Photoinduced Nonthermal Reduction of the Coercive Field in FePt and FePt0.84Rh0.16 Epitaxial Thin Films in the L10 Phase

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The time-resolved magneto-optical Kerr effect in epitaxial thin films of the FePt compound and the FePt0.84Rh0.16 solid solution with the perpendicular magnetic anisotropy on MgO (001) substrates has been studied. The evolution of hysteresis loops at short (100 fs–1 ns) and long (1–20 ms) time scales after the excitation by a femtosecond light pulse has been studied. Long-lived nonthermal reduction of the coercive field has been detected. The coercive field is recovered in several milliseconds. It has been proposed to explain the observed phenomenon by the excitation of high-Q-factor acoustic resonances in the substrate/film system and to the strong magnetoelastic interaction in FePt and FePt0.84Rh0.16 films.

About the authors

A. V. Petrov

Kazan Federal University

Email: Roman.Yusupov@kpfu.ru
Kazan, 420008 Russia

S. I. Nikitin

Kazan Federal University

Email: Roman.Yusupov@kpfu.ru
Kazan, 420029 Russia

L. R. Tagirov

Kazan Federal University;Zavoisky Physical–Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: Roman.Yusupov@kpfu.ru
Kazan, 420008 Russia; Kazan, 420029 Russia

A. S Kamzin

Ioffe Institute

Email: Roman.Yusupov@kpfu.ru
St. Petersburg, 194021 Russia

R. V Yusupov

Kazan Federal University

Author for correspondence.
Email: roman.yusupov@kpfu.ru
Kazan, 420008 Russia

References

  1. D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).
  2. K. Inomata, T. Sawa, and S. Hashimoto, J. Appl. Phys. 64, 2537 (1988).
  3. N. Miyata, H. Asami, T. Mizushima, and K. Sato, J. Phys. Soc. Jpn. 59, 1817 (1990).
  4. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. Fatih Erden, IEEE Proc. 96, 1810 (2008).
  5. J. U. Thiele, K. R. Co ey, M. F. Toney, J. A. Hedstrom, and A. J. Kellock, J. Appl. Phys. 91, 6595 (2002).
  6. D. B. Xu, J. S. Chen, T. J. Zhou, and G. M. Chow, J. Appl. Phys. 109, 07B747 (2011).
  7. D. A. Gilbert, L. W. Wang, T. J. Klemmer, J. U. Thiele, C. H. Lai, and K. Liu, Appl. Phys. Lett. 102, 132406 (2013).
  8. T. Hasegawa, J. Miyahara, T. Narisawa, S. Ishio, H. Yamane, Y. Kondo, J. Ariake, S. Mitani, Y. Sakaruba, and K. Takanashi, J. Appl. Phys. 106, 103928 (2009).
  9. O. Gut eisch, J. Lyubina, K.-H. Muller, and L. Schulh, Adv. Eng. Mater. 7, 208 (2005).
  10. Y. B. Li, Y. F. Lou, L. R. Zhang, B. Ma, J. M. Bai, and F. L. Wei, J. Magn. Magn. Mater. 322, 3789 (2010).
  11. L. Thevenard, I. S. Camara, J.-Y. Prieur, P. Rovillain, A. Lemaˆitre, C. Gourdon, and J.-Y. Duquesne, Phys. Rev. B: Condens. Matter 93, 140405 (2016).
  12. А. М. Калашникова, Н. Е. Хохлов, Л. А. Шелухин, А. В. Щербаков, ЖТФ 91, 1848 (2021).
  13. В. С. Власов, А. В. Голов, Л. Н. Котов, В. И. Щеглов, А. М. Ломоносов, В. В. Темнов, Акустический журнал 68, 22 (2022).
  14. С. А. Ахманов, В. Э. Гусев. УФН 162, 3 (1992).
  15. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
  16. Н. С. Акулов, З. И. Ализаде, К. П. Белов, ДАН СССР 65, 815 (1949).
  17. W. Li, W. Zhou, P. Lenox, T. Seki, K. Takanashi, A. Jander, and P. Dhagat, IEEE Trans. Magn. 51, 2504904 (2015).
  18. F. E. Spada, F. T. Parker, C. L. Platt, and J. K. Howard, J. Appl. Phys. 94, 5123 (2003).
  19. A. Migliori, J. L. Sarrao, W. M. Visscher, T. M. Bell, M. Lei, Z. Fisk, and R. G. Leisure, Phys. B: Cond. Matt. 183, 1 (1993).
  20. R. Caruso, D. Massarotti, V. V. Bolginov, A. Ben Hamida, L. N. Karelina, A. Miano, I. V. Vernik, F. Tafuri, V. V. Ryazanov, O. A. Mukhanov, and G. P. Pepe, J. Appl. Phys. 123, 133901 (2018).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук