PT-Symmetric Microwave Photoconductivity in Heterostructures Based on the xCdxTe Topological Phase

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The PT-symmetric photoconductivity has been detected for the first time in microwave-irradiated heterostructures based on thick Hg1 − xCdxTe films with the CdTe content x corresponding to the topological phase although the magnetic field symmetry (T symmetry) and the symmetry in the positions of potential contact pairs (P symmetry) are not conserved separately. The microwave photoconductivity in similar heterostructures based on the trivial Hg1 − xCdxTe phase is both P- and T-symmetric.

Sobre autores

S. Chmyr'

Faculty of Physics, Moscow State University

Email: khokhlov@mig.phys.msu.ru
119991, Moscow, Russia

A. Kazakov

Faculty of Physics, Moscow State University

Email: khokhlov@mig.phys.msu.ru
119991, Moscow, Russia

A. Galeeva

Faculty of Physics, Moscow State University

Email: khokhlov@mig.phys.msu.ru
119991, Moscow, Russia

D. Dolzhenko

Faculty of Physics, Moscow State University

Email: khokhlov@mig.phys.msu.ru
119991, Moscow, Russia

A. Artamkin

Faculty of Physics, Moscow State University

Email: khokhlov@mig.phys.msu.ru
119991, Moscow, Russia

A. Ikonnikov

Faculty of Physics, Moscow State University

Email: khokhlov@mig.phys.msu.ru
119991, Moscow, Russia

N. Mikhaylov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: khokhlov@mig.phys.msu.ru
630090, Novosibirsk, Russia

S. Dvoretskiy

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: khokhlov@mig.phys.msu.ru
630090, Novosibirsk, Russia

M. Bannikov

Lebedev Physical Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: khokhlov@mig.phys.msu.ru
119991, Moscow, Russia

Bibliografia

  1. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  2. Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).
  3. O. Breunig and Y. Ando, Nat. Rev. Phys. 4, 184 (2022).
  4. H. Plank and S. D. Ganichev, Solid State Electronics 147, 44 (2018).
  5. K.-M. Dantscher, D. A. Kozlov, P. Olbrich, C. Zoth, P. Faltermeier, M. Lindner, G. V. Budkin, S. A. Tarasenko, V. V. Bel'kov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, D. Weiss, B. Jenichen, and S. D. Ganichev, Phys. Rev. B 92, 165314 (2015).
  6. K.-M. Dantscher, D. A. Kozlov, M. T. Scherr, S. Gebert, J. B¨arenf¨anger, M. V. Durnev, S. A. Tarasenko, V. V. Bel'kov, N. N. Mikhailov, S. A. Dvoretsky, Z. D. Kvon, J. Ziegler, D. Weiss, and S. D. Ganichev, Phys. Rev B 95, 201103 (2017).
  7. S. G. Egorova, V. I. Chernichkin, L. I. Ryabova, E. P. Skipetrov, L. V. Yashina, S. N. Danilov, S. D. Ganichev, and D. R. Khokhlov, Sci. Rep. 5, 11540 (2015).
  8. A. V. Galeeva, S. G. Egorova, V. I. Chernichkin, M. E. Tamm, L. V. Yashina, V. V.Rumyantsev, S. V. Morozov, H. Plank, S. N. Danilov, L. I. Ryabova, and D. R. Khokhlov, Semicond. Sci. Technol. 31, 095010 (2016).
  9. A. V. Galeeva, I. V. Krylov, K. A. Drozdov, A. F. Knjazev, A. V. Kochura, A. P. Kuzmenko, V. S. Zakhvalinskii, S. N. Danilov, L. I. Ryabova, and D. R. Khokhlov, Beilstein J. Nanotechnol. 8, 167 (2017).
  10. A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).
  11. M. Weiler, Semiconductors and semimetals, ed. by R. Willardson and A. Beer, Academic press, N.Y. (1981), v. 16, p. 119.
  12. M. Orlita, D. M. Basko, M. S. Zholudev, F. Teppe, W. Knap, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretskii, P. Neugebauer, C. Faugeras, A.-L. Barra, G. Martinez, and M. Potemski, Nat. Phys. 10, 233 (2014).
  13. A. V. Galeeva, A. S. Kazakov, A. I. Artamkin, L. I. Ryabova, S. A. Dvoretsky, N. N. Mikhailov, M. I. Bannikov, S. N. Danilov, and D. R. Khokhlov, Sci. Rep. 10, 2377 (2020).
  14. A. V. Galeeva, A. I. Artamkin, A. S. Kazakov, A. V. Ikonnikov, L. I. Ryabova, S. A. Dvoretsky, N. N. Mikhailov, M. I. Bannikov, S. N. Danilov, and D. R. Khokhlov, Sci. Rep. 11, 1587 (2021).
  15. A. S. Kazakov, A. V. Galeeva, A. I. Artamkin, A. V. Ikonnikov, L. I. Ryabova, S. A. Dvoretsky, N. N. Mikhailov, M. I. Bannikov, S. N. Danilov, and D. R. Khokhlov, Sci. Rep. 11, 11638 (2021).
  16. A. V. Galeeva, A. I. Artamkin, A. S. Kazakov, S. N. Danilov, S. A. Dvoretskiy, N. N. Mikhailov, L. I. Ryabova, and D. R. Khokhlov, Beilsten J. Nanotechnol. 9, 1035 (2018).
  17. K. K. Svitashev, S. A. Dvoretskiy, Y. G. Sidorov, V. A. Shvets, A. S. Mardezhov, I. E. Nis, V. S. Varavin, V. Liberman, and V. G. Remesnik, Crystal Research and Technology 29(7), 931 (1994).
  18. V. S. Varavin, S. A. Dvoretskiy, D. G. Ikusov, N. N. Mikhailov, V. G. Remesnik, G. Yu. Sidorov, Yu. G. Sidorov, P. N. Sizikov, and I. N. Uzhakov, Optoelectroncs, Instrumentation and Data Processing 49, 4 (2013).
  19. S. A. Dvoretsky, D. G. Ikusov, Z. D. Kvon, N. N. Mikhailov, V. G. Remesnik, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, Semiconductor Physics, Quantum Electronics & Optoelectronics 10, 47 (2007).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023