Effect of “Refraction” of Magnetic Domain Boundaries at Electrical Inhomogeneities
- Authors: Podkletnova A.A.1, Kolyushenkov M.A.1, Myasnikov N.V.1, Nikolaeva E.P.1, Kaminskiy A.S.1, Nikolaev A.V.1,2, Pyatakov A.P.1
-
Affiliations:
- Moscow State University
- Skolkovo Institute of Science and Technology (Skoltech)
- Issue: Vol 118, No 3-4 (8) (2023)
- Pages: 259-262
- Section: Articles
- URL: https://rjsvd.com/0370-274X/article/view/663146
- DOI: https://doi.org/10.31857/S1234567823160061
- EDN: https://elibrary.ru/IUBIMV
- ID: 663146
Cite item
Abstract
A magnetoelectric effect, which manifests itself as a “refraction” of domain walls at the location of an electrode deposited on the surface of an iron garnet film, is studied. The “refractive index” depends on the electric voltage applied to the electrode and varies from 0.6 to 1.2. An electrically induced change in the surface energy of a domain wall due to an inhomogeneous magnetoelectric coupling is suggested as the mechanism of this effect.
About the authors
A. A. Podkletnova
Moscow State University
Email: pyatakov@physics.msu.ru
119991, Moscow, Russia
M. A. Kolyushenkov
Moscow State University
Email: pyatakov@physics.msu.ru
119991, Moscow, Russia
N. V. Myasnikov
Moscow State University
Email: pyatakov@physics.msu.ru
119991, Moscow, Russia
E. P. Nikolaeva
Moscow State University
Email: pyatakov@physics.msu.ru
119991, Moscow, Russia
A. S. Kaminskiy
Moscow State University
Email: pyatakov@physics.msu.ru
119991, Moscow, Russia
A. V. Nikolaev
Moscow State University;Skolkovo Institute of Science and Technology (Skoltech)
Email: pyatakov@physics.msu.ru
119991, Moscow, Russia;121205, Moscow, Russia
A. P. Pyatakov
Moscow State University
Author for correspondence.
Email: pyatakov@physics.msu.ru
119991, Moscow, Russia
References
- M. Daniel Sussman, J. M. Schwarz, M. Cristina Marchetti, and M. L. Manning, Phys. Rev. Lett. 120(5), 58001 (2017).
- J. Burridge, Phys. Rev. X 7, 031008 (2017).
- A. A. Thiele, Bell System Technical Journal 48(10), 3287 (1969).
- A. A. Thiele, J. Appl. Phys. 41(3), 1139 (1970).
- N. Hedrich, K. Wagner, O. V. Pylypovskyi, B. J. Shields, T. Kosub, D. D. Sheka, D. Makarov, and P. Maletinsky, Nature Phys. 17, 574 (2021).
- D. P. Kulikova, T. T. Gareev, E. P. Nikolaeva, T. B. Kosykh, A. V. Nikolaev, Z. A. Pyatakova, A. K. Zvezdin, and A. P. Pyatakov, Physica Status Solidi - Rapid Research Letters 12, 1800066 (2018).
- M. Schott, A. Bernand-Mantel, L. Ranno, S. Pizzini, J. Vogel, H. B'ea, C. Baraduc, S. Au ret, G. Gaudin, and D. Givord, Nano Lett. 17(5), 3006 (2017).
- T. Srivastava, M. Schott, R. Juge et al. (Collaboration), Nano Lett. 18(8), 4871 (2018).
- K. S. Antipin, T. T. Gareev, N. V. Myasnikov, E. P. Nikolaeva, and A. P. Pyatakov, J. Appl. Phys. 129, 024103 (2021).
- V. G. Baryakhtar, V. A. Lvov, and D. A. Yablonskii, JETP Lett. 37(12), 673 (1983).
- A. Sparavigna, A. Strigazzi, and A. Zvezdin, Phys. Rev. B 50, 2953 (1994).
- A. P. Pyatakov, T. T. Gareev, A. S. Kaminskiy, K. S. Antipin, E. P. Nikolaeva, D. P. Kulikova, A. S. Sergeev, and A. V. Nikolaev, Magnetoelectricity of chiral micromagnetic structures, in Chirality, magnetism, and magnetoelectricity, ed. by E. Kamenetskii, Springer, Сham (2021), ch. 6, p. 127.
- A. P. Pyatakov, D. A. Sechin, A. S. Sergeev, A. V. Nikolaev, E. P. Nikolaeva, A. S. Logginov, and A. K. Zvezdin, Europhysics Lett. 93(1), 17001 (2011).
- А. П. Пятаков, А. С. Сергеев, Е. П. Николаева, Т. Б. Косых, А. В. Николаев, К. А. Звездин, А. К. Звездин, УФН 185(10), 1077 (2015).
- A. S. Kaminskiy, N. V. Myasnikov, and A. P. Pyatakov, Phys. Met. Metallogr. 124(2), 181 (2023).
- D. P. Kulikova, A. P. Pyatakov, E. P. Nikolaeva, A. S. Sergeev, T. B. Kosykh, and Z. A. Pyatakova, JETP Lett. 104(3), 197 (2016).
- A. S. Logginov, G. A. Meshkov, A. V. Nikolaev, E. P. Nikolaeva, A. P. Pyatakov, and A. K. Zvezdin, Appl. Phys. Lett. 93(18), 182510 (2008).
Supplementary files
