Спиновые состояния ионов кобальта в объеме и на поверхности LaCoO3 по рентгеновским абсорбционным, эмиссионным и фотоэлектронным спектрам

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Мы представляем результаты исследований спиновых состояний трехвалентных ионов кобальта в монокристаллическом кобальтите LaCoO3 с помощью рентгеновских фотоэлектронных, Co L2,3- и O K- рентгеновских абсорбционных, а также Co Kβ1,3 -рентгеновских эмиссионных спектров. Мы показываем, что при комнатной температуре в объеме монокристалла LaCoO3 ионы Co3+ находятся в низкоспиновом состоянии, а на поверхности LaCoO3 присутствуют высокоспиновые ионы Co2+, высокоспиновые ионы Co3+, низкоспиновые ионы Co3+ и, вероятно, также промежуточно-спиновые ионы Co3+.

Об авторах

В. Р. Галахов

Федеральное государственное бюджетное учреждение науки Институт физики металлов имени М. Н. Михеева Уральского отделения Российской академии наук

Email: solin@imp.uran.ru
620108, Екатеринбург, Россия

М. С. Удинцева

Институт физики металлов им. М. Н. Михеева Уральского отделения РАН

Email: galakhov@gmail.com
620108, Екатеринбург, Россия

Д. А. Смирнов

Дрезденский технический университет

Email: galakhov@gmail.com
Дрезден, 01062 Германия

А. А. Макарова

Институт физико-химии Свободного университета Берлина

Email: galakhov@gmail.com
Берлин, 14195 Германия

К. Кюппер

Физический факультет Оснабрюкского университета

Автор, ответственный за переписку.
Email: galakhov@gmail.com
Оснабрюк, 49076 Германия

Список литературы

  1. G. Jonker and J.V. Santen, Physica 19, 120 (1953).
  2. P.M. Raccah and J. B. Goodenough, Phys. Rev. 155, 932 (1967).
  3. G. Thornton, B. Tofield, and D. Williams, Solid State Commun. 44, 1213 (1982).
  4. S.R. English, J. Wu, and C. Leighton, Phys. Rev. B 65, 220407 (2002).
  5. M.A. Korotin, S.Y. Ezhov, I.V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G.A. Sawatzky, Phys. Rev. B 54, 5309 (1996).
  6. S. Yamaguchi, Y. Okimoto, and Y. Tokura, Phys. Rev. B 55, R8666 (1997).
  7. P.G. Radaelli and S.-W. Cheong, Phys. Rev. B 66, 094408 (2002).
  8. I.A. Nekrasov, S.V. Streltsov, M.A. Korotin, and V. I. Anisimov, Phys. Rev. B 63, 235113 (2003).
  9. G. Maris, Y. Ren, V. Volotchaev, C. Zobel, T. Lorenz, and T.T.M. Palstra, Phys. Rev. B 67, 224423 (2003).
  10. M. Magnuson, S. M. Butorin, C. S˚athe, J. Nordgren, and P. Ravindran, Europhys. Lett. 68, 289 (2004).
  11. D. Phelan, D. Louca, S. Rosenkranz, S.-H. Lee, Y. Qiu, P. J. Chupas, R. Osborn, H. Zheng, J. F. Mitchell, J.R.D. Copley, J. L. Sarrao, and Y. Moritomo, Phys. Rev. Lett. 96, 027201 (2006).
  12. G. Vank'o, J.-P. Rueff, A. Mattila, Z. N'emeth, and A. Shukla, Phys. Rev. B 73, 024424 (2006).
  13. R. F. Klie, J.C. Zheng, Y. Zhu, M. Varela, J. Wu, and C. Leighton, Phys. Rev. Lett. 99, 047203 (2007).
  14. V.V. Sikolenko, S. L. Molodtsov, M. Izquierdo, I.O. Troyanchuk, D. Karpinsky, S. I. Tiutiunnikov, E. Efimova, D. Prabhakaran, D. Novoselov, and V. Efimov, Physica B: Condens. Matter. 536, 597 (2018).
  15. В. В. Сиколенко, И.О. Троянчук, Д.В. Карпинский, A. Rogalev, F.Wilhelm, R. Rosenberg, D. Prabhakaran, E.А. Ефимова, В.В. Ефимов, С.И. Тютюнников, И.А. Бобриков, Физика твердого тела 60, 283 (2018)
  16. V.V. Sikolenko, I.O. Troyanchuk, D.V. Karpinsky, A. Rogalev, F.Wilhelm, R. Rosenberg, D. Prabhakaran, E.A. Efimova, V.V. Efimov, S. I. Tiutiunnikov, and I.A. Bobrikov, Phys. Solid State 60, 288 (2018).
  17. M. Feygenson, D. Novoselov, S. Pascarelli, R. Chernikov, O. Zaharko, F. Porcher, D. Karpinsky, A. Nikitin, D. Prabhakaran, A. Sazonov, and V. Sikolenko, Phys. Rev. B 100, 054306 (2019).
  18. M. Zhuang, W. Zhang, and N. Ming, Phys. Rev. B 57, 10705 (1998).
  19. S. Noguchi, S. Kawamata, K. Okuda, H. Nojiri, and M. Motokawa, Phys. Rev. B 66, 094404 (2002).
  20. K. Kn'ıˇzek, J. Hejtm'anek, and P. Nov'ak, J. Phys. Condens. Matter 18, 3285 (2006).
  21. A. Podlesnyak, S. Streule, J. Mesot, M. Medarde, E. Pomjakushina, K. Conder, A. Tanaka, M.W. Haverkort, and D. I. Khomskii, Phys. Rev. Lett. 97, 247208 (2006).
  22. M.W. Haverkort, Z. Hu, J.C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N.B. Brookes, H.H. Hsieh, H.-J. Lin, C.T. Chen, and L.H. Tjeng, Phys. Rev. Lett. 97, 176405 (2006).
  23. M. Medarde, C. Dallera, M. Grioni, J. Voigt, A. Podlesnyak, E. Pomjakushina, K. Conder, T. Neisius, O. Tjernberg, and S.N. Barilo, Phys. Rev. B 73, 054424 (2006).
  24. N. Sundaram, Y. Jiang, I.E. Anderson, D.P. Belanger, C.H. Booth, F. Bridges, J. F. Mitchell, T. Proffen, and H. Zheng, Phys. Rev. Lett. 102, 026401 (2009).
  25. K. Kn'ıˇzek, J. Hejtm'anek, Z. Jir'ak, P. Tomeˇs, P. Henry, and A. Andr'e, Phys. Rev. B 79, 134103 (2009).
  26. V. Kˇr'apek, P. Nov'ak, J. Kuneˇs, D. Novoselov, D.M. Korotin, and V. I. Anisimov, Phys. Rev. B 86, 195104 (2012).
  27. Р.Ю. Бабкин, К.В. Ламонова, С.М. Орел, С. Г. Овчинников, Ю. Г. Пашкевич, Письма в ЖЭТФ 99, 547 (2014)
  28. R.Yu. Babkin, K.V. Lamonova, S.M. Orel, S.G. Ovchinnikov, and Yu.G. Pashkevich, JETP Lett. 99, 476 (2014).
  29. S.R. Barman and D.D. Sarma, Phys. Rev. B 49, 13979 (1994).
  30. S.K. Pandey, A. Kumar, S. Patil, V.R.R. Medicherla, R. S. Singh, K. Maiti, D. Prabhakaran, A.T. Boothroyd, and A.V. Pimpale, Phys. Rev. B 77, 045123 (2008).
  31. Z. Shen, M. Qu, J. Shi, F. E. Oropeza, V.A. de la Pena O'Shea, G. Gorni, C. Tian, J. P. Hofmann, J. Cheng, J. Li, and K.H. Zhang, J. Energy Chem. 65, 637 (2022).
  32. J. Suntivich, W.T. Hong, Y.-L. Lee, J.M. Rondinelli, W. Yang, J. B. Goodenough, B. Dabrowski, J.W. Freeland, and Y. Shao-Horn, J. Phys. Chem. C 118, 1856 (2014).
  33. E. Stavitski and F.M. F. de Groot, Micron 41, 687 (2010).
  34. R.P. Vasquez, Phys. Rev. B 54, 14938 (1996).
  35. T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B 55, 4257 (1997).
  36. K.A. Stoerzinger,W.T. Hong, E. J. Crumlin, H. Bluhm, M.D. Biegalski, and Y. Shao-Horn, J. Phys. Chem. C 118, 19733 (2014).
  37. B.W. Veal and D. J. Lam, J. Appl. Phys. 49, 1461 (1978).
  38. L. Richter, S.D. Bader, and M. B. Brodsky, Phys. Rev. B 22, 3059 (1980).
  39. J. Kemp, D. Beal, and P. Cox, J. Solid State Chem. 86, 50 (1990).
  40. M. Abbate, J.C. Fuggle, A. Fujimori, L.H. Tjeng, R.P.C.T. Chen, G.A. Sawatzky, H. Eisaki, and S. Uchida, Phys. Rev. B 47, 16124 (1993).
  41. L. Heymann, M. L. Weber, M. Wohlgemuth, M. Risch, R. Dittmann, C. Baeumer, and F. Gunkel, ACS Appl. Mater. Interfaces 14, 14129 (2022).
  42. D. Takegami, L. Nicola¨ı, T.C. Koethe, D. Kasinathan, C.Y. Kuo, Y.F. Liao, K.D. Tsuei, G. Panaccione, F. Offi, G. Monaco, N.B. Brookes, J. Min'ar, and L.H. Tjeng, Phys. Rev. B 99, 165101 (2019).
  43. T.Y. Ma, S. Dai, M. Jaroniec, and S. Z. Qiao, J. Amer. Chem. Soc. 136, 13925 (2014).
  44. L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, and L. Dai, Angew. Chem. Int. Ed. Engl. 55, 5277 (2016).
  45. Y. Liu, X. Kong, X. Guo, Q. Li, J. Ke, R. Wang, Q. Li, Z. Geng, and J. Zeng, ACS Catal. 10, 1077 (2020).
  46. A. Hariki, A. Yamanaka, and T. Uozumi, J. Phys. Soc. Jpn. 84, 073706 (2015).
  47. S. L. Wachowski, I. Szpunar, M.H. Sørby, A. Mielewczyk-Gry'n, M. Balaguer, C. Ghica, M.C. Istrate, M. Gazda, A.E. Gunnæs, J.M. Serra, T. Norby, and R. Strandbakke, Acta Mater. 199, 297 (2020).
  48. I. Szpunar, R. Strandbakke, M.H. Sørby, S. L. Wachowski, M. Balaguer, M. Tarach, J. Serra, A. Witkowska, E. Dzik, T. Norby, M. Gazda, and A. Mielewczyk-Gry'n, Materials 13, 4044 (2020).
  49. В. Р. Галахов, М.С. Удинцева, С. В. Наумов, С.Н. Шамин, Б.А. Гижевский, Письма в ЖЭТФ 116, 358 (2022)
  50. V.R. Galakhov, M. S. Udintseva, S.V. Naumov, S.N. Shamin, and B.A. Gizhevskii, JETP Lett. 116, 367 (2022).
  51. M. Garc'ıa-Fern'andez, V. Scagnoli, U. Staub, A.M. Mulders, M. Janousch, Y. Bodenthin, D. Meister, B.D. Patterson, A. Mirone, Y. Tanaka, T. Nakamura, S. Grenier, Y. Huang, and K. Conder, Phys. Rev. B 78, 054424 (2008).
  52. Z. Hu, H. Wu, M.W. Haverkort, H.H. Hsieh, H. J. Lin, T. Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C.T. Chen, and L.H. Tjeng, Phys. Rev. Lett. 92, 207402 (2004).
  53. C. S. Knee, D. J. Price, M.R. Lees, and M.T. Weller, Phys. Rev. B 68, 174407 (2003).
  54. J.-P. Rueff, C.-C. Kao, V.V. Struzhkin, J. Badro, J. Shu, R. J. Hemley, and H.K. Mao, Phys. Rev. Lett. 82, 3284 (1999).
  55. G. Vank'o, T. Neisius, G. Moln'ar, F. Renz, S. K'arp'ati, A. Shukla, and F.M. F. de Groot, J. Phys. Chem. B 110, 11647 (2006).
  56. J. Herrero-Mart'ın, J. L. Garc'ıa-Munoz, K. Kvashnina, E. Gallo, G. Sub'ıas, J.A. Alonso, and A. J. Bar'on- Gonz'alez, Phys. Rev. B 86, 125106 (2012).
  57. J.-M. Chen, Y.-Y. Chin, M. Valldor, Z. Hu, J.-M. Lee, S.-C. Haw, N. Hiraoka, H. Ishii, C.-W. Pao, K.-D. Tsuei, J.-F. Lee, H.-J. Lin, L.-Y. Jang, A. Tanaka, C.-T. Chen, and L.H. Tjeng, J. Am. Chem. Soc. 136, 1514 (2014).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023