Measurement of the Energy of the 8.3-eV 229Th Isomer Using the Photoelectric Effect

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is proposed to use the photoelectric effect on inner s shells of the 229Th atom to more accurately determine the energy of its 8.3-eV isomer. The calculation has been performed using the Feinberg–Migdal shaking theory, which gives the probability of the formation of the isomer up to 0.5×103">0.5×103 on the K shell. As a result, two lines separated by the energy of the isomer has been predicted in the spectrum of photoelectrons. Other applications of the method to study the properties of the isomer, including that through shaking at the formation of radioactive beams at storage rings, have also been discussed. Furthermore, the experimental detection of the effect will make it possible to determine more accurately its partial lifetime.

About the authors

F. F. Karpeshin

Mendeleev All-Russian Research Institute of Metrology (VNIIM)

Author for correspondence.
Email: fkarpeshin@yandex.ru
190005, St. Petersburg, Russia

References

  1. M. Filzinger, S. D¨orscher, R. Lange, J. Klose, M. Steinel, E. Benkler, E. Peik, C. Lisdat, and N. Huntemann, Phys. Rev. Lett. 130, 253001 (2023).
  2. S. Kraemer, J. Moens, M. Athanasakis-Kaklamanakis et al. (Collaboration), Nature 617, 706 (2023); https://doi.org/10.1038/s41586-023-05894-z.
  3. Л.Ф. Витушкин, Ф.Ф. Карпешин, М. Б. Тржасковская, ЯФ 83, 463 (2020)
  4. L. F. Vitushkin, F. F. Karpeshin, and M. B. Trzhaskovskaya, Phys. At. Nucl. 83, 775 (2020).
  5. F. F. Karpeshin and L. F. Vitushkin, https://doi.org/10.48550/arXiv.2307.08711.
  6. L. von der Wense and Z. Chuankun, Eur. Phys. J. Ser. D 74, 146 (2020).
  7. F. F. Karpeshin, S. Wycech, I.M. Band, M. B. Trzhaskovskaya, M. Pf¨utzner, and J. Zylicz, Phys. Rev. C 57, 3085 (1998).
  8. V.M. Shabaev, D.A. Glazov, A.M. Ryzhkov, C. Brandau, G. Plunien, W. Quint, A.M. Volchkova, and D.V. Zinenko, Phys. Rev. Lett. 128, 043001 (2022).
  9. E. L. Feinberg, J. Phys. (USSR) 4, 423 (1941).
  10. A. Мигдал, ЖЭТФ 11, 207 (1941).
  11. D. S. Akerib, S. Alsum, H.M. Ara'ujo et al. (LUX Collaboration), Phys. Rev. Lett. 122, 131301 (2019).
  12. E. Aprile, J. Aalbers, F. Agostini et al. (XENON Collaboration), Phys. Rev. Lett. 123, 241803 (2019).
  13. P. Agnes, I.F.M. Albuquerque, T. Alexander et al. (DarkSide Collaboration), Phys. Rev. Lett. 130, 101001 (2023).
  14. F. F. Karpeshin and M.B. Trzhaskovskaya, Phys. Rev. C 107, 045502 (2023).
  15. М.И. Криворученко, К.С. Тырин, Ф.Ф. Карпешин, Письма в ЖЭТФ 117, 887 (2023).
  16. F. F. Karpeshin, I.M. Band, and M.B. Trzhaskovskaya, Nucl. Phys. A 654, 579 (1999).
  17. Б.А. Зон, Ф.Ф. Карпешин, ЖЭТФ 97, 401 (1990)
  18. B.A. Zon and F. F. Karpeshin, Sov. Phys. - JETP 70, 224 (1990).
  19. Ф.Ф. Карпешин, Мгновенное деление в мюонных атомах и резонансная конверсия, Наука, СПб. (2006).
  20. J. L. Campbell and T. Papp, At. Data Nucl. Data Tables 77, 1 (2001).
  21. L. von der Wense and B. Seiferle, Eur. Phys. J. A 56, 277 (2020).
  22. Scientific Program and Abstracts of Int. Workshop on "100 years of Nuclear Isomers", 2-4 May 2022, Berlin, Germany.
  23. Scientific Program and Abstracts of 766-th WE-Heraeus-Seminar on "High-Precision Measurements and Searches for New Physics", 9-13 May 2022, Physikzentrum Bad Honnef, Germany, https://www.we-heraeus-stiftung.de/veranstaltungen/high-precision-measurements-and-searches-for-newphysics/.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук