Spin Chaos of Exciton Polaritons in a Magnetic Field

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The spin properties of exciton polaritons in a micropillar cavity placed in a static magnetic field and excited by a resonant light wave are studied theoretically. Owing to the Zeeman effect, a nonlinear polariton system has two branches of optical response that are characterized by opposite circular polarizations. An indirect mechanism of polarization reversal is predicted, according to which the current state of the system undergoes a transition to dynamical chaos, and then the alternative spin state is established spontaneously. Such spin switches, mediated by a chaotic stage, proceed in both directions near the same critical excitation amplitude, so that the sign of the circular polarization of the cavity radiation is directly determined by the intensity of the optical pump.

About the authors

S. S. Gavrilov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences; HSE University

Email: gavr_ss@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia; 101000, Moscow, Russia

N. N. Ipatov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences; HSE University

Email: gavr_ss@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia; 101000, Moscow, Russia

V. D. Kulakovskiy

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Author for correspondence.
Email: gavr_ss@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

References

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
  2. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and P. Laussy, Microcavities, 2 ed., Oxford University Press, N.Y. (2017).
  3. Y. Yamamoto, T. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics. Springer, Berlin (2000).
  4. V. F. Elesin and Y. V. Kopaev, Sov. Phys. JETP 36(4), 767 (1973).
  5. L. V. Keldysh, Phys.-Uspekhi 60(11), 1180 (2017).
  6. A. Baas, J.-P. Karr, M. Romanelli, A. Bramati, and E. Giacobino, Phys. Rev. Lett. 96, 176401 (2006).
  7. A. Baas, J. P. Karr, M. Romanelli, A. Bramati, and E. Giacobino, Phys. Rev. B 70, 161307 (2004).
  8. N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, Europhys. Lett. 67(6), 997 (2004).
  9. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Y. G.Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007).
  10. T. K. Para¨ıso, M. Wouters, Y. L'eger, F. Morier-Genoud, and B. Deveaud-Pl'edran, Nat. Mater. 9(8), 655 (2010).
  11. S. S. Gavrilov, Phys.-Uspekhi 63, 123 (2020).
  12. D. N. Krizhanovskii, S. S. Gavrilov, A. P. D. Love, D. Sanvitto, N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. M. Whittaker, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 77, 115336 (2008).
  13. A. A. Demenev, A. A. Shchekin, A. V. Larionov, S. S. Gavrilov, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, Phys. Rev. Lett. 101, 136401 (2008).
  14. M. Sich, D. N. Krizhanovskii, M. S. Skolnick, A. V. Gorbach, R. Hartley, D. V. Skryabin, E. A. Cerda-M'endez, K. Biermann, R. Hey, and P. V. Santos, Nat. Photonics 6(1), 50 (2012).
  15. I. A. Shelykh, T. C. H. Liew, and A. V. Kavokin, Phys. Rev. Lett. 100, 116401 (2008).
  16. D. Sarkar, S. S. Gavrilov, M. Sich, J. H. Quilter, R. A. Bradley, N. A. Gippius, K. Guda, V. D. Kulakovskii, M. S. Skolnick, and D. N. Krizhanovskii, Phys. Rev. Lett. 105, 216402 (2010).
  17. R. Cerna, Y. L'eger, T. K. Para¨ıso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, Nat.Commun. 4, 2008 (2013).
  18. T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. Lett. 101, 016402 (2008).
  19. A. V. Uvarov, S. S. Gavrilov, V. D. Kulakovskii, and N. A. Gippius, Phys. Rev. A 99, 033837 (2019).
  20. S. S. Gavrilov and N. A. Gippius, Phys. Rev. B 86, 085317 (2012).
  21. S. S. Gavrilov, A. A. Demenev, and V. D. Kulakovskii, JETP Lett. 100, 817 (2015).
  22. A. A. Demenev, D. D. Yaremkevich, A. V. Scherbakov, S. M. Kukhtaruk, S. S. Gavrilov, D. R. Yakovlev, V. D. Kulakovskii, and M. Bayer, Phys. Rev. B 100, 100301 (2019).
  23. A. A. Demenev, D. D. Yaremkevich, A. V. Scherbakov, S. S. Gavrilov, D. R. Yakovlev, V. D. Kulakovskii, and M. Bayer, Phys. Rev. Appl. 18, 044045 (2022).
  24. S. S. Gavrilov, A. V. Sekretenko, N. A. Gippius, C. Schneider, S. H¨o ing, M. Kamp, A. Forchel, and V. D. Kulakovskii, Phys. Rev. B 87, 201303 (2013).
  25. S. S. Gavrilov, A. V. Sekretenko, S. I. Novikov, C. Schneider, S. H¨o ing, M. Kamp, A. Forchel, and V. D. Kulakovskii, Appl. Phys. Lett. 102(1), 011104 (2013).
  26. S. S. Gavrilov, A. S. Brichkin, S. I. Novikov, S. H¨o ing, C. Schneider, M. Kamp, A. Forchel, and V. D. Kulakovskii, Phys. Rev. B 90, 235309 (2014).
  27. C. E. Whittaker, B. Dzurnak, O. A. Egorov, G. Buonaiuto, P. M. Walker, E. Cancellieri, D. M. Whittaker, E. Clarke, S. S. Gavrilov, M. S. Skolnick, and D. N. Krizhanovskii, Phys. Rev. X 7, 031033 (2017).
  28. S. S. Gavrilov, Phys. Rev. B 106, 045304 (2022).
  29. A. V. Sekretenko, S. S. Gavrilov, S. I. Novikov, V. D. Kulakovskii, S. H¨o ing, C. Schneider, M. Kamp, and A. Forchel, Phys. Rev. B 88, 205302 (2013).
  30. S. S. Gavrilov, JETP Lett. 105(3), 200 (2017).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук