Influence of Electron Confinement Effects on the Band Gap of Almost Monatomic EuS2 Layers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Europium disulfide is a layered semiconductor with a quasi-ionic bond type. Previously, it has been demonstrated that almost monatomic films can be formed from this material by mechanical splitting. In this work, the most energetically favorable structure of monatomic films is established using ab initio calculations, and the behavior of the band gap depending on the number of monolayers in the film is studied. To establish the role of nonlocal corrections and corrections associated with the spin–orbit interaction, the calculation results are compared with the position of the direct fundamental absorption edge of bulk crystals estimated from the experimental hot photoluminescence and microreflection spectra. It is found that the indirect character of the band gap is also retained in thin films. The confinement effects (dimensional localization of electrons) cause inhomogeneous broadening of the band gap over the Brillouin zone. The gap width almost does not change between the bulk material and its films at the edges of the Brillouin zone, and a significant change occurs only in the center of the Brillouin zone. A singularity in the density of states caused by the equalization of the energies for the D and E0 points of the Brillouin zone is predicted in EuS2 films about 10 ML thick.

About the authors

E. A. Ekimov

Institute for High Pressure Physics, Russian Academy of Sciences

Email: mkondrin@hppi.troitsk.ru
108840, Troitsk, Russia

S. N. Nikolaev

Lebedev Physical Institute, Russian Academy of Sciences

Email: mkondrin@hppi.troitsk.ru
119991, Moscow, Russia

M. V. Kondrin

Institute for High Pressure Physics, Russian Academy of Sciences

Email: mkondrin@hppi.troitsk.ru
108840, Troitsk, Russia

V. S. Krivobok

Lebedev Physical Institute, Russian Academy of Sciences;Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: kolob7040@gmail.com
119991, Moscow, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

References

  1. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
  2. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
  3. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).
  4. Л. А. Чернозатонский, А. А. Артюх, Успехи физических наук 188, 3 (2018).
  5. М. М. Глазов, Е. Л. Ивченко, Письма в ЖЭТФ 113, 10 (2021).
  6. М. М. Махмудиан, А. В. Чаплик, Письма в ЖЭТФ 114, 620 (2021).
  7. V. S. Krivobok, E. A. Ekimov, M. V. Kondrin, S. N. Nikolaev, M. A. Chernopitssky, A. A. Deeva, D. A. Litvinov, and I. I. Minaev, Phys. Rev. Materials 6, 094605 (2022).
  8. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C.Neto, Science 353, aac9439 (2016).
  9. G. V. Samsonov and S. V. Radzikovskaya, Russ. Chem. Rev. 30, 28 (1961).
  10. A. Eliseev, V. Tolstova, and G. Kuzmicheva, Russ. J. Inorg. Chem. 23, 3171 (1978).
  11. A. Eliseev and O. Sadovskaya, Inorganic Materials 13, 1394 (1977).
  12. G. Kuzmicheva, Russ. J. Inorg. Chem. 39, 412 (1994).
  13. C. J. Mu¨ller, U. Schwarz, and T. Doert, Zeitschrift fu¨r anorganische und allgemeine Chemie 638, 2477 (2012).
  14. C. Bartsch, E. Ahrens, and T. Doert, Zeitschrift fu¨r anorganische und allgemeine Chemie 638, 2491 (2012).
  15. C. J. Mu¨ller, T. Doert, and U. Schwarz, Zeitschrift fu¨r Kristallographie 226, 646 (2011).
  16. C. J. Mu¨ller, U. Schwarz, P. Schmidt, W. Schnelle, and T. Doert, Zeitschrift fu¨r anorganische und allgemeine Chemie 636, 947 (2010).
  17. P. B¨ottcher, T. Doert, H. Arnold, and R. Tamazyan, Zeitschrift fu¨r Kristallographie - Crystalline Materials 215, 246 (2000).
  18. R. Tamazyan, H. Arnold, V. Molchanov, G. Kuzmicheva, and I. Vasileva, Zeitschrift fu¨r Kristallographie - Crystalline Materials 215, 346 (2000).
  19. R. Tamazyan, H. Arnold, V. Molchanov, G. Kuzmicheva, and I. Vasileva, Zeitschrift fu¨r Kristallographie - Crystalline Materials 215, 272 (2000).
  20. Y. Yanagisawa and S. Kume, Mater. Res. Bull. 21, 379 (1986).
  21. S. Benazeth, M. Guittard, and J. Flahaut, J. Solid State Chem. 37, 44 (1981).
  22. Y. Yanagisawa, F. Kanamaru, and S. Kume, Acta Crystallographica Section B 35, 137 (1979).
  23. J. Dugu'e, D. Carr'e, and M. Guittard, Acta Crystallographica Section B 34, 403 (1978).
  24. S. Smoes, J. Drowart, and J. Welter, Thermodynamic study of the vaporization of europium sul de by the mass spectrometric knudsen cell method, in Advances in mass spectrometry. Proceedings of the 7th international mass spectrometry conference held at Florence 30 August to 3 September 1976, Heyden for the Institute of Petroleum, London (1978), p. 622.
  25. Y. Yanagisawa and S. Kume, Mater. Res. Bull. 8, 1241 (1973).
  26. A. W. Webb and H. T. Hall, Inorg. Chem. 9, 1084 (1970).
  27. B. Kolesov and I. Vasilyeva, Mater. Res. Bull. 27, 775 (1992).
  28. E. A. Ekimov, S. N. Nikolaev, A. G. Ivanova, V. A. Sidorov, A. A. Shiryaev, I. I. Usmanov, A. L. Vasiliev, V. V. Artemov, M. V. Kondrin, M. A. Chernopitsskiy, and V. S. Krivobok, CrystEngComm 25, 2966 (2023).
  29. P. Giannozzi, O. Andreussi, T. Brumme et al. (Collaboration), J. Phys. Condens. Matter 29, 465901 (2017).
  30. S. Nikolaev, M. Chernopitssky, V. Bagaev, V. Krivobok, E. Onishchenko, K. Savin, A. Y. Klokov, S. Chentsov, and V. Martovitskiy, J. Lumin. 231, 117812 (2021).
  31. В. П. Жуков, Н. И. Медведева, И. Г. Васильева, В. А. Губанов, Физика твердого тела 32(12), 3676 (1990).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук