Magnetic State of Layered Cobalt Chalcogenides Co7Se8 and Co7Te8
- Authors: Piskunov Y.V1, Ogloblichev V.V1, Sadykov A.F1, Akramov D.F1,2, Smol'nikov A.G1, Gerashchenko A.P1, Selezneva N.V2, Baranov N.V1,2
-
Affiliations:
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Ural Federal University
- Issue: Vol 117, No 1-2 (1) (2023)
- Pages: 57-64
- Section: Articles
- URL: https://rjsvd.com/0370-274X/article/view/663583
- DOI: https://doi.org/10.31857/S1234567823010081
- EDN: https://elibrary.ru/NVNUCS
- ID: 663583
Cite item
Abstract
The structural and magnetic properties of the Co7Te8 layered compound have been studied for the first time using X-ray diffraction, measurements of the magnetic susceptibility, and nuclear magnetic resonance spectroscopy on 59Co nuclei. The nuclear magnetic resonance study of Co7Se8 selenide with the same structural type (NiAs) as Co7Te8 has also been performed for the first time. In contrast to Co7Se8, the ordering of vacancies and Co atoms in cation layers is absent in the Co7Te8 compound, and its crystal structure is more planar and is characterized by a significantly smaller ratio c0/a0 compared to Co7Se8 (a0 and c0 are the basic lattice parameters of NiAs). The components of the magnetic shift and electric field gradient tensors at the location of Co nuclei have been determined. A significant local charge and spin inhomogeneity of the co-mpounds has been revealed. The hyperfine coupling constant in Co ions has been estimated from the te-mperature dependences of the shift and susceptibility in Co7Te8. An anisotropic increase in the interatomic distances does not increase the localization of
electrons and does not lead to the appearance of magnetic moments on Co atoms in Co7Te8. This compound remains a Pauli paramagnet down to the lowest tempe-ratures.
About the authors
Yu. V Piskunov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: piskunov@imp.uran.ru
620108, Yekaterinburg, Russia
V. V Ogloblichev
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: piskunov@imp.uran.ru
620108, Yekaterinburg, Russia
A. F Sadykov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: piskunov@imp.uran.ru
620108, Yekaterinburg, Russia
D. F Akramov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University
Email: piskunov@imp.uran.ru
620108, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia
A. G Smol'nikov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: piskunov@imp.uran.ru
620108, Yekaterinburg, Russia
A. P Gerashchenko
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: piskunov@imp.uran.ru
620108, Yekaterinburg, Russia
N. V Selezneva
Ural Federal University
Email: piskunov@imp.uran.ru
620002, Yekaterinburg, Russia
N. V Baranov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University
Author for correspondence.
Email: piskunov@imp.uran.ru
620108, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia
References
- C. I. Pearce, R. A. D. Pattrick, and D. J. Vaughan, Rev. Mineral. Geochem. 61, 127 (2006).
- H. Wang and I. Salveson, Phase Transitions 78, 547 (2005).
- T. Kamimura, J. de Physique 49, 191 (1988).
- A. V. Powell, P. Vaqueiro, K. S. Knight, L. C. Chapon, and R. D. S'anchez, Phys. Rev. B 70, 014415 (2004).
- M. Kawaminami and A. Okazaki, J. Phys. Soc. Jpn. 22, 924 (1967).
- A. F. Andresen and J. Leciejewicz, J. Physique 25, 574 (1964).
- V. L. Miller, W. L. Lee, G. Lawes, N.-P. Ong, and R. J. Cava, J. Solid State Chem. 178, 1508 (2005).
- N. V. Baranov, P. N. G. Ibrahim, N. V. Selezneva, A. F. Gubkin, A. S. Volegov, D. A. Shishkin, L. Keller, D. Sheptyakov, and E. A. Sherstobitova, J. Phys. Condens Matter 27, 286003 (2015).
- П. Н. Г. Ибрахим, Дис. канд. физ.-мат. наук, Екатеринбург, УрФУ (2015).
- H. Kobayashi, M. Sato, T. Kamimura, H. Onodera, N. Kurodo, and Y. Yamaguchi, J. Physics: Condens. Matter 9, 515 (1997).
- W. G. Marshall, R. J. Nelmes, J. S. Loveday, S. Klotz, J. M. Besson, G. Hamel, and J. B. Parise, Phys. Rev. B 61, 11201 (2000).
- J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, and X. Sun, Adv. Mater. 28, 215 (2016).
- K. O. Klepp and K. L. Komarek, Monatsh. Chem. 104, 105 (1973).
- F. J. Garcia-Garcia, A. Larsson, L. Noren, and R. L. Withers, Solid State Sciences 6, 725 (2004).
- H. Ikeda, M. Shirai, N. Suzuki, and K. Motizuki, J. Magn. Magn. Mater. 140, 159 (1995).
- Свидетельство о государственной регистрации программы для ЭВМ # 2018663091. Simul 2018. А. П. Геращенко, С. В. Верховский, А. Ф. Садыков, А. Г. Смольников, Ю. В. Пискунов, К. Н. Михалев, Зарегистрировано в Реестре программ для ЭВМ 22.10.2018 г.
- А. Абрагам, Ядерный магнетизм, ИЛ, М. (1963), 551 с.
- Ж. Винтер, Магнитный резонанс в металлах, Мир, М. (1976), 288 с.
- Сверхтонкие взаимодействия в твердых телах: избранные лекции и обзоры, пер. с англ., Мир, M. (1970), 368 с.
- A. Narath, Phys. Rev. 162, 320 (1967).
- J. Korringa, Physica 16, 601 (1950).
- Y. Obata, J. Phys. Soc. Jpn. 18, 1020 (1963).
- T. Moriya, J. Phys. Soc. Jpn. 18, 516 (1963).
Supplementary files
