Impact of treatment trajectory on the thermal ablation rate and biological tissue volumetric lesion during irradiation by shock-wave focusing ultrasonic beam

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Thermal ablation rates and the shapes of volumetric biological tissue lesion are compared in a numerical experiment, in which biological tissue is exposed to pulsed periodic shock-wave high intensity focused ultrasound. The comparison is performed across three different irradiation sequences of discrete foci placed uniformly within the target area.

全文:

受限制的访问

作者简介

P. Pestova

Moscow State University

编辑信件的主要联系方式.
Email: pestova.pa16@physics.msu.ru

Physics Faculty

俄罗斯联邦, Moscow

P. Yuldashev

Moscow State University

Email: pestova.pa16@physics.msu.ru

Physics Faculty

俄罗斯联邦, Moscow

V. Khokhlova

Moscow State University

Email: pestova.pa16@physics.msu.ru

Physics Faculty

俄罗斯联邦, Moscow

M. Karzova

Moscow State University

Email: pestova.pa16@physics.msu.ru

Physics Faculty

俄罗斯联邦, Moscow

参考

  1. Хилл К.Р., Бэмбер Дж., тер Хаар Г. Ультразвук в медицине. Физические основы применения. Пер. с англ. М.: Физматлит, 2008. 544 с.
  2. Гаврилов Л.Р. Фокусированный ультразвук высокой интенсивности в медицине. М.: Фазис, 2013.
  3. Köhler M.O., Mougenot C., Quesson B. et al. // Med. Physics. 2009. V. 36. No. 8. P. 3521.
  4. Kim Y.S., Keserci B., Partanen A. et al. // Eur. J. Radiol. 2012. V. 81. No. 11. P. 3652.
  5. Mougenot C., Köhler M.O., Enholm J. et al. // Med. Physics. 2011. V. 38. P. 272.
  6. Mougenot C., Salomir R., Palussière J. et al. // Magn. Reson. Med. 2004. V. 52. P. 1005.
  7. Enholm J.K., Köhler M.O., Quesson B. et al. // IEEE Trans. Biomed. Eng. 2010. V. 57. No. 1. P. 103.
  8. Андрияхинa Ю.С., Карзова М.М., Юлдашев П.В., Хохлова В.А. // Акуст. журн. 2019. Т. 65. № 2. С. 1; Andriyakhina Y.S., Karzova M.M., Yuldashev P.V., Khokhlova V.A. // Acoust. Phys. 2019. V. 65. No. 2. P. 141.
  9. Филоненко E.А., Хохлова В.А. // Акуст. журн. 2001. Т. 47. № 4. С. 541; Filonenko E.A., Khokhlova V.A. // Acoust. Phys. 2001. V. 47. No. 4. P. 541.
  10. Пестова П.А., Карзова М.М., Юлдашев П.В. и др. // Акуст. журн. 2021. Т. 67. № 3. С. 250; Pestova P.P., Karzova M.M., Yuldashev P.V. et al. // Acoust. Phys. 2021. V. 67. No. 3. P. 250.
  11. Пестова П.А., Карзова М.М., Юлдашев П.В., Хохлова В.А. // Сб. тр. XXXIV сессии РАО. (Москва, 2022). С. 927.
  12. Kreider W., Yuldashev P.V., Sapozhnikov O.A. et al. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013. V. 60. No. 8. P. 1683.
  13. Karzova M.M., Kreider W., Partanen A. et al. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2023. V. 70. No. 6. P. 521.
  14. Карзова М.М., Аверьянов М.В., Сапожников О.А., Хохлова В.А. // Акуст. журн. 2012. Т. 58. № 1. С. 93; Karzova M.M., Averiyanov M.V., Sapozhnikov O.A., Khokhlova V.A. // Acoust. Phys. 2012. V. 58. No. 1. P. 81.
  15. Canney M.S., Khokhlova V.A., Bessonova O.V. et al. // Ultrasound Med. Biol. 2009. V. 36. No. 2. P. 250.
  16. Khokhlova T.D., Canney M.S., Khokhlova V.A. et al. // J. Acoust. Soc. Amer. 2011. V. 130. No. 5. P. 3498.
  17. Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A. et al. // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2017. V. 64. No. 2. P. 374.
  18. Maxwell A.D., Yuldashev P.V., Kreider W. et al. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017. V. 64. No. 10. P. 1542.
  19. Юлдашев П.В., Хохлова В.А. // Акуст. журн. 2011. Т. 57. № 3. С. 337; Yuldashev P.V., Khokhlova V.A. // Acoust. Phys. 2011. V. 57. No. 3. P. 333.
  20. https://itis.swiss/virtual-population/tissue-properties/database/acoustic-properties.
  21. Sapareto S.A., Dewey W.C. // Int. J. Radiat. Oncol. Biol. Phys. 1984. V. 10. No. 6. P. 787.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geometry of the problem: the ultrasound beam is generated by a HIFU array (256 elements with a diameter of 6.6 mm, frequency of 1.2 MHz) and focused into a sample of beef liver tissue (a). The trajectory of a single shock wave with a uniform arrangement of discrete foci (top) and three sequences of moving the emitter focus (bottom; shown by numbers): “spiral” (left), “clinical” (center), “snake” (right) (b).

下载 (269KB)
3. Fig. 2. Pressure profiles at the focus (left column), spatial distributions of the power density of thermal sources in the tissue (middle column) and temperature distributions (right column) at the moment of focus movement (20 ms) in the axial xz planes of the beam for (a) the saturation mode (I0 = 15 W/cm2) and (b) the mode with the formation of a developed rupture (I0 = 8 W/cm2). The black contour indicates the region of thermal destruction.

下载 (177KB)
4. Fig. 3. Spatial temperature distributions at the end of tissue irradiation along a trajectory with different focus switching sequences: “clinical” (a, d), “spiral” (b, d), “snake” (c, e) for the modes I0 = 8 W/cm2 (left column, a–c) and I0 = 15 W/cm2 (right column, d–e). The black contour indicates the region within which the thermal dose exceeded its threshold value after the sample cooled. The end time of heating, the achieved size of thermal destruction, and the thermal ablation rate are shown on each spatial temperature distribution.

下载 (276KB)

版权所有 © Russian Academy of Sciences, 2024