Random Laser Based on Materials in the Form of Complex Network Structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The theory of a random laser with an interface in the form of random or scale-free networks whose nodes are occupied by microcavities with quantum two-level systems has been proposed for the first time. The microcavities are coupled to each other through light-guiding channels forming edges of the network. It has been shown that such a laser has a number of spectral features associated with the statistical properties of the network structure. Among them are the existence of a topologically protected Perron eigenvalue caused by the presence of a strong mean field at the node of maximum influence located in the central part of the network and the delocalization/localization of radiation modes depending on the probability of coupling between arbitrary microcavities. The results obtained in this work open prospects for the fabrication of new low-threshold laser sources.

About the authors

A. Yu Bazhenov

ITMO University, 197101, St. Petersburg, Russia

Email: alexander_ap@list.ru

M. M Nikitina

ITMO University, 197101, St. Petersburg, Russia

Email: alexander_ap@list.ru

D. V Tsarev

ITMO University, 197101, St. Petersburg, Russia

Email: alexander_ap@list.ru

A. P Alodzhants

ITMO University, 197101, St. Petersburg, Russia

Author for correspondence.
Email: alexander_ap@list.ru

References

  1. D. Wiersma and S. Diederik, Nature Phys. 4, 359 (2008).
  2. В. С. Летохов, ЖЭТФ 53, 1442 (1967).
  3. C. Hui, Y. Xu Junying, L. Yong, A. L. Burin, W. Seeling, X. Liu, and R. P. H. Chang, IEEE J. Sel. Top. Quantum Electron. 9, 111 (2003).
  4. M. Gaio, D. Saxena, J. Bertolotti, D. Pisignano, A. Camposeo, and R. Sapienza, Nat.Commun. 10, 226 (2019).
  5. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010).
  6. Ю. В. Юанов, А. А. Зябловский, Е. С. Андрианов, И. В. Доронин, А. А. Пухов, А. П. Виноградов, А. А. Лисянский, Письма в ЖЭТФ 112, 725 (2020).
  7. A. Ю. Баженов, М. М. Никитина, А. П. Алоджанц, Письма в ЖЭТФ 115, 685 (2022).
  8. A. P. Alodjants, A. Yu. Bazhenov, A. Y. Khrennikov, and A. V. Bukhanovsky, Sci. Rep. 12, 8566 (2022).
  9. A.-L. Barab'asi, Network Science, Cambridge University Press (2016).
  10. A. Dousse, J. Su czyn'ski, R. Braive, A. Miard, A. Lemaˆıtre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, Appl. Phys. Lett. 94, 121102 (2009).
  11. I.-H. Chen, Y.Y. Lin, Y.-C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R.-K. Lee, Phys. Rev. A 86, 023829 (2012).
  12. A. Halu, S. Garnerone, A. Vezzani, and G. Bianconi, Phys. Rev. E 87, 022104 (2013).
  13. S. Pau, G. Bj¨ork, J. Jacobson, Hui Cao, Y. Yamamoto, Phys. Rev. B 51, 14437 (1995).
  14. A. Y. Bazhenov, D. V. Tsarev, and A. P. Alodjants, Physica B: Condensed Matter. 579, 411879 (2020).
  15. C. Sarkar and S. Jalan, Chaos 28, 102101 (2018).
  16. M. E. J. Newman, Mathematics of Networks, in The New Palgrave Dictionary of Economics, Palgrave Macmillan, London (2018), p. 8525.
  17. J. Feinberg and A. Zee, Phys. Rev. E 59, 6433 (1999).
  18. M. Sade, T. Kalisky, S. Havlin, and R. Berkovits, Phys. Rev. E 72, 066123 (2005).
  19. Г. М. Заславский, УФН 129, 211 (1979).
  20. Г. Хакен, Лазерная светодинамика, Мир, М. (1988).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук