Weak Localization of Light in a Magneto-Active Medium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The interference contribution to the optical conductance (total transmittance) of a sample of a disordered Faraday medium is calculated. The suppression of wave interference in a magnetic field is shown to be due to helicity-flip scattering events. The magnetic field does not destroy the interference of waves with a given helicity, but suppresses it if the helicity changes along different parts of the wave trajectory. This leads to a decrease in the interference contribution to the conductance with increasing the magnetic field. A similar phenomenon, negative magnetoresistance, is known as a consequence of weak localization of electrons in metals with impurities. It is found that, as the magnetic field increases, the change in the interference correction to the optical conductance tends to a certain limiting value, which depends on the ratio of the transport mean free path to the helicity-flip scattering mean free path. We also discuss the possibility of controlling the transition to the regime of strong “Anderson” localization in the quasi-one-dimensional case by means of the field.

Sobre autores

E. Gorodnichev

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: gorodn@theor.mephi.ru
Rússia, Moscow, 115409

D. Rogozkin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); All-Russia Research Institute of Automatics

Autor responsável pela correspondência
Email: gorodn@theor.mephi.ru
Rússia, Moscow, 115409; Moscow, 127055

Bibliografia

  1. Analogies in Optics and Microelectronics, ed. by W. van Haeringen and D. Lenstra, Kluwer, Dordrecht (1990).
  2. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons, University Press, Cambrige (2007).
  3. S. Rotter and S. Gigan, Rev. Mod. Phys. 89, 015005 (2017).
  4. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, Nano Lett. 8, 2638 (2008).
  5. B. Redding, S. F. Liew, R. Sarma, and H. Cao, Nat. Photonics 7, 746 (2013).
  6. B. Redding, S. M. Popo, and H. Cao, Opt. Express 21, 6584 (2013).
  7. N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, Nat. Phys. 10, 426 (2014).
  8. K. Y. Bliokh, S. A. Gredeskul, P. Rajan, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. B 85, 014205 (2012).
  9. L. Schertel, O. Irtenkauf, C. M. Aegerter, G. Maret, and G. J. Aubry, Phys. Rev. A 100, 043818 (2019).
  10. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, Phys. Rev. Lett. 101, 113902 (2008).
  11. F. Sche old and G. Maret, Phys. Rev. Lett. 81, 5800 (1998).
  12. A. A. Chabanov, N. P. Tr'egour'es, B. A. van Tiggelen, and A. Z. Genack, Phys. Rev. Lett. 92, 173901 (2004).
  13. K. Fang, Z. Yu, and S. Fan, Phys. Rev. B 87, 060301(R) (2013).
  14. F. Yang and Y. Li, Phys. Rev. B 94, 165439 (2016).
  15. M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999).
  16. B. L. Altshuler, A. G. Aronov, D. E. Khmel'nitskii, and A. I. Larkin, Quantum Theory of Solids, Mir, Moscow (1982), p. 130.
  17. G. Bergmann, Phys. Rep. 107, 1 (1984).
  18. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
  19. Y. Bromberg, B. Redding, S. M. Popo, and H. Cao, Phys. Rev. A 93, 023826 (2016).
  20. M. Estakhri, N. M. Estakhri, and T. B. Norris, doi.org/10.1038/s41598-022-25465-y (2022).
  21. R. Lenke, R. Lehner, and G. Maret, Europhys. Lett. 52, 620 (2000).
  22. E. E. Gorodnichev and D. B. Rogozkin, J. Phys.: Conf. Ser. 1686, 012024 (2020).
  23. E. E. Gorodnichev, K. A. Kondratiev, and D. B. Rogozkin, Phys. Rev. B 105, 104208 (2022).
  24. А. А. Голубенцев, Изв. ВУЗов. Радиофизика 27, 734 (1984)
  25. A. A. Golubentsev, Quantum Electron. 27, 506 (1984).
  26. А. А. Голубенцев, ЖЭТФ 86, 47 (1984)
  27. A. A. Golubentsev, Sov. Phys. JETP 59, 26 (1984).
  28. F. C. MacKintosh and S. John, Phys. Rev. B 37, 1884 (1988).
  29. A. K. Zvezdin and V. A. Kotov, Modern magnetooptics and magnetooptical materials, Taylor & Francis Group, N.Y. (1997), p. 404.
  30. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Письма в ЖЭТФ 89, 649 (2009)
  31. E. E. Gorodnichev, A. I. Kuzovlev, D. B. Rogozkin, JETP Lett. 89, 547 (2009).
  32. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JOSA A 33, 95 (2016).
  33. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
  34. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
  35. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Письма в ЖЭТФ 68, 21 (1998)
  36. E. E. Gorodnichev, A. I. Kuzovlev, D. B. Rogozkin, JETP Lett. 68, 22 (1998).
  37. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Phys. Rev. E 90, 043205 (2014).
  38. M. I. Mishchenko, Electromagnetic Scattering by Particles and Particle Groups, Cambridge University Press, Cambridge (2014).
  39. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, ЖЭТФ 133, 839 (2008)
  40. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 106, 731 (2008).
  41. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Письма в ЖЭТФ 104, 155 (2016)
  42. E. E. Gorodnichev, A. I. Kuzovlev, D. B. Rogozkin, JETP Lett. 104, 157 (2016).
  43. R. Lenke, C. Eisenmann, D. Reinke, and G. Maret, Phys. Rev. E 66, 056610 (2002).
  44. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, М. (1982)
  45. L. D. Landau, L. P. Pitaevskii, E. M. Lifshitz, Electrodynamics of Continuous Media, vol. 8 in Course of Theoretical Physics, Second Edition, Elsevier (1984).
  46. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023