Photoinduced Nonthermal Reduction of the Coercive Field in FePt and FePt0.84Rh0.16 Epitaxial Thin Films in the L10 Phase
- Authors: Petrov A.V.1, Nikitin S.I.1, Tagirov L.R.1,2, Kamzin A.S3, Yusupov R.V1
-
Affiliations:
- Kazan Federal University
- Zavoisky Physical–Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences
- Ioffe Institute
- Issue: Vol 118, No 1-2 (7) (2023)
- Pages: 104-109
- Section: Articles
- URL: https://rjsvd.com/0370-274X/article/view/663113
- DOI: https://doi.org/10.31857/S1234567823140070
- EDN: https://elibrary.ru/GZKDEF
- ID: 663113
Cite item
Abstract
The time-resolved magneto-optical Kerr effect in epitaxial thin films of the FePt compound and the FePt0.84Rh0.16 solid solution with the perpendicular magnetic anisotropy on MgO (001) substrates has been studied. The evolution of hysteresis loops at short (100 fs–1 ns) and long (1–20 ms) time scales after the excitation by a femtosecond light pulse has been studied. Long-lived nonthermal reduction of the coercive field has been detected. The coercive field is recovered in several milliseconds. It has been proposed to explain the observed phenomenon by the excitation of high-Q-factor acoustic resonances in the substrate/film system and to the strong magnetoelastic interaction in FePt and FePt0.84Rh0.16 films.
About the authors
A. V. Petrov
Kazan Federal University
Email: Roman.Yusupov@kpfu.ru
Kazan, 420008 Russia
S. I. Nikitin
Kazan Federal University
Email: Roman.Yusupov@kpfu.ru
Kazan, 420029 Russia
L. R. Tagirov
Kazan Federal University;Zavoisky Physical–Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: Roman.Yusupov@kpfu.ru
Kazan, 420008 Russia; Kazan, 420029 Russia
A. S Kamzin
Ioffe Institute
Email: Roman.Yusupov@kpfu.ru
St. Petersburg, 194021 Russia
R. V Yusupov
Kazan Federal University
Author for correspondence.
Email: roman.yusupov@kpfu.ru
Kazan, 420008 Russia
References
- D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).
- K. Inomata, T. Sawa, and S. Hashimoto, J. Appl. Phys. 64, 2537 (1988).
- N. Miyata, H. Asami, T. Mizushima, and K. Sato, J. Phys. Soc. Jpn. 59, 1817 (1990).
- M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. Fatih Erden, IEEE Proc. 96, 1810 (2008).
- J. U. Thiele, K. R. Co ey, M. F. Toney, J. A. Hedstrom, and A. J. Kellock, J. Appl. Phys. 91, 6595 (2002).
- D. B. Xu, J. S. Chen, T. J. Zhou, and G. M. Chow, J. Appl. Phys. 109, 07B747 (2011).
- D. A. Gilbert, L. W. Wang, T. J. Klemmer, J. U. Thiele, C. H. Lai, and K. Liu, Appl. Phys. Lett. 102, 132406 (2013).
- T. Hasegawa, J. Miyahara, T. Narisawa, S. Ishio, H. Yamane, Y. Kondo, J. Ariake, S. Mitani, Y. Sakaruba, and K. Takanashi, J. Appl. Phys. 106, 103928 (2009).
- O. Gut eisch, J. Lyubina, K.-H. Muller, and L. Schulh, Adv. Eng. Mater. 7, 208 (2005).
- Y. B. Li, Y. F. Lou, L. R. Zhang, B. Ma, J. M. Bai, and F. L. Wei, J. Magn. Magn. Mater. 322, 3789 (2010).
- L. Thevenard, I. S. Camara, J.-Y. Prieur, P. Rovillain, A. Lemaˆitre, C. Gourdon, and J.-Y. Duquesne, Phys. Rev. B: Condens. Matter 93, 140405 (2016).
- А. М. Калашникова, Н. Е. Хохлов, Л. А. Шелухин, А. В. Щербаков, ЖТФ 91, 1848 (2021).
- В. С. Власов, А. В. Голов, Л. Н. Котов, В. И. Щеглов, А. М. Ломоносов, В. В. Темнов, Акустический журнал 68, 22 (2022).
- С. А. Ахманов, В. Э. Гусев. УФН 162, 3 (1992).
- C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
- Н. С. Акулов, З. И. Ализаде, К. П. Белов, ДАН СССР 65, 815 (1949).
- W. Li, W. Zhou, P. Lenox, T. Seki, K. Takanashi, A. Jander, and P. Dhagat, IEEE Trans. Magn. 51, 2504904 (2015).
- F. E. Spada, F. T. Parker, C. L. Platt, and J. K. Howard, J. Appl. Phys. 94, 5123 (2003).
- A. Migliori, J. L. Sarrao, W. M. Visscher, T. M. Bell, M. Lei, Z. Fisk, and R. G. Leisure, Phys. B: Cond. Matt. 183, 1 (1993).
- R. Caruso, D. Massarotti, V. V. Bolginov, A. Ben Hamida, L. N. Karelina, A. Miano, I. V. Vernik, F. Tafuri, V. V. Ryazanov, O. A. Mukhanov, and G. P. Pepe, J. Appl. Phys. 123, 133901 (2018).
Supplementary files
