π0, η, η' → γγ Decays and the Explicit Chiral Symmetry Breaking

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Corrections to the Wess–Zumino–Witten anomaly caused by the explicit breaking of the SU(3)×SU(3)">SU(3)×SU(3) chiral symmetry are studied using the effective meson Lagrangian based on the Nambu–Jona-Lasinio model with the simultaneous expansion in derivatives, current quark masses, and 1/Nc powers. The leading contribution and the first correction for the amplitudes of the π0, η, η' → γγ decays and the contact term in the η/ηπ+πγ">η/ηπ+πγ amplitudes have been calculated. The results are compared with similar 1/Nc chiral perturbation calculations and existing experimental data.

About the authors

A. A. Osipov

Joint Institute for Nuclear Research

Author for correspondence.
Email: aaosipov@jinr.ru
Dubna, Moscow region, 141980 Russia

References

  1. J. Wess and B. Zumino, Phys. Lett. B 37, 95 (1971).
  2. E. Witten, Nucl. Phys. B 223, 422 (1983).
  3. S. Weinberg, Physica A 96, 327 (1979).
  4. J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).
  5. B. Moussallam, Phys. Rev. D 51, 4939 (1995).
  6. H. Leutwyler, Phys. Lett. B 374, 163 (1996).
  7. H. Leutwyler, Phys. Lett. B 374, 181 (1996).
  8. P. Herrera-Sikl'ody, J. I. Latorre, P. Pascual, and J. Taron, Nucl. Phys. B 497, 345 (1997).
  9. R. Kaiser and H. Leutwyler, Eur. Phys. J. C 17, 623 (2000).
  10. J. L. Goity, A.M. Bernstein, and B.R. Holstein, Phys. Rev. D 66, 076014 (2002).
  11. A.M. Bernstein and B.R. Holstein, Rev. Mod. Phys. 85, 49 (2013).
  12. P. Bickert and S. Scherer, Phys. Rev. D 102, 074019 (2020).
  13. B. L. Ioffe and A.G. Oganesian, Phys. Lett. B 647, 389 (2007).
  14. S. Khlebtsov, Y. Klopot, A. Oganesian, and O. Teryaev, Phys. Rev. D 104, 016011 (2021).
  15. I. Larin, Y. Zhang, A. Gasparian et al. (PrimEx-II Collaboration), Science 368, 506 (2020).
  16. L. Gan, B. Kubis, E. Passemar, and S. Tulin, Phys. Rep. 945, 1 (2022).
  17. A.A Osipov, JETP Lett. 115, 305 (2022).
  18. A.A. Osipov, JETP Lett. 115, 371 (2022).
  19. A.A. Osipov, Phys. Rev. D 108, 016014 (2023).
  20. A.A. Osipov, arXiv:hep-ph/2303.01865 (2023).
  21. A.A. Osipov, Письма ЖЭТФ 117, 894 (2023).
  22. A.A. Osipov, JETP Lett. 113, 413 (2021).
  23. A.A. Osipov, Phys. Lett. B 817, 136300 (2021).
  24. A.A. Osipov, Phys. Rev. D 104, 105019 (2021).
  25. G. Veneziano, Nucl. Phys. B 159, 213 (1979).
  26. C. Rosenzweig, J. Schechter, and G. Trahern, Phys. Rev. D 21, 3388 (1980).
  27. P. Di Vecchia and G. Veneziano, Nucl. Phys. B 171, 253 (1980).
  28. K. Kawarabayashi and N. Ohta, Nucl. Phys. B 175, 477 (1980).
  29. P. Di Vecchia, F. Nicodemi, R. Pettorino, and G. Veneziano, Nucl. Phys. B 181, 318 (1981).
  30. K. Kawarabayashi and N. Ohta, Prog. Theor. Phys. 66, 1709 (1981).
  31. E. Witten, Nucl. Phys. B 156, 269 (1979).
  32. D.B. Kaplan and A.V. Manohar, Phys. Rev. Lett. 56, 2004 (1986).
  33. B. Ananthanarayan and B. Moussallam, JHEP 05, 052 (2002).
  34. R. L. Workman, V.D. Burkert, V. Crede et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  35. X.-K. Guoa, Z.-H. Guoa, J.A. Oller, and J. J. Sanz- Cillerod, JHEP 06, 175 (2015).
  36. J. Schechter, A. Subbaraman, and H.Weigel, Phys. Rev. D 48, 339 (1993).
  37. R. Escribano and J-M. Fr'ere, JHEP 0506, 029 (2005).
  38. J. Bijnens, A. Bramon, and F. Cornet, Phys. Lett. B 237, 488 (1990).
  39. M. Benayoun, P. David, L. DelBuono, Ph. Leruste, and H.B. O'Connell, Eur. Phys. J. C 31, 525 (2003).
  40. A.A. Osipov, A.A. Pivovarov, M.K. Volkov, and M.M. Khalifa, Phys. Rev. D 101, 094031 (2020).
  41. L.-Y. Dai, X.-W. Kang, U.-G. Meißner, X.-Y. Song, and D.-L. Yao, Phys. Rev. D 97, 036012 (2018).
  42. M. Ablikim, M. N. Achasov, S. Ahmed et al. (BESIII Collaboration), Phys. Rev. Lett. 120, 242003 (2018).
  43. X.K. Guo, Z.H. Guo, J.A. Oller, and J. J. Sanz-Cillero, JHEP 175, 1506 (2015).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук