A1-A2 splitting in pure 3He in nematic aerogel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Here, we present the results of vibrating wire experiments in pure 3He (without 4He coverage) in nematic aerogel. We investigated the dependence of splitting of the superfluid transition temperature of 3He in aerogel on magnetic field. In addition to our previous work, we used a wider range of magnetic fields (up to 31 kOe) and managed to detect both the “upper” and “lower” superfluid transition temperatures. The solid paramagnetic 3He layer on the aerogel strands activates the magnetic scattering channel. According to theory, it should result in linear splitting at high (≥ 20 kOe) fields, while at lower fields the splitting is expected to be nonlinear. We were able to observe this nonlinearity, but we have a discrepancy with theoretical predictions regarding the range of fields where nonlinearity occurs. Possible reasons for this are discussed.

About the authors

V. V Dmitriev

P. L. Kapitza Institute for Physical Problems of Russian Academy of Sciences

Moscow, Russia

M. S Kutuzov

Metalling Engineering Ltd.

Tallinn, Estonia

D. V Petrova

P. L. Kapitza Institute for Physical Problems of Russian Academy of Sciences; National Research University Higher School of Economics University

Moscow, Russia; Moscow, Russia

A. A Soldatov

P. L. Kapitza Institute for Physical Problems of Russian Academy of Sciences

Email: soldatov_a@kapitza.ras.ru
Moscow, Russia

A. N Yudin

P. L. Kapitza Institute for Physical Problems of Russian Academy of Sciences

Moscow, Russia

References

  1. V. V. Dmitriev, A. A. Senin, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 115, 165304 (2015).
  2. V. V. Dmitriev, M. S. Kutuzov, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 127, 265301 (2021).
  3. V. V. Dmitriev, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 120, 075301 (2018).
  4. V. V. Dmitriev, M. S. Kutuzov, A. A. Soldatov, and A. N. Yudin, Phys. Rev. B 107, 024507 (2023).
  5. E. V. Surovtsev, JETP Lett. 116, 745 (2022).
  6. V. V. Dmitriev, M. S. Kutuzov, A. A. Soldatov, and A. N. Yudin, JETP Lett. 112, 780 (2020).
  7. U. E. Israelsson, B. C. Crooker, H. M. Bozler, and C. M. Gould, Phys. Rev. Lett. 53, 1943 (1984).
  8. J. A. Sauls and P. Sharma, Phys. Rev. B 68, 224502 (2003).
  9. G. A. Baramidze and G. A. Kharadze, J. Low Temp. Phys. 135, 399 (2004).
  10. V. S. Mikheeva and E. V. Surovtsev, JETP Lett. 121, 545 (2025).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences