical Review Research 2, 033491 (2020).
  19. V.E. Timofeev and D.N. Aristov, Phys. Rev. B 105, 024422 (2022).
  20. V.E. Timofeev and D.N. Aristov, JETP Lett. 117, 676 (2023).
  21. Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 109, 037603 (2012).
  22. O. Petrova and O. Tchernyshyov, Phys. Rev. B 84, 214433 (2011).
  23. N. Mohanta, A.D. Christianson, S. Okamoto, and E. Dagotto, Communications Physics 3, 229 (2020).
  24. T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. Pfleiderer, and D. Grundler, Nat. Mater. 14, 478 (2015).
  25. T. Weber, D.M. Fobes, J. Waizner, P. Steffens, G. S. Tucker, M. B¨ohm, L. Beddrich, C. Franz, H. Gabold, R. Bewley, D. Voneshen, M. Skoulatos, R. Georgii, G. Ehlers, A. Bauer, C. Pfleiderer, P. B¨oni, M. Janoschek, and M. Garst, Science 375, 1025 (2022).
  26. K. L. Metlov, Phys. Rev. B 88, 014427 (2013).
  27. D.N. Aristov and A. Luther, Phys. Rev. B 65, 165412 (2002).
  28. R. Rajaraman, Solitons and instantons North Holland, Amsterdam, N.Y., Oxford (1982).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023