Dynamical Correlations in the Ground State: Transitions between One-Phonon Nuclear States

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The probabilities of the E1 transition between the first 
 and @ excited levels in nuclei with pairing have been calculated within the self-consistent many-body nuclear theory and Green’s function method. Calculations for a long chain of even–even tin isotopes have been performed for the first time. The known Fayans energy density functional has been used to calculate the characteristics of phonons and E1 transitions between excited states. A good description has been achieved for existing experimental data for the reduced probabilities of E1 transitions between the first one-phonon states for the 116–124Sn isotopes but not for the 112Sn and 114Sn isotopes. Possible reasons for this discrepancy have been discussed; the most probable reason is the deformation in the ground or excited states. It has been shown that new dynamical three-quasiparticle correlations in the ground state should be taken into account to explain the experimental data for 116–124Sn.

Sobre autores

M. Shitov

National Research Center Kurchatov Institute

Email: schitov.mih@mail.ru
123182, Moscow, Russia

S. Kamerdzhiev

National Research Center Kurchatov Institute

Email: kamerdzhiev_sp@nrcki.ru
123182, Moscow, Russia

S. Tolokonnikov

National Research Center Kurchatov Institute

Autor responsável pela correspondência
Email: tolkn@nrcki.ru
123182, Moscow, Russia

Bibliografia

  1. В. Г. Соловьев, Теория атомного ядра: квазичестицы и фононы, Энергоатомиздат, М. (1989).
  2. H. Lenske and J. Wambach, Phys. Lett. B 249, 377 (1990).
  3. S. Kamerdzhiev, J. Speth and G. Tertychny, Phys. Rep. 393, 1 (2004).
  4. С. П. Камерджиев, О. И. Ачаковский, С. В. Толоконников, М. И. Шитов, ЯФ 82,320 (2019)
  5. Phys. At. Nucl. 82, 366 (2019).
  6. V. Tselyaev, Phys. Rev. C, 75, 024306 (2007).
  7. D. Voitenkov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein, and S. V. Tolokonnikov, Phys. Rev. C 85, 054319 (2012).
  8. S. P. Kamerdzhiev and M. I. Shitov, EPJA 56, 265 (2020).
  9. V. V. Voronov, D. Karadjov, F. Catara, A. P. Severyukhin, ЭЧАЯ 31, 905 (2000)
  10. Phys. Part. Nucl. 31, 452 (2000).
  11. С. П. Камерджиев, М. И. Шитов, Письма в ЖЭТФ, 109, 65 (2019)
  12. JETP Lett. 109, 69 (2019).
  13. P. Ring and J. Speth, Nucl. Phys. A 235, 315 (1974).
  14. С. П. Камерджиев, Д. А. Войтенков, Э. Е. Саперштейн, С. В. Толоконников, Письма в ЖЭТФ, 108, 155 (2018)
  15. JETP Lett. 108, 155 (2018).
  16. С. П. Камерджиев, Д. А. Войтенков, Э. Е. Саперштейн, С. В. Толоконников, М. И. Шитов, Письма в ЖЭТФ 106, 132 (2017)
  17. JETP Lett. 106, 139 (2017).
  18. М. И. Шитов, Д. А. Войтенков, С. П. Камерджиев, С. В. Толоконников, ЯФ 85, 45 (2022)
  19. Phys. At. Nucl. 85, 42 (2022).
  20. V. Yu. Ponomarev, Ch. Stoyanov, N. Tsoneva, and M. Grinberg, Nucl. Phys. A 635, 470 (1998).
  21. N. Tsoneva, H. Lenske, and Ch. Stoyanov, Phys. Lett. B 586, 213 (2004).
  22. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).
  23. Э. Е. Саперштейн, С. В. Толоконников, ЯФ 79, 703 (2016)
  24. Phys. At. Nucl. 79, 1030 (2016).
  25. Л. И. Говор, А. М. Демидов, О. К. Журавлев, И. В. Михайлов, Е. Ю. Шкуратова, ЯФ 54, 330 (1991)
  26. Sov. J. Nucl. Phys. 54, 196 (1991).
  27. National Nuclear Data Center, Brookhaven National Laboratory, https://www.nndc.bnl.gov/ensdf.
  28. R. Wirowski, M. Shimmer, L. Eser, S. Alberos, K. O. Zell, and P. von Brentano, Nucl. Phys. A 586, 427 (1995).
  29. Л. И. Говор, В. А. Куркин, И. В. Михайлов, ЯФ 80, 583 (2017)
  30. Phys. At. Nucl. 80, 1 (2017).
  31. J. Kvasil, V. O. Nesterenko, W. Kleinig, D. Boˇz'ık, and P.-G. Reinhard, Int. J. Mod. Phys. E 20, 281 (2011).
  32. И. Н. Бобошин, Препринт НИИЯФ МГУ # 2018-1/892 (2018).
  33. I. N. Boboshin, V. V. Varlamov, B. S. Ishkhanov, and I. M. Kapitonov, Nucl. Phys. A 496, 93 (1989).
  34. A. V. Avdeenkov and S. P. Kamerdzhiev, Phys. Lett. B, 459, 423 (1999).
  35. A. Avdeenkov and S. P. Kamerdzhiev, 50 Years of Nuclear BCS, ed. by R. Broglia and V. Zelevinsky, World Scienti c Singapore (2012), ch. 20, p. 274.
  36. T. Aumann, C. Barbieri, D. Bazin, C. A. Bertulani, A. Bonaccorso, W. H. Dickho, A. Gade, M. G'omez-Ramos, B. P. Kay, A. M. Moro, T. Nakamura, A. Obertelli, K. Ogata, S. Paschalis, and T. Uesaka, Progr. Part. Nucl. Phys. 118 103847 (2021).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023