Topological Memory with Multiply-Connected Planar Magnetic Nanoelements
- Authors: Metlov K.L.1,2
-
Affiliations:
- Donetsk Institute for Physics and Engineering
- Institute for Numerical Mathematics, Russian Academy of Sciences
- Issue: Vol 118, No 1-2 (7) (2023)
- Pages: 95-101
- Section: Articles
- URL: https://rjsvd.com/0370-274X/article/view/663109
- DOI: https://doi.org/10.31857/S1234567823140057
- EDN: https://elibrary.ru/GYZIFH
- ID: 663109
Cite item
Abstract
A coding scheme is introduced to store a set of linked bit strings in planar magnetic nanoelements with holes. Analytical expressions for the corresponding magnetization distributions are developed up to a homotopy and the specific examples are given for doubly- and triply-connected cases. The energy barriers, protecting the information-bearing states, are discussed. Compared to a set of disparate simply-connected nanoelements of the same total connectivity, the nanoelements with holes can hold much more information due to the possibility of linking the individual bits.
About the authors
K. L. Metlov
Donetsk Institute for Physics and Engineering;Institute for Numerical Mathematics, Russian Academy of Sciences
Author for correspondence.
Email: metlov@donfti.ru
Donetsk, 283048 Russia;Moscow, 119991 Russia
References
- S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
- A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol 8, 152 (2013).
- R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio, Sci. Rep. 4, 6784 (2014).
- S. Qiu, J. Liu, Y. Chen, X. Qi, and L. Fang, J. Magn. Magn. Mater. 554, 169144 (2022).
- S. Jain, V. Novosad, F. Fradin, J. Pearson, V. Tiberkevich, A. Slavin, and S. Bader, Nat.Commun 3, 1330 (2012).
- A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).
- A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002).
- V. L. Mironov, O. L. Ermolaeva, S. A. Gusev, A. Y. Klimov, V. V. Rogov, B. A. Gribkov, O. G. Udalov, A. A. Fraerman, R. Marsh, C. Checkley, R. Shaikhaidarov, and V. T. Petrashov, Phys. Rev. B 81, 094436 (2010).
- K. L. Metlov, Phys. Rev. Lett. 105, 107201 (2010).
- D. J. Gross, Nucl. Phys. B 132, 439 (1978).
- A. B. Bogatyrev, Theor. Math. Phys. 193, 1547 (2017).
- A. B. Bogatyrev and K. L. Metlov, Low Temp. Phys. 41, 984 (2015).
- A. B. Bogatyr¨ev and K. L. Metlov, Phys. Rev. B 95, 024403 (2017).
- N. Akhiezer, Elements of the Theory of Elliptic Functions, Translations of mathematical monographs, American Mathematical Society (1990).
- D. G. Crowdy and J. S. Marshall, Comput. Meth. Funct. Theor. 7, 293 (2007).
- M. Potkina, I. Lobanov, H. J'onsson, and V. Uzdin, J. Magn. Magn. Mater. 549, 168974 (2022).
- E. E. Huber, Jr., D. O. Smith, and J. B. Goodenough, J. Appl. Phys. 29, 294 (1958).
- A. Bisig, M. St¨ark, M.-A. Mawass, C. Mouta s, J. Rhensius, J. Heidler, F. Bu¨ttner, M. Noske, M. Weigand, S. Eisebitt, T. Tyliszczak, B. Van Waeyenberge, H. Stoll, G. Schu¨tz, and M. Kl¨aui, Nat.Commun. 4, 2328 (2013).
- K. L. Metlov and Y. P. Lee, Appl. Phys. Lett. 92, 112506 (2008).
- M. J. Mart'ınez-P'erez, B. Mu¨ller, J. Lin, L. A. Rodriguez, E. Snoeck, R. Kleiner, J. Ses'e, and D. Koelle, Nanoscale 12, 2587 (2020).
- E.-M. Hempe, M. Kl¨aui, T. Kasama, D. Backes, F. Junginger, S. Krzyk, L. J. Heyderman, R. Dunin-Borkowski, and U.Ru¨diger, Phys. Stat. Sol. A 204, 3922 (2007).
- V. Est'evez and L. Laurson, Phys. Rev. B 91, 054407 (2015).
Supplementary files
