Generatsiya i pogloshchenie fotonov dvukhurovnevym atomom v rezhime ul'trasil'noy svyazi s EM polem
- Authors: Kozlovskiy A.V1
-
Affiliations:
- Физический институт РАН им. П.Н.Лебедева
- Issue: Vol 120, No 9-10 (2024)
- Pages: 752-759
- Section: Articles
- URL: https://rjsvd.com/0370-274X/article/view/664473
- DOI: https://doi.org/10.31857/S0370274X24110144
- EDN: https://elibrary.ru/KIJQOK
- ID: 664473
Cite item
Abstract
В рамках квантовой модели Раби теоретически показано, что двухуровневый атом генерирует или поглощает фотоны в условиях ультрасильной связи его с электромагнитным полем. Генерация фотонов возможна, если поле первоначально находится в вакуумном состоянии. Возможным, при определенных начальных состояниях системы атом + поле, также является поглощение фотонов в моде поля в режиме ультрасильной связи атома и поля. Если атом в начальный момент времени находится в нижнем (невозбужденном) состоянии, а поле – в вакуумном состоянии, генерация фотонов присутствует в резонансных условиях ωa ≈ ωf , ωa – частота перехода атома, а ωf - частота поля, или ξ ≡ ωa/ωf ≈ 1, в режиме ультра сильной связи. При отрицательной отстройке ξ ≪ 1, ωa ≪ ωf для динамики среднего числа фотонов hˆnit поля характерны осцилляции Раби с 0 ≤ hˆnit ≤ nmax ≫ 1 в случае ультрасильной связи для значений константы связи атома с полем ˜g ≡ |g|/ωf ∼ 1, при этом населенность возбужденного состояния атома составляет Pe(t) ≈ 0.5. В условиях большой положительной отстройки: ξ ≫ 1 генерация фотонов отсутствует: hˆni ≈ 0, а атом остается в исходном состоянии Pe(t) ≈ 0. Статистика фотонов в режиме генерации близка к хаотической: дисперсия фотонов значительно превышает уровень когерентного состояния поля (т.е. является суперпуассоновской). Поглощение фотонов поля без возбуждения атома присутствует в режиме ультра сильной связи в случае когерентного начального состояния поля (hˆn(t = 0i > 0) для определенных положительных значений отстройки. При этом поле становится субпуассоновским.
About the authors
A. V Kozlovskiy
Физический институт РАН им. П.Н.Лебедева
Email: kozlovskiyav@lebedev.ru
Москва, Россия
References
- P. Forn-Diaz, L. Lamata, E. Rico, J. Kono, and E. Solano, Rev. Mod. Phys. 91(2), 25005 (2019).
- T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. H¨ummer, E. Solano, A. Marx, and R. Gross, Nature Phys. 6, 772 (2010).
- A. Le Boit´e, Advanced Quantum Technologies 3(7), 1900140 (2020).
- A. F. Kockum, A. Miranowicz, S. DelLiberato, S. Savesta, and F. Nori, Nat. Rev. Phys. 1, 19 (2019).
- Sh. Fu, Sh. Luo, and Y. Zhang, Quantum Information Processing 20, 88 (2021).
- J.-sh. Peng and G.-x. Li, Phys. Rev. A 45(5), 3289 (1992).
- F. Ilya, I. Alexey , V.-H. Le, and A. Ulyanenkov, Nonperturbative Description of Quantum Systems. Lecture Notes in Physics, Springer Cham Heidelberg New York Dordrecht London, Springer International Publishing Switzerland (2015), v. 894, p. 62; Library of Congress Control Number: 2014958312.
- R. Graham and M. Hohnerbach, Z. Phys. B – Condensed Matter 57, 233 (1984).
- T. Werlang, A.V. Dodonov, E. I. Duzzioni, and C. J. Villas-Bˆoas, Phys. Rev A 78, 053805 (2008); https://doi.org/10.1103/PhysRevA.78.053805.
- A.V. Dodonov,J. Phys. Conf. Ser. 161, 012029 (2009); https://doi.org/10.1088/1742-6596/161/1/01202912.
- F.A. Wolf, M. K, and D. Braak, Phys. Rev. A 85, 053817 (2012).
- F.A.Wolf, F. Vallone, G. Romero, M. Kollar, E. Solano, and D. Braak, Phys. Rev. A 87, 023835 (2013).
- P. Meystre, Quantum Optics. Taming the Quantum, Springer (2021), 393 p.
- Q.-H. Chen, T. Liu, Y.-Y. Zhang, and K.-L. Wang, EPL 96, 14003 (2011); https://doi.org/10.1209/02955075/96/14003.
- P.D. Nation, J.R. Johansson, M.P. Blencowe, and F. Nori, Rev. Mod. Phys. 84, 1 (2012).
- H. J. Kimble, Phil. Trans. R. Soc. Lond. A 355, 2327 (1997.)
- Q. Xie, H. Zhong, M.T. Batchelor, and Ch. Lee, J. Phys. A: Math. Theor. 50, 113001 (2017).
- A. Crespi, S. Longhi, and R. Osellame, Phys. Rev. Lett. 108, 163601 (2012).
- N.M. Sundaresan, Y. Liu, D. Sadri, L. J. Szocs, D. L. Underwood, M. Malekakhlagh, H.E. Tureci, and A.A. Houck, Phys. Rev. X 5, 021035 (2015).
- N.M. Sundaresan, Y. Liu, D. Sadri, L. J. Szocs, D. L. Underwood, M. Malekakhlagh, H.E. Tureci, and A.A. Houck, Phys. Rev. X 5, 021035 (2015).
- M.R. Wahiddin, R. Belkada, G. S. Mahmoud, and A. Messikh, Eur. Physical J. Plus 136, 650 (2021).
- M. Lednev , F. J. Garcia-Vidal, and J. Feist, Phys. Rev. Lett. 132, 106902 (2024).
- C. J. S´anchez Mart´ınez, J. Feist, and F. J. Garcia-Vidal, Nanophotonics 13(14), 2669 (2024).
- А.В. Козловский, ЖЭТФ 165(5), 618 (2024).
- J.H. Eberly, N.B. Narozhny, and J. J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980).
- N.B. Narozhny, J. J. Sanchez-Mondragon, and J.H. Eberly, Phys. Rev. A 23, 236 (1981).
- H. I. Yoo, J. J. Sanchez-Mondragon, J.H. Eberly, J. Phys. A 14, 1383 (1981).
- J. Eiselt and H. Risken, Phys. Rev. A 43, 346 (1991).
- A.V. Kozlovskii, Quantum Electronics 40(3), 223 (2010); https://doi.org/10.1070/QE2010v040n03ABEH014270.
Supplementary files
